Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.760
Filtrar
1.
Biol Res ; 52(1): 56, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699158

RESUMO

BACKGROUND: ADP-glucose pyrophosphorylase (AGPase), the key enzyme in plant starch biosynthesis, is a heterotetramer composed of two identical large subunits and two identical small subunits. AGPase has plastidial and cytosolic isoforms in higher plants, whereas it is mainly detected in the cytosol of grain endosperms in cereal crops. Our previous results have shown that the expression of the TaAGPL1 gene, encoding the cytosolic large subunit of wheat AGPase, temporally coincides with the rate of starch accumulation and that its overexpression dramatically increases wheat AGPase activity and the rate of starch accumulation, suggesting an important role. METHODS: In this study, we performed yeast one-hybrid screening using the promoter of the TaAGPL1 gene as bait and a wheat grain cDNA library as prey to screen out the upstream regulators of TaAGPL1 gene. And the barley stripe mosaic virus-induced gene-silencing (BSMV-VIGS) method was used to verify the functional characterization of the identified regulators in starch biosynthesis. RESULTS: Disulfide isomerase 1-2 protein (TaPDIL1-2) was screened out, and its binding to the TaAGPL1-1D promoter was further verified using another yeast one-hybrid screen. Transiently silenced wheat plants of the TaPDIL1-2 gene were obtained by using BSMV-VIGS method under field conditions. In grains of BSMV-VIGS-TaPDIL1-2-silenced wheat plants, the TaAGPL1 gene transcription levels, grain starch contents, and 1000-kernel weight also significantly increased. CONCLUSIONS: As important chaperones involved in oxidative protein folding, PDIL proteins have been reported to form hetero-dimers with some transcription factors, and thus, our results suggested that TaPDIL1-2 protein could indirectly and negatively regulate the expression of the TaAGPL1 gene and function in starch biosynthesis.


Assuntos
Pão , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Proteínas de Plantas/genética , Fatores de Transcrição , Triticum/genética
2.
BMC Plant Biol ; 19(1): 333, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370789

RESUMO

BACKGROUND: Wheat grains contain gluten proteins, which harbour immunogenic epitopes that trigger Coeliac disease in 1-2% of the human population. Wheat varieties or accessions containing only safe gluten have not been identified and conventional breeding alone struggles to achieve such a goal, as the epitopes occur in gluten proteins encoded by five multigene families, these genes are partly located in tandem arrays, and bread wheat is allohexaploid. Gluten immunogenicity can be reduced by modification or deletion of epitopes. Mutagenesis technologies, including CRISPR/Cas9, provide a route to obtain bread wheat containing gluten proteins with fewer immunogenic epitopes. RESULTS: In this study, we analysed the genetic diversity of over 600 α- and γ-gliadin gene sequences to design six sgRNA sequences on relatively conserved domains that we identified near coeliac disease epitopes. They were combined in four CRISPR/Cas9 constructs to target the α- or γ-gliadins, or both simultaneously, in the hexaploid bread wheat cultivar Fielder. We compared the results with those obtained with random mutagenesis in cultivar Paragon by γ-irradiation. For this, Acid-PAGE was used to identify T1 grains with altered gliadin protein profiles compared to the wild-type endosperm. We first optimised the interpretation of Acid-PAGE gels using Chinese Spring deletion lines. We then analysed the changes generated in 360 Paragon γ-irradiated lines and in 117 Fielder CRISPR/Cas9 lines. Similar gliadin profile alterations, with missing protein bands, could be observed in grains produced by both methods. CONCLUSIONS: The results demonstrate the feasibility and efficacy of using CRISPR/Cas9 to simultaneously edit multiple genes in the large α- and γ-gliadin gene families in polyploid bread wheat. Additional methods, generating genomics and proteomics data, will be necessary to determine the exact nature of the mutations generated with both methods.


Assuntos
Edição de Genes/métodos , Genes de Plantas/genética , Gliadina/genética , Glutens/genética , Triticum/genética , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Eletroforese em Gel de Poliacrilamida , Glutens/imunologia , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , Alinhamento de Sequência
3.
BMC Plant Biol ; 19(1): 336, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370790

RESUMO

BACKGROUND: APETALA2-like genes encode plant-specific transcription factors, some of which possess one microRNA172 (miR172) binding site. The miR172 and its target euAP2 genes are involved in the process of phase transformation and flower organ development in many plants. However, the roles of miR172 and its target AP2 genes remain largely unknown in Brassica napus (B. napus). RESULTS: In this study, 19 euAP2 and four miR172 genes were identified in the B. napus genome. A sequence analysis suggested that 17 euAP2 genes were targeted by Bna-miR172 in the 3' coding region. EuAP2s were classified into five major groups in B.napus. This classification was consistent with the exon-intron structure and motif organization. An analysis of the nonsynonymous and synonymous substitution rates revealed that the euAP2 genes had gone through purifying selection. Whole genome duplication (WGD) or segmental duplication events played a major role in the expansion of the euAP2 gene family. A cis-regulatory element (CRE) analysis suggested that the euAP2s were involved in the response to light, hormones, stress, and developmental processes including circadian control, endosperm and meristem expression. Expression analysis of the miR172-targeted euAP2s in nine different tissues showed diverse spatiotemporal expression patterns. Most euAP2 genes were highly expressed in the floral organs, suggesting their specific functions in flower development. BnaAP2-1, BnaAP2-5 and BnaTOE1-2 had higher expression levels in late-flowering material than early-flowering material based on RNA-seq and qRT-PCR, indicating that they may act as floral suppressors. CONCLUSIONS: Overall, analyses of the evolution, structure, tissue specificity and expression of the euAP2 genes were peformed in B.napus. Based on the RNA-seq and experimental data, euAP2 may be involved in flower development. Three euAP2 genes (BnaAP2-1, BnaAP2-5 and BnaTOE1-2) might be regarded as floral suppressors. The results of this study provide insights for further functional characterization of the miR172 /euAP2 module in B.napus.


Assuntos
Brassica napus/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , MicroRNAs/genética , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Sequência Conservada/genética , Genes de Plantas/fisiologia , Estudo de Associação Genômica Ampla , MicroRNAs/fisiologia , Filogenia , Alinhamento de Sequência
4.
BMC Plant Biol ; 19(1): 337, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375064

RESUMO

BACKGROUND: Cymbidium goeringii belongs to the Orchidaceae, which is one of the most abundant angiosperm families. Cymbidium goeringii consist with high economic value and characteristics include fragrance and multiple flower colors. Floral scent is one of the important strategies for ensuring fertilization. However, limited genetic data is available in this non-model plant, and little known about the molecular mechanism responsible for floral scent in this orchid. Transcriptome and expression profiling data are needed to identify genes and better understand the biological mechanisms of floral scents in this species. Present transcriptomic data provides basic information on the genes and enzymes related to and pathways involved in flower secondary metabolism in this plant. RESULTS: In this study, RNA sequencing analyses were performed to identify changes in gene expression and biological pathways related scent metabolism. Three cDNA libraries were obtained from three developmental floral stages: closed bud, half flowering stage and full flowering stage. Using Illumina technique 159,616,374 clean reads were obtained and were assembled into 85,868 final unigenes (average length 1194 nt), 33.85% of which were annotated in the NCBI non redundant protein database. Among this unigenes 36,082 were assigned to gene ontology and 23,164 were combined with COG groups. Total 33,417 unigenes were assigned in 127 pathways according to the Kyoto Encyclopedia of Genes and Genomes pathway database. According these transcriptomic data we identified number of candidates genes which differentially expressed in different developmental stages of flower related to fragrance biosynthesis. In q-RT-PCR most of the fragrance related genes highly expressed in half flowering stage. CONCLUSIONS: RNA-seq and DEG data provided comprehensive gene expression information at the transcriptional level that could be facilitate the molecular mechanisms of floral biosynthesis pathways in three developmental phase's flowers in Cymbidium goeringii, moreover providing useful information for further analysis on C. goeringii, and other plants of genus Cymbidium.


Assuntos
Flores/metabolismo , Genes de Plantas/genética , Odorantes , Orchidaceae/genética , Acetatos/metabolismo , Ciclopentanos/metabolismo , Farneseno Álcool/metabolismo , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Orchidaceae/metabolismo , Oxilipinas/metabolismo , Filogenia , Análise de Sequência de RNA , Sesquiterpenos/metabolismo , Terpenos/metabolismo
5.
BMC Plant Biol ; 19(1): 341, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382871

RESUMO

BACKGROUND: Barley is a low phosphorus (P) demand cereal crop. Tibetan wild barley, as a progenitor of cultivated barley, has revealed outstanding ability of tolerance to low-P stress. However, the underlying mechanisms of low-P adaption and the relevant genetic controlling are still unclear. RESULTS: We identified low-P tolerant barley lines in a doubled-haploid (DH) population derived from an elite Tibetan wild barley accession and a high-yield cultivar. The tolerant lines revealed greater root plasticity in the terms of lateral root length, compared to low-P sensitive lines, in response to low-P stress. By integrating the QTLs associated with root length and root transcriptomic profiling, candidate genes encoding isoflavone reductase, nitrate reductase, nitrate transporter and transcriptional factor MYB were identified. The differentially expressed genes (DEGs) involved the growth of lateral root, Pi transport within cells as well as from roots to shoots contributed to the differences between low-P tolerant line L138 and low-P sensitive lines L73 in their ability of P acquisition and utilization. CONCLUSIONS: The plasticity of root system is an important trait for barley to tolerate low-P stress. The low-P tolerance in the elite DH line derived from a cross of Tibetan wild barley and cultivated barley is characterized by enhanced growth of lateral root and Pi recycling within plants under low-P stress.


Assuntos
Hordeum/fisiologia , Fósforo/metabolismo , Raízes de Plantas/fisiologia , Adaptação Fisiológica , Perfilação da Expressão Gênica , Genes de Plantas/genética , Genes de Plantas/fisiologia , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Fósforo/deficiência , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Locos de Características Quantitativas/genética , Estresse Fisiológico
6.
BMC Plant Biol ; 19(1): 340, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382873

RESUMO

BACKGROUND: Circular RNAs (circRNAs) are known to play an important role in the regulation of gene expression in eukaryotes. Photo-thermosensitive genic male sterile (PTGMS) is a very important germplasm resource in two-line hybrid rice breeding. Although many circRNAs have been identified in rice (Oryza sativa L.), little is known about the biological roles of circRNAs in the fertility transition of the PTGMS rice line. RESULTS: In the present study, RNA-sequencing libraries were constructed from the young panicles of the Wuxiang S sterile line rice (WXS (S)) and its fertile line rice (WXS (F)) at three development stages with three biological replicates. A total of 9994 circRNAs were obtained in WXS rice based on high-throughput strand-specific RNA sequencing and bioinformatic approaches, of which 5305 were known circRNAs and 4689 were novel in rice. And 14 of 16 randomly selected circRNAs were experimentally validated with divergent primers. Our results showed that 186 circRNAs were significantly differentially expressed in WXS (F) compared with WXS (S), of which 97, 87 and 60 circRNAs were differentially expressed at the pollen mother cell (PMC) formation stage (P2), the meiosis stage (P3) and the microspore formation stage (P4), respectively. Fertility specific expression patterns of eight circRNAs were analysis by qRT-PCR. Gene ontology (GO) and KEGG pathway analysis of the parental genes of differentially expressed circRNAs (DECs) revealed that they mainly participated in various biological processes such as development, response to stimulation, hormonal regulation, and reproduction. Furthermore, 15 DECs were found to act as putative miRNA sponges to involved in fertility transition in PTGMS rice line. CONCLUSION: In the present study, the abundance and characteristics of circRNAs were investigated in the PTGMS rice line using bioinformatic approaches. Moreover, the expression patterns of circRNAs were different between WXS (F) and WXS (S). Our findings primarily revealed that circRNAs might be endogenous noncoding regulators of flower and pollen development, and were involved in the fertility transition in the PTGMS rice line, and guide the production and application of two-line hybrid rice.


Assuntos
Oryza/genética , RNA/genética , Fertilidade/genética , Fertilidade/fisiologia , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Genes de Plantas/fisiologia , Resposta ao Choque Térmico , Sequenciamento de Nucleotídeos em Larga Escala , Oryza/fisiologia , Pólen/crescimento & desenvolvimento , RNA/fisiologia
7.
BMC Plant Biol ; 19(1): 339, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31382883

RESUMO

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum) is an edible cereal crop whose sprouts have been marketed and commercialized for their higher levels of anti-oxidants, including rutin and anthocyanin. UDP-glucose flavonoid glycosyltransferases (UFGTs) play an important role in the biosynthesis of flavonoids in plants. So far, few studies are available on UFGT genes that may play a role in tartary buckwheat flavonoids biosynthesis. Here, we report on the identification and functional characterization of seven UFGTs from tartary buckwheat that are potentially involved in flavonoid biosynthesis (and have varying effects on plant growth and development when overexpressed in Arabidopsis thaliana.) RESULTS: Phylogenetic analysis indicated that the potential function of the seven FtUFGT proteins, FtUFGT6, FtUFGT7, FtUFGT8, FtUFGT9, FtUFGT15, FtUFGT40, and FtUFGT41, could be divided into three Arabidopsis thaliana functional subgroups that are involved in flavonoid biosynthesis of and anthocyanin accumulation. A significant positive correlation between FtUFGT8 and FtUFGT15 expression and anthocyanin accumulation capacity was observed in the tartary buckwheat seedlings after cold stress. Overexpression in Arabidopsis thaliana showed that FtUFGT8, FtUFGT15, and FtUFGT41 significantly increased the anthocyanin content in transgenic plants. Unexpectedly, overexpression of FtUFGT6, while not leading to enhanced anthocyanin accumulation, significantly enhanced the growth yield of transgenic plants. When wild-type plants have only cotyledons, most of the transgenic plants of FtUFGT6 had grown true leaves. Moreover, the growth speed of the oxFtUFGT6 transgenic plant root was also significantly faster than that of the wild type. At later growth, FtUFGT6 transgenic plants showed larger leaves, earlier twitching times and more tillers than wild type, whereas FtUFGT15 showed opposite results. CONCLUSIONS: Seven FtUFGTs were isolated from tartary buckwheat. FtUFGT8, FtUFGT15, and FtUFGT41 can significantly increase the accumulation of total anthocyanins in transgenic plants. Furthermore, overexpression of FtUFGT6 increased the overall yield of Arabidopsis transgenic plants at all growth stages. However, FtUFGT15 shows the opposite trend at later growth stage and delays the growth speed of plants. These results suggested that the biological function of FtUFGT genes in tartary buckwheat is diverse.


Assuntos
Fagopyrum/genética , Genes de Plantas/genética , Glicosiltransferases/genética , Proteínas de Plantas/genética , Antocianinas/metabolismo , Arabidopsis/genética , Sequência Conservada , Fagopyrum/enzimologia , Flavonoides/metabolismo , Genes de Plantas/fisiologia , Glicosiltransferases/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
8.
Plant Physiol Biochem ; 142: 490-499, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31442880

RESUMO

ICE1 (inducer of CBF expression 1) encodes a typical MYC-like basic helix-loop- helix (bHLH) transcription factor that acts as a pivotal component in the cold signalling pathway. In this study, DlICE1, a novel ICE1-like gene, was isolated from the southern subtropical fruit tree longan (Dimocarpus longan Lour.). DlICE1 encodes a nuclear protein with a highly conserved bHLH domain. DlICE1 expression was slightly upregulated under cold stress. Overexpression of DlICE1 in Arabidopsis conferred enhanced cold tolerance via increased proline content, decreased ion leakage, and reduced malondialdehyde (MDA) and reactive oxygen species (ROS) accumulation. Expression of the ICE1-CBF cold signalling pathway genes, including AtCBF1/2/3 and cold-responsive genes (AtRD29A, AtCOR15A, AtCOR47 and AtKIN1), was also significantly higher in DlICE1-overexpressing lines than in wild-type (WT) plants under cold stress. In conclusion, these findings indicate that DlICE1 is a member of the bHLH gene family and positively regulates cold tolerance in D. longan.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Sapindaceae/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Clonagem Molecular , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sapindaceae/fisiologia , Análise de Sequência de DNA
9.
Plant Physiol Biochem ; 142: 500-509, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31445475

RESUMO

Early blight disease of tomato is one of the most devastating biotic stresses worldwide, and in Iran, Alternaria alternata is one of the most predominant species causing the disease. In the current study, a diverse collection of 35 tomato genotypes and implication of 5 SlWRKYs and 7 PR genes as well as enzymatic activity were evaluated on resistant and susceptible cultivars through real-time polymerase chain reaction at transplanting and maturing stages and by measuring product formation using spectrophotometry. The results indicated that the expression of these antifungal genes in 14 genotypes at two growth stages after inoculation with A. alternata highly enhanced by 1-50-fold. There was also significant upregulation of WRKYs and PRs genes among the resistant tomato varieties in comparison to susceptible and control varieties at both stages. These findings demonstrate the varieties that showed increased or decreased SlWRKY1 expression also displayed similar changes in the expression of PR1 and PR2 genes. Furthermore, the differential expression patterns of SlWRKY1 and SlWRKY11 were consistent with PR7 and PDF1.2 expression patterns. The analysis of enzymatic activity of PR2 and PR3 proteins, ß-1,3-glucanase, and chitinase showed the highest level of activity in resistant inoculated genotypes against A. alternata. Therefore, the current findings suggest the possible involvement of these transcription factors in the increased expression of PR genes in response to A. alternata infection.


Assuntos
Alternaria , Resistência à Doença/genética , Lycopersicon esculentum/microbiologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Genótipo , Lycopersicon esculentum/genética , Lycopersicon esculentum/imunologia , Doenças das Plantas/imunologia , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
10.
Phytochemistry ; 167: 112086, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450092

RESUMO

The worldwide-cultivated chicory (Cichorium intybus L.) produces food and beneficial compounds, and young pre-flowering inflorescence stems are newly marketed vegetables. These sink-organs undergo growth by metabolizing sugars of leaf origin; the carbohydrate content and sweetness are crucial aspects for consumers' nutrition and acceptance. NMR profiling of 31 hydrosoluble phytochemicals showed that stem contents varied as influenced by genotype, environment and interaction, and that higher sucrose levels were associated with the sweeter of two landraces. Integrative analyses of metabolic and transcriptomic profile variations allowed the dissection of sucrose pathway. Overall, 427 and 23 unigenes respectively fell into the categories of sucrose metabolism and sugar carriers. Among 10 differentially expressed genes, the 11474/sucrose synthase, 53458/fructokinase, 9306 and 17035/hexokinases, and 20171/SWEET-type genes significantly associated to sugar content variation, and deduced proteins were characterised in silico. Correlation analyses encompassing sugar level variation, expressions of the former genes and of computationally assigned transcription factors (10938/NAC, 14712/bHLH, 40133/TALE and 17846/MIKC) revealed a gene network. The latter was minimally affected by the environment and accomplished with markers, representing a resource for biological studies and breeding.


Assuntos
Chicória/genética , Chicória/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Caules de Planta/metabolismo , Sacarose/metabolismo , Redes Reguladoras de Genes/genética , Genes de Plantas/genética
11.
Plant Physiol Biochem ; 142: 395-404, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31408843

RESUMO

The HVA22 gene has been isolated for the first time from the aleurone layer of barley (Hordeum vulgare). Here, we characterized the HVA22 family from citrus (C. clementina and C. sinensis). Twelve genes, 6 in each species, were identified as well as duplication events for some of them. The ORF size ranged from 235 to 804 bp and the protein molecular weight from 94 to 267 kDa. All the citrus HVA22 protein presented transmembrane location and conserved TB2/DP1/HVA22 region. Phylogenetic and gene expression analyses suggested that some citrus HVA22 play a role in flower and fruit development, and that gene expression may be regulated by hormone or environmental conditions. Other regulation levels were also predicted, such as alternative splicing and post-translational modifications. The overall data indicated that citrus HVA22 may be involved in vesicular traffic in stressed cells, and that CcHVA22d could be involved in dehydration tolerance.


Assuntos
Citrus/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Citrus/fisiologia , Citrus sinensis/genética , Citrus sinensis/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Peróxido de Hidrogênio/metabolismo , Filogenia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Estresse Fisiológico , Tabaco/genética , Transcriptoma
12.
Plant Physiol Biochem ; 142: 429-439, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31419645

RESUMO

ABC transporters constitute the largest family of transporter proteins in living organisms and divided into eight subfamilies, from A-H. ABCG members, specific to plants and fungi, belong to subfamily G. In this study, we provide updated inventory, detailed account of phylogeny, gene structure characteristics, and expression profiling during reproductive development, abiotic and biotic stresses of members of ABCG gene family in rice along with reannotation and cloning of FL-cDNA of OsABCG50/PDR23. We observed that of the 22 ABCGs/PDRs, four genes evolved as a result of gene duplication events and their expression pattern changed after duplication. Analysis of expression revealed seed and developmental stage preferential expression of five ABCG/PDR members. Transcript levels of eight ABCGs/PDRs were affected by abiotic and biotic stresses. Expression of seven ABCG/PDR genes was also altered by hormonal elicitors. The modulated expression is nicely correlated with the presence of tissue/stress specific cis-acting elements present in putative promoter region.


Assuntos
Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Genes de Plantas/genética , Oryza/genética , Proteínas de Plantas/genética , Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Evolução Biológica , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estresse Fisiológico , Transcriptoma
13.
Plant Physiol Biochem ; 142: 452-459, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31421442

RESUMO

Cold stress can significantly alter the composition and functioning of the major membrane lipids in plants. However, the roles of the sterol component of plant membranes in stress tolerance remain unclear. In the work presented here we investigated the role of sterols in the response of wheat to cold stress. Initial experiments demonstrated that the roots and leaves of wheat seedlings are differentially sensitive to low positive temperatures. In the roots, cold stress induced disturbance of membrane integrity and accumulation of ROS followed by the induction of autophagy. The absence of such changes in leaves suggests that in wheat, the roots are more sensitive to cold than the leaves. The roots display a time-dependent parabolic pattern of cold stress response, characterized by raised levels of sterols and markers of oxidative stress during short-term treatment, and a decline of these parameters after prolonged treatment. MßCD-induced sterol depletion aggravated the negative effects of cold on the roots. In the leaves the changes also displayed parabolic patterns, with significant changes occurring in 24-ethyl sterols and major PLs. Constitutively high levels of sterols, glycolipids and PLs, and up-regulation of TaSMTs in the leaves may provide membrane stability and cold tolerance. Taken together, results suggest that sterols play important roles in the response of wheat seedlings to cold stress.


Assuntos
Membrana Celular/metabolismo , Genes de Plantas/fisiologia , Plântula/metabolismo , Esteróis/biossíntese , Triticum/metabolismo , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Lipídeos de Membrana/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Plântula/genética , Plântula/fisiologia , Triticum/genética , Triticum/fisiologia
14.
Microbiol Res ; 227: 126297, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31421711

RESUMO

Many plant growth promoting rhizobacteria such as Bacillus velezensis GJ11 can produce acetoin to trigger induced systemic resistance (ISR) in plants. For improving acetoin production, the mutant strains were respectively constructed by knockout of the gene of bdh (2,3-butanediol dehydrogenase) and gdh (glycerol dehydrogenase) in GJ11, but only GJ11Δbdh produced a high level of acetoin triggering strong ISR against Pseudomonas syringae infection in plants. GJ11Δbdh could induce H2O2 accumulation in plants by producing a high level of acetoin. H2O2 was necessary for triggering ISR against the pathogen infection because after scavenging H2O2 with ascorbic acid or catalase, the inhibition role to pathogen infection induced by acetoin almost disappeared in plants. Further investigation found the plants treated with GJ11Δbdh in an obvious "priming" state, in which the mild immune response was observed such as a slight increase of H2O2 production, callose deposition, and enzymes activity related with defence response (e.g. POD, PAL and PPO). The plants in "priming" could rapidly respond to the pathogen infection accompanying with a significant increase of H2O2 production, callose deposition, and enzymes activity. Collectively, this study provides new insight into the role of acetoin as a strong elicitor of defense response, and ascribes a new approach to construct the mutant strains with high production of acetoin for triggering stronger ISR against pathogens infection in plants.


Assuntos
Acetoína/metabolismo , Arabidopsis/genética , Bacillus/genética , Bacillus/metabolismo , Resistência à Doença/genética , Imunidade Vegetal/genética , Oxirredutases do Álcool/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Resistência à Doença/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas/genética , Peróxido de Hidrogênio/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/fisiologia , Pseudomonas syringae/patogenicidade , Desidrogenase do Álcool de Açúcar/genética
15.
Plant Dis ; 103(10): 2536-2540, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31424998

RESUMO

Fusarium head blight, also called scab, is caused by Fusarium graminearum and is one of the most important destructive diseases of wheat. The frequency of carbendazim resistance in 1,132 isolates of F. graminearum recovered from fields in different regions of Henan Province in 2016, 2017, and 2018 was determined. A total of 31 F. graminearum isolates resistant to carbendazim were detected, including 30 moderately resistant isolates and one highly resistant isolate. The frequency of resistance of F. graminearum isolates to carbendazim was 2.7%. The range of effective concentration (EC50) values of 1,101 sensitive isolates and 30 moderately resistant isolates was 0.08 to 0.98 µg ml-1 and 2.73 to 13.28 µg ml-1, respectively. The mean ± SD EC50 value was 0.55 ± 0.13 µg ml-1 and 5.61 ± 2.58 µg ml-1, respectively. The EC50 value of the highly resistant isolate was 21.12 µg ml-1. Point mutation types of the carbendazim-resistant isolates were characterized by cloning the ß2-tubulin gene of 31 resistant isolates. Three point mutation types at amino acids F167Y, E198Q, and E198L in the ß2-tubulin gene of resistant isolates were identified. Among 31 resistant isolates, the frequency of point mutation types in F167Y, E198Q, and E198L of the ß2-tubulin gene was 71.0, 25.8, and 3.2%, respectively. The data indicate that F. graminearum has developed resistance to carbendazim in Henan Province, and single point mutations at amino acid F167Y were the predominant type of mutation detected.


Assuntos
Benzimidazóis , Carbamatos , Farmacorresistência Fúngica , Fusarium , Triticum , Benzimidazóis/farmacologia , Carbamatos/farmacologia , Farmacorresistência Fúngica/genética , Fungicidas Industriais , Fusarium/efeitos dos fármacos , Fusarium/genética , Genes de Plantas/genética , Mutação Puntual , Triticum/microbiologia , Tubulina (Proteína)/genética
16.
Plant Dis ; 103(10): 2645-2651, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31453747

RESUMO

Chinese wheat landrace Dahongtou was resistant to 35 of 38 tested Chinese isolates of Blumeria graminis f. sp. tritici at the seedling stage. Genetic analysis of the F2 populations and their derived F2:3 families of crosses of Dahongtou with the susceptible varieties Mingxian 169 and Huixianhong indicated that the resistance of Dahongtou to B. graminis f. sp. tritici isolate E09 was conferred by a single recessive gene, tentatively designated as pmDHT. The gene was mapped to chromosome arm 7BL and flanked by markers Xwmc526/XBE443877 and Xgwm611/Xwmc511 at genetic distances of 0.8 and 0.3 cM, respectively. The chromosomal position of pmDHT was similar to the multi-allelic Pm5 locus on 7BL. Allelism tests with crosses of Dahongtou with Fuzhuang 30 (Pm5e) and Xiaobaidong (mlxbd) indicated that pmDHT was allelic to both Pm5e and mlxbd. However, pmDHT showed a different pattern of resistance to the 38 B. graminis f. sp. tritici isolates compared with wheat lines with Pm5a, Pm5b, Pm5e, mlxbd, and PmHYM and also differed from PmSGA. Thus, pmDHT was identified most likely as a new allele or at least a closely linked gene of the Pm5 locus. This gene can be transferred into susceptible wheat cultivars/lines and pyramided with other resistance genes through marker-assisted selection to improve powdery mildew resistance.


Assuntos
Ascomicetos , Resistência à Doença , Genes de Plantas , Triticum , Ascomicetos/fisiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/microbiologia
17.
BMC Plant Biol ; 19(1): 332, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357930

RESUMO

BACKGROUND: Good establishment is important for rapid leaf area development in wheat crops. Poor establishment results in fewer, later-emerging plants, reduced leaf area and tiller number. In addition, poorly established crops suffer from increased soil moisture loss through evaporation and greater competition from weeds while fewer spikes are produced which can reduce grain yield. By protecting the emerging first leaf, the coleoptile is critical for achieving good establishment, and its length and interaction with soil physical properties determine the ability of a cultivar to emerge from depth. RESULTS: Here we characterise a locus on chromosome 1AS, that increases coleoptile length in wheat, which we designate as Lcol-A1. We identified Lcol-A1 by bulked-segregant analysis and used a Halberd-derived population to fine map the gene to a 2 cM region, equivalent to 7 Mb on the IWGSC genome reference sequence of Chinese Spring (RefSeqv1.0). By sowing recently released cultivars and near-isogenic lines in the field at both conventional and deep sowing depths, we confirmed that Locl-A1 was associated with increased emergence from depth in the presence and absence of conventional dwarfing genes. Flanking markers IWB58229 and IWA710 were developed to assist breeders to select for long coleoptile wheats. CONCLUSIONS: Increased coleoptile length is sought in many global wheat production areas to improve crop emergence. The identification of the gene Lcol-A1, together with tools to allow wheat breeders to track the gene, will enable improvements to be made for this important trait.


Assuntos
Cotilédone/crescimento & desenvolvimento , Genes de Plantas/fisiologia , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas/genética , Estudos de Associação Genética , Loci Gênicos , Folhas de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento
18.
Plant Physiol Biochem ; 142: 211-216, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31302410

RESUMO

Choline is a vital metabolite in plant and synthesized from phosphocholine by phosphocholine phosphatase. The Arabidopsis At1g17710 was identified as the first plant gene encoding the phosphatase for both phosphoethanolamine and phosphocholine (PECP) with much higher catalytic efficiency (>10-fold) for former. In betaine accumulating plants, choline is further required for betaine synthesis. In this report, we found three putative PECP genes in sugar beet, betaine accumulating plants. Two genes encode the proteins of 274 amino acid residues and designated as BvPECP1S and BvPECP2S. Another gene encodes the 331 amino acid protein (BvPECP2L) consisted of BvPECP2S with extra C-terminal amino acid. Enzymatic assays of BvPECP1S revealed that BvPECP1S exhibited the phosphatase activity for both phosphoethanolamine and phosphocholine with higher affinity (>1.8-fold) and catalytic efficiency (>2.64-fold) for phosphocholine. BvPECP2L exhibited low activity. RT-PCR experiments for BvPECP1S showed the increased expression in young leaf and root tip under salt-stress whereas the increased expression in all organs under phosphate deficiency. The expression level of BvPECP2L in salt stressed young leaf and root tip was induced by phosphate deficient. Physiological roles of BvPECP1S and BvPECP2L for the betaine synthesis were discussed.


Assuntos
Beta vulgaris/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Beta vulgaris/enzimologia , Beta vulgaris/genética , Beta vulgaris/fisiologia , Colina/metabolismo , Etanolaminas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Monoéster Fosfórico Hidrolases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas Recombinantes , Estresse Salino , Alinhamento de Sequência
19.
BMC Plant Biol ; 19(1): 321, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319815

RESUMO

BACKGROUND: Magnolia wufengensis is a new species of Magnolia L. and has considerable ornamental and economic value due to its unique characteristics. However, because of its characteristic of poor low temperature resistance, M. wufengensis is hardly popularization and application in the north of China. Furthermore, the mechanisms of gene regulation and signaling pathways involved in the cold-stress response remained unclear in this species. In order to solve the above-mentioned problems, we performed de novo transcriptome assembly and compared the gene expression under the natural (25 °C) and cold (4 °C) conditions for M. wufengensis seedlings. RESULTS: More than 46 million high-quality clean reads were produced from six samples (RNA was extracted from the leaves) and were used for performing de novo transcriptome assembly. A total of 59,764 non-redundant unigenes with an average length of 899 bp (N50 = 1,110) were generated. Among these unigenes, 31,038 unigenes exhibited significant sequence similarity to known genes, as determined by BLASTx searches (E-value ≤1.0E-05) against the Nr, SwissProt, String, GO, KEGG, and Cluster of COG databases. Based on a comparative transcriptome analysis, 3,910 unigenes were significantly differentially expressed (false discovery rate [FDR] < 0.05 and |log2FC (CT/CK)| ≥ 1) in the cold-treated samples, and 2,616 and 1,294 unigenes were up- and down-regulated by cold stress, respectively. Analysis of the expression patterns of 16 differentially expressed genes (DEGs) by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Gene Ontology and KEGG pathway functional enrichment analyses allowed us to better understand these differentially expressed unigenes. The most significant transcriptomic changes observed under cold stress were related to plant hormone and signal transduction pathways, primary and secondary metabolism, and photosynthesis. In addition, 113 transcription factors, including members of the AP2-EREBP, bHLH, WRKY, MYB, NAC, HSF, and bZIP families, were identified as cold responsive. CONCLUSION: We generated a genome-wide transcript profile of M. wufengensis and a de novo-assembled transcriptome that can be used to analyze genes involved in biological processes. In this study, we provide the first report of transcriptome sequencing of cold-stressed M. wufengensis. Our findings provide important clues not only for understanding the molecular mechanisms of cold stress in plants but also for introducing cold hardiness into M. wufengensis.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Magnolia/genética , Resposta ao Choque Frio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Magnolia/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Transdução de Sinais , Transcriptoma
20.
BMC Plant Biol ; 19(1): 324, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324149

RESUMO

BACKGROUND: Leaf shape development research is important because leaf shapes such as moderate curling can help to improve light energy utilization efficiency. Leaf growth and development includes initiation of the leaf primordia and polar differentiation of the proximal-distal, adaxial-abaxial, and centrolateral axes. Changes in leaf adaxial-abaxial polarity formation, auxin synthesis and signaling pathways, and development of sclerenchyma and cuticle can cause abnormal leaf shapes such as up-curling leaf. Although many genes related to leaf shape development have been reported, the detailed mechanism of leaf development is still unclear. Here, we report an up-curling leaf mutant plant from our Brassica napus germplasm. We studied its inheritance, mapped the up-curling leaf locus BnUC1, built near-isogenic lines for the Bnuc1 mutant, and evaluated the effect of the dominant leaf curl locus on leaf photosynthetic efficiency and agronomic traits. RESULTS: The up-curling trait was controlled by one dominant locus in a progeny population derived from NJAU5734 and Zhongshuang 11 (ZS11). This BnUC1 locus was mapped in an interval of 2732.549 kb on the A05 chromosome of B. napus using Illumina Brassica 60 K Bead Chip Array. To fine map BnUC1, we designed 201 simple sequence repeat (SSR) primers covering the mapping interval. Among them, 16 polymorphic primers that narrowed the mapping interval to 54.8 kb were detected using a BC6F2 family population with 654 individuals. We found six annotated genes in the mapping interval using the B. napus reference genome, including BnaA05g18250D and BnaA05g18290D, which bioinformatics and gene expression analyses predicted may be responsible for leaf up-curling. The up-curling leaf trait had negative effects on the agronomic traits of 30 randomly selected individuals from the BC6F2 population. The near-isogenic line of the up-curling leaf (ZS11-UC1) was constructed to evaluate the effect of BnUC1 on photosynthetic efficiency. The results indicated that the up-curling leaf trait locus was beneficial to improve the photosynthetic efficiency. CONCLUSIONS: An up-curling leaf mutant Bnuc1 was controlled by one dominant locus BnUC1. This locus had positive effects on photosynthetic efficiency, negative effects on some agronomic traits, and may help to increase planting density in B. napus.


Assuntos
Brassica napus/genética , Genes de Plantas/genética , Folhas de Planta/anatomia & histologia , Brassica napus/anatomia & histologia , Clorofila/metabolismo , Mapeamento Cromossômico , Genes de Plantas/fisiologia , Loci Gênicos , Mutação , Fotossíntese , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA