Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.388
Filtrar
1.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502163

RESUMO

Garlic (Allium sativum L.) is an important vegetable and is cultivated and consumed worldwide for its economic and medicinal values. Garlic cloves, the major reproductive and edible organs, are derived from the axillary meristems. KNOTTED-like homeobox (KNOX) proteins, such as SHOOT MERISTEM-LESS (STM), play important roles in axillary meristem formation and development. However, the KNOX proteins in garlic are still poorly known. Here, 10 AsKNOX genes, scattered on 5 of the 8 chromosomes, were genome-wide identified and characterized based on the newly released garlic genome. The typical conserved domains of KNOX proteins were owned by all these 10 AsKNOX homologs, which were divided into two Classes (Class I and Class II) based on the phylogenetic analysis. Prediction and verification of the subcellular localizations revealed the diverse subcellular localization of these 10 AsKNOX proteins. Cis-element prediction, tissue expression analysis, and expression profilings in responding to exogenous GA3 and 6-BA showed the potential involvement of AsKNOX genes in the gibberellin and cytokinin signaling pathways. Overall, the results of this work provided a better understanding of AsKNOX genes in garlic and laid an important foundation for their further functional studies.


Assuntos
Citocininas/farmacologia , Alho/genética , Giberelinas/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Plantas/genética , Alho/efeitos dos fármacos , Alho/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais
2.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502200

RESUMO

Bioactive gibberellic acids (GAs) are diterpenoid plant hormones that are biosynthesized through complex pathways and control various aspects of growth and development. Although GA biosynthesis has been intensively studied, the downstream metabolic pathways regulated by GAs have remained largely unexplored. We investigated Tnt1 retrotransposon insertion mutant lines of Medicago truncatula with a dwarf phenotype by forward and reverse genetics screening and phylogenetic, molecular, biochemical, proteomic and metabolomic analyses. Three Tnt1 retrotransposon insertion mutant lines of the gibberellin 3-beta-dioxygenase 1 gene (GA3ox1) with a dwarf phenotype were identified, in which the synthesis of GAs (GA3 and GA4) was inhibited. Phenotypic analysis revealed that plant height, root and petiole length of ga3ox1 mutants were shorter than those of the wild type (Medicago truncatula ecotype R108). Leaf size was also much smaller in ga3ox1 mutants than that in wild-type R108, which is probably due to cell-size diminution instead of a decrease in cell number. Proteomic and metabolomic analyses of ga3ox1/R108 leaves revealed that in the ga3ox1 mutant, flavonoid isoflavonoid biosynthesis was significantly up-regulated, while nitrogen metabolism was down-regulated. Additionally, we further demonstrated that flavonoid and isoflavonoid biosynthesis was induced by prohexadione calcium, an inhibitor of GA3ox enzyme, and inhibited by exogenous GA3. In contrast, nitrogen metabolism was promoted by exogenous GA3 but inhibited by prohexadione calcium. The results of this study further demonstrated that GAs play critical roles in positively regulating nitrogen metabolism and transport and negatively regulating flavonoid biosynthesis through GA-mediated signaling pathways in leaves.


Assuntos
Flavonoides/antagonistas & inibidores , Giberelinas/farmacologia , Medicago truncatula/metabolismo , Metaboloma/efeitos dos fármacos , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/efeitos dos fármacos , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteoma/análise , Proteoma/metabolismo
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445398

RESUMO

Gibberellins (GAs) are an important group of phytohormones associated with diverse growth and developmental processes, including cell elongation, seed germination, and secondary growth. Recent genomic and genetic analyses have advanced our knowledge of GA signaling pathways and related genes in model plant species. However, functional genomics analyses of GA signaling pathways in Panax ginseng, a perennial herb, have rarely been carried out, despite its well-known economical and medicinal importance. Here, we conducted functional characterization of GA receptors and investigated their physiological roles in the secondary growth of P. ginseng storage roots. We found that the physiological and genetic functions of P. ginseng gibberellin-insensitive dwarf1s (PgGID1s) have been evolutionarily conserved. Additionally, the essential domains and residues in the primary protein structure for interaction with active GAs and DELLA proteins are well-conserved. Overexpression of PgGID1s in Arabidopsis completely restored the GA deficient phenotype of the Arabidopsis gid1a gid1c (atgid1a/c) double mutant. Exogenous GA treatment greatly enhanced the secondary growth of tap roots; however, paclobutrazol (PCZ), a GA biosynthetic inhibitor, reduced root growth in P. ginseng. Transcriptome profiling of P. ginseng roots revealed that GA-induced root secondary growth is closely associated with cell wall biogenesis, the cell cycle, the jasmonic acid (JA) response, and nitrate assimilation, suggesting that a transcriptional network regulate root secondary growth in P. ginseng. These results provide novel insights into the mechanism controlling secondary root growth in P. ginseng.


Assuntos
Perfilação da Expressão Gênica/métodos , Giberelinas/farmacologia , Panax/crescimento & desenvolvimento , Receptores de Superfície Celular/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação com Perda de Função , Panax/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Domínios Proteicos , Receptores de Superfície Celular/química , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
4.
Biomolecules ; 11(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356629

RESUMO

Soil salinity is the major limiting factor restricting plant growth and development. Little is known about the comparative and combined effects of gibberellic acid (GA3) seed priming and foliar application on maize under salt stress. The current study determined the impact of different application methods of GA3 on morpho-physiological, biochemical and molecular responses of maize seedlings under three salinity stress treatments (no salinity, moderate salinity-6 dS m-1, and severe salinity-12 dS m-1). The GA3 treatments consisted of control, hydro-priming (HP), water foliar spray (WFS), HP + WFS, seed priming with GA3 (GA3P, 100 mg L-1), foliar spray with GA3 (GA3FS, 100ppm) and GA3P + GA3FS. Salt stress particularly at 12 dS m-1 reduced the length of shoots and roots, fresh and dry weights, chlorophyll, and carotenoid contents, K+ ion accumulation and activities of antioxidant enzymes, while enhanced the oxidative damage and accumulation of the Na+ ion in maize plants. Nevertheless, the application of GA3 improved maize growth, reduced oxidative stress, and increased the antioxidant enzymes activities, antioxidant genes expression, and K+ ion concentration under salt stress. Compared with control, the GA3P + GA3FS recorded the highest increase in roots and shoots length (19-37%), roots fresh and dry weights (31-43%), shoots fresh and dry weights (31-47%), chlorophyll content (21-70%), antioxidant enzymes activities (73.03-150.74%), total soluble protein (13.05%), K+ concentration (13-23%) and antioxidants genes expression levels under different salinity levels. This treatment also reduced the H2O2 content, and Na+ ion concentration. These results indicated that GA3P + GA3FS could be used as an effective tool for improving the maize growth and development, and reducing the oxidative stress in salt-contaminated soils.


Assuntos
Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Zea mays , Tolerância ao Sal/genética , Zea mays/genética , Zea mays/crescimento & desenvolvimento
5.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299210

RESUMO

Conjugation of phytohormones with glucose is a means of modulating their activities, which can be rapidly reversed by the action of ß-glucosidases. Evaluation of previously characterized recombinant rice ß-glucosidases found that nearly all could hydrolyze abscisic acid glucose ester (ABA-GE). Os4BGlu12 and Os4BGlu13, which are known to act on other phytohormones, had the highest activity. We expressed Os4BGlu12, Os4BGlu13 and other members of a highly similar rice chromosome 4 gene cluster (Os4BGlu9, Os4BGlu10 and Os4BGlu11) in transgenic Arabidopsis. Extracts of transgenic lines expressing each of the five genes had higher ß-glucosidase activities on ABA-GE and gibberellin A4 glucose ester (GA4-GE). The ß-glucosidase expression lines exhibited longer root and shoot lengths than control plants in response to salt and drought stress. Fusions of each of these proteins with green fluorescent protein localized near the plasma membrane and in the apoplast in tobacco leaf epithelial cells. The action of these extracellular ß-glucosidases on multiple phytohormones suggests they may modulate the interactions between these phytohormones.


Assuntos
Ácido Abscísico/farmacologia , Ésteres/química , Glucose/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , beta-Glucosidase/metabolismo , Ácido Abscísico/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Secas , Giberelinas/farmacologia , Hidrólise , Família Multigênica , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Tabaco/efeitos dos fármacos , Tabaco/crescimento & desenvolvimento , Tabaco/metabolismo , beta-Glucosidase/genética
6.
BMC Plant Biol ; 21(1): 314, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215194

RESUMO

BACKGROUND: Anther dehiscence resulting in the release of pollen grains is tightly regulated in a spatiotemporal manner by various factors. In yellow lupine (Lupinus luteus L.), a species that shows cleistogamy, the anthers split before the flowers open, but the course and regulation of this process are unknown. The specific control of anther development takes place via hormonal pathways, the wide action of which ensures reproductive success. In our previous research concerning flower and early pod development in yellow lupine, we showed that the lowest transcript level of LlDELLA1, a main repressor of gibberellin (GA) signalling, occurs approximately at the time of anther opening; therefore, the main purpose of this study was to precisely investigate the gibberellic acid (GA3)-dependent regulation of the anther dehiscence in this species. RESULTS: In this paper, we showed the specific changes in the yellow lupine anther structure during dehiscence, including secondary thickening in the endothecium by lignocellulosic deposition, enzymatic cell wall breakdown at the septum/stomium and cell degeneration via programmed cell death (PCD), and identified several genes widely associated with this process. The expression profile of genes varied over time, with the most intense mRNA accumulation in the phases prior to or at the time of anther opening. The transcriptional activity also revealed that these genes are highly coexpressed and regulated in a GA-dependent manner. The cellular and tissue localization of GA3 showed that these molecules are present before anther opening, mainly in septum cells, near the vascular bundle and in the endothecium, and that they are subsequently undetectable. GA3 localization strongly correlates with the transcriptional activity of genes related to GA biosynthesis and deactivation. The results also suggest that GA3 controls LlGAMYB expression via an LlMIR159-dependent pathway. CONCLUSIONS: The presented results show a clear contribution of GA3 in the control of the extensive anther dehiscence process in yellow lupine. Understanding the processes underlying pollen release at the hormonal and molecular levels is a significant aspect of controlling fertility in this economically important legume crop species and is of increasing interest to breeders.


Assuntos
Flores/fisiologia , Giberelinas/farmacologia , Lupinus/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Simulação por Computador , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Lupinus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Plant Biol ; 21(1): 321, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217211

RESUMO

BACKGROUND: Browning spot (BS) disorders seriously affect the appearance quality of 'Huangguan' pear and cause economic losses. Many studies on BS have mainly focused on physiological and biochemical aspects, and the molecular mechanism remains unclear. RESULTS: In the present study, the structural characteristics of 'Huangguan' pear with BS were observed via scanning electron microscopy (SEM), the water loss and brown spots were evaluated, and transcriptomic and metabolomics analyses were conducted to reveal the molecular mechanism underlying 'Huangguan' pear skin browning disorder. The results showed that the occurrence of BS was accompanied by a decrease in the wax layer and an increase in lignified cells. Genes related to wax biosynthesis were downregulated in BS, resulting in a decrease in the wax layer in BS. Genes related to lignin were upregulated at the transcriptional level, resulting in upregulation of metabolites related to phenylpropanoid biosynthesis. Expression of calcium-related genes were upregulated in BS. Cold-induced genes may represent the key genes that induce the formation of BS. In addition, the results demonstrated that exogenous NaH2PO4·2H2O and ABA treatment could inhibit the incidence of BS during harvest and storage time by increasing wax-related genes and calcium-related genes expression and increasing plant resistance, whereas the transcriptomics results indicated that GA3 may accelerate the incidence and index of BS. CONCLUSIONS: The results of this study indicate a molecular mechanism that could explain BS formation and elucidate the effects of different treatments on the incidence and molecular regulation of BS.


Assuntos
Metabolômica , Doenças das Plantas/genética , Pyrus/genética , Pyrus/metabolismo , Transcriptoma/genética , Ácido Abscísico/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Giberelinas/farmacologia , Metaboloma/genética , Modelos Biológicos , Fenótipo , Pyrus/efeitos dos fármacos , Pyrus/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/efeitos dos fármacos
8.
BMC Plant Biol ; 21(1): 323, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225663

RESUMO

BACKGROUND: Sufficient low temperature accumulation is the key strategy to break bud dormancy and promote subsequent flowering in tree peony anti-season culturing production. Exogenous gibberellins (GAs) could partially replace chilling to accelerate dormancy release, and different kinds of GAs showed inconsistent effects in various plants. To understand the effects of exogenous GA3 and GA4 on dormancy release and subsequent growth, the morphological changes were observed after exogenous GAs applications, the differentially expressed genes (DEGs) were identified, and the contents of endogenous phytohormones, starch and sugar were measured, respectively. RESULTS: Morphological observation and photosynthesis measurements indicated that both GA3 and GA4 applications accelerated bud dormancy release, but GA3 feeding induced faster bud burst, higher shoot and more flowers per plant. Full-length transcriptome of dormant bud was used as the reference genome. Totally 124 110 459, 124 015 148 and 126 239 836 reads by illumina transcriptome sequencing were obtained in mock, GA3 and GA4 groups, respectively. Compared with the mock, there were 879 DEGs and 2 595 DEGs in GA3 and GA4 group, 1 179 DEGs in GA3 vs GA4, and 849 DEGs were common in these comparison groups. The significant enrichment KEGG pathways of 849 DEGs highlighted plant hormone signal transduction, starch and sucrose metabolism, cell cycle, DNA replication, etc. Interestingly, the contents of endogenous GA1, GA3, GA4, GA7 and IAA significantly increased, ABA decreased after GA3 and GA4 treatments by LC-MS/MS. Additionally, the soluble glucose, fructose and trehalose increased after exogenous GAs applications. Compared to GA4 treatment, GA3 induced higher GA1, GA3 and IAA level, more starch degradation to generate more monosaccharide for use, and promoted cell cycle and photosynthesis. Higher expression levels of dormancy-related genes, TFL, FT, EBB1, EBB3 and CYCD, and lower of SVP by GA3 treatment implied more efficiency of GA3. CONCLUSIONS: Exogenous GA3 and GA4 significantly accelerated bud dormancy release and subsequent growth by increasing the contents of endogenous bioactive GAs, IAA, and soluble glucose such as fructose and trehalose, and accelerated cell cycle process, accompanied by decreasing ABA contents. GA3 was superior to GA4 in tree peony forcing culture, which might because tree peony was more sensitive to GA3 than GA4, and GA3 had a more effective ability to induce cell division and starch hydrolysis. These results provided the value data for understanding the mechanism of dormancy release in tree peony.


Assuntos
Flores/fisiologia , Giberelinas/metabolismo , Paeonia/fisiologia , Flores/efeitos dos fármacos , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Giberelinas/farmacologia , Modelos Biológicos , Paeonia/efeitos dos fármacos , Paeonia/genética , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
9.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199940

RESUMO

In this special issue entitled, "Advances in the Molecular Mechanisms of Abscisic Acid and Gibberellins Functions in Plants", eight articles are collected, with five reviews and three original research papers, which broadly cover different topics on the abscisic acid (ABA) field and, to a lesser extent, on gibberellins (GAs) research [...].


Assuntos
Ácido Abscísico/farmacologia , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Fenômenos Fisiológicos Vegetais , Plantas/efeitos dos fármacos
10.
Elife ; 102021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34059197

RESUMO

Genetically identical plants growing in the same conditions can display heterogeneous phenotypes. Here we use Arabidopsis seed germination time as a model system to examine phenotypic variability and its underlying mechanisms. We show extensive variation in seed germination time variability between Arabidopsis accessions and use a multiparent recombinant inbred population to identify two genetic loci involved in this trait. Both loci include genes implicated in modulating abscisic acid (ABA) sensitivity. Mutually antagonistic regulation between ABA, which represses germination, and gibberellic acid (GA), which promotes germination, underlies the decision to germinate and can act as a bistable switch. A simple stochastic model of the ABA-GA network shows that modulating ABA sensitivity can generate the range of germination time distributions we observe experimentally. We validate the model by testing its predictions on the effects of exogenous hormone addition. Our work provides a foundation for understanding the mechanism and functional role of phenotypic variability in germination time.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Germinação/efeitos dos fármacos , Giberelinas/farmacologia , Sementes/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Modelos Biológicos , Fenótipo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais , Processos Estocásticos , Fatores de Tempo
11.
Planta ; 254(1): 10, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34156511

RESUMO

MAIN CONCLUSION: Gibberellic acid induces photosynthetic tissues with non-Kranz anatomy and C4-like biochemical traits in terrestrial-form plants of Eleocharis vivipara. This suggests that the structural and biochemical traits are independently regulated. The amphibious leafless sedge, Eleocharis vivipara Link, develops culms (photosynthetic organs) with C4-like traits and Kranz anatomy under terrestrial conditions, and C3 traits and non-Kranz anatomy under submerged conditions. The conversion from C3 mode to C4-like mode in E. vivipara is reportedly mediated by abscisic acid. Here, we investigated the effects of gibberellic acid (GA) on the differentiation of anatomical and photosynthetic traits because GA is involved in heterophylly in aquatic plants. When 100 µM GA was sprayed on terrestrial plants, the newly developed culms had non-Kranz anatomy in the basal part and Kranz-like anatomy in the upper part. In the basal part, the mesophyll cells were well developed, whereas the Kranz (bundle sheath) cells were reduced and contained few chloroplasts and mitochondria. Stomatal frequency was lower in the basal part than in the upper part. Nevertheless, these tissues had abundant accumulation and high activities of C4 photosynthetic enzymes and had C4-like δ13C values, as seen in the culms of the terrestrial form. When submerged plants were grown under water containing GA-biosynthesis inhibitors (uniconazole or paclobutrazol), the new culms had Kranz anatomy. The culms developed under paclobutrazol had the C3 pattern of cellular accumulation of photosynthetic enzymes. These data suggest that GA induces production of photosynthetic tissues with non-Kranz anatomy in terrestrial plants of E. vivipara, without concomitant expression of C3 biochemical traits. The data also suggest that the differentiation of C4 structural and biochemical traits is regulated independently.


Assuntos
Eleocharis , Cloroplastos , Giberelinas/farmacologia , Fotossíntese , Folhas de Planta
12.
Plant Cell Rep ; 40(9): 1751-1772, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173048

RESUMO

KEY MESSAGE: Early induction of OsFEX was insufficient for fluoride adaptation in IR-64. Overexpression of OsFEX in yeast and Nicotiana benthamiana enhanced fluoride tolerance. The present study delineates the regulation of fluoride exporter (FEX) in the fluoride-sensitive rice cultivar, IR-64 and its efficacy in generating high fluoride tolerance in transgenic Nicotiana benthamiana. Gene and protein expression profiling revealed that OsFEX exhibited early induction during fluoride stress in the vegetative and reproductive tissues of IR-64, although the expression was suppressed upon prolonged stress treatment. Analysis of OsFEX promoter in transgenic N. benthamiana, using ß-glucuronidase reporter assay confirmed its early inducible nature, since the reporter expression and activity peaked at 12 h of NaF stress, after which it was lowered. OsFEX expression was up regulated in the presence of gibberellic acid (GA) and melatonin, while it was suppressed by abscisic acid (ABA). Complementation of ΔFEX1ΔFEX2 yeast mutants with OsFEX enabled high fluoride tolerance, thus validating the functional efficiency of the transgene. Bioassay of transgenic N. benthamiana lines, expressing OsFEX either under its own promoter or under CaMV35S promoter, established that constitutive overexpression, rather than early induction of OsFEX was essential and crucial for generating fluoride tolerance in the transgenics. Overall, the suppression of OsFEX in the later growth phases of stressed IR-64 due to enhanced ABA conservation and lowered synthesis of GA, as supported by the application of the respective phytohormone biosynthetic inhibitors, such as sodium tungstate and paclobutrazol, accounted for the fluoride-hyperaccumulative nature of the rice cultivar.


Assuntos
Fluoretos/toxicidade , Oryza/efeitos dos fármacos , Oryza/fisiologia , Proteínas de Plantas/genética , Tabaco/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fluoretos/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Giberelinas/farmacologia , Proteínas de Membrana/genética , Microrganismos Geneticamente Modificados , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/fisiologia
13.
Ecotoxicol Environ Saf ; 221: 112436, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34171689

RESUMO

Nanoparticles (NPs), as a novel source of industrial materials, have been extensively used in recent years which ultimately ends up in soils and may cause toxic effects on plants. Gibberellic acid (GA), phytohormone, has ability to minimize abiotic stresses in plants. The role of GA in minimizing titanium dioxide (TiO2) NPs stress in plants is still unknown. In current study, soil was spiked with TiO2 NPs (0, 100, 200, 400, 600 mg/kg) while GA was foliar-sprayed at different concentrations during wheat growth. The findings revealed that TiO2 NPs increased the growth, chlorophyll contents, and nutrient (P, K, Fe, Mn) concentrations in tissues till 400 mg/kg and then decrease was observed at 600 mg/kg level of NPs whereas the values of these parameters were higher compared to control irrespective of NPs levels. The NPs enhanced the antioxidant activities (SOD, POD, CAT, APX) and reduced the oxidative stress (EL, H2O2, MDA) in leaves over the control. Foliar GA further improved the growth, yield, nutrients and antioxidant activities while minimized the oxidative stress compared to respective sole NPs- treatments. The interactive effects of NPs and GA were dose dependent. The results proved that studied doses of TiO2 NPs were not toxic to wheat plants except the highest level (600 mg/kg) used and GA positively affected the yield of wheat under TiO2 NPs application. The GA can be used to improve crop growth in the presence of NPs which, however, needs further investigation at higher doses of TiO2 NPs in various crops.


Assuntos
Giberelinas/farmacologia , Nanopartículas/toxicidade , Titânio/toxicidade , Triticum/efeitos dos fármacos , Antioxidantes/farmacologia , Transporte Biológico/efeitos dos fármacos , Minerais/metabolismo , Nutrientes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/química , Folhas de Planta/metabolismo , Poluentes do Solo/toxicidade
14.
Molecules ; 26(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072521

RESUMO

Tea (Camellia sinensis) is one of the most important cash crops in the world. Theanine, as an important amino acid component in tea, is a key quality index for excellent tea quality and high economic value. People increase theanine accumulation in tea mainly through the application of nitrogen fertilizer, shading and pruning. However, these methods are not effective. In this study, we treated tea buds with a 100 µM solution of GA3 containing 1‰ tween-20, investigated the effects of GA3 on theanine accumulation, bud yield, chlorophyll fluorescence parameters and expression level of theanine biosynthesis pathway genes in tea plant by qPCR, LC-MS/MS etc. Results showed that change trends of theanine and GA3 was extremely positively correlated with each other. Exogenous GA3 upregulated the expression level of theanine biosynthesis pathway genes, caused an increase of theanine content (mg·g-1) by 27% in tea leaves compared with Mock, and accelerated the germination of buds and elongation of shoots, which lead to a significant increase of tea yield by 56% (w/w). Moreover, the decrease of chlorophyll contents, photochemical quenching coefficient (qP) and relative electron transport rate (rETR) under GA3 treatment suggested that GA3 reduced photosynthesis in the tender tea leaves, indicating that the decline of carbon assimilation in tea plants was conducive to the nitrogen metabolism, and it was beneficial to the accumulation of theanine. This study provided a new technical and theoretical support for the precise control of tea quality components and phenophase.


Assuntos
Camellia sinensis/crescimento & desenvolvimento , Camellia sinensis/metabolismo , Giberelinas/farmacologia , Folhas de Planta/metabolismo , Chá/metabolismo , Aminoácidos/química , Clorofila/química , Cromatografia Líquida , Giberelinas/química , Glutamatos/química , Nitrogênio/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Brotos de Planta , Reação em Cadeia da Polimerase , Espectrometria de Massas em Tandem
15.
Plant Physiol ; 185(3): 1198-1215, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33793923

RESUMO

The potassium ion (K+) is vital for plant growth and development, and K+-deprivation leads to reduced crop yields. Here we describe phenotypic, transcriptomic, and mutant analyses to investigate the signaling mechanisms mediating root architectural changes in Arabidopsis (Arabidopsis thaliana) Columbia. We showed effects on root architecture are mediated through a reduction in cell division in the lateral root (LR) meristems, the rate of LR initiation is reduced but LR density is unaffected, and primary root growth is reduced only slightly. This was primarily regulated through gibberellic acid (GA) signaling, which leads to the accumulation of growth-inhibitory DELLA proteins. The short LR phenotype was rescued by exogenous application of GA but not of auxin or by the inhibition of ethylene signaling. RNA-seq analysis showed upregulation by K+-deprivation of the transcription factors JUNGBRUNNEN1 (JUB1) and the C-repeat-binding factor (CBF)/dehydration-responsive element-binding factor 1 regulon, which are known to regulate GA signaling and levels that regulate DELLAs. Transgenic overexpression of JUB1 and CBF1 enhanced responses to K+ stress. Attenuation of the reduced LR growth response occurred in mutants of the CBF1 target gene SFR6, implicating a role for JUB1, CBF1, and SFR6 in the regulation of LR growth in response to K+-deprivation via DELLAs. We propose this represents a mechanism to limit horizontal root growth in conditions where K+ is available deeper in the soil.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Transdução de Sinais/efeitos dos fármacos
16.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920519

RESUMO

Leymus chinensis is a perennial forage grass that has good palatability, high yield and high feed value, but seed dormancy is a major problem limiting the widespread cultivation of L. chinensis. Here, we performed transcriptomic and metabolomic analysis of hulled and de-hulled seeds of L. chinensis treated with or without GA3 to investigate the changes in gene and metabolites associated with dormancy release induced by GA3. The germination test revealed that the optimum concentration of GA3 for disruption of L. chinensis seed dormancy was 577 µM. A total of 4327 and 11,919 differentially expressed genes (DEGs) and 871 and 650 differentially abundant metabolites were identified in de-hulled and hulled seeds treated with GA3, respectively, compared with seeds soaked in sterile water. Most of the DEGs were associated with starch and sucrose metabolism, protein processing in the endoplasmic reticulum, endocytosis and ribosomes. Furthermore, isoquinoline alkaloid biosynthesis, tyrosine metabolism, starch and sucrose metabolism, arginine and proline metabolism, and amino sugar and nucleotide sugar metabolism were significantly enriched pathways. Integrative analysis of the transcriptomic and metabolomic data revealed that starch and sucrose metabolism is one of the most important pathways that may play a key role in providing carbon skeletons and energy supply for the transition of L. chinensis seeds from a dormant state to germination by suppressing the expression of Cel61a, egID, cel1, tpsA, SPAC2E11.16c and TPP2, enhancing the expression of AMY1.1, AMY1.2, AMY1.6 and GLIP5, and inhibiting the synthesis of cellobiose, cellodextrin, and trehalose while promoting the hydrolysis of sucrose, starch, cellobiose, cellodextrin, and trehalose to glucose. This study identified several key genes and provided new insights into the molecular mechanism of seed dormancy release induced by GA3 in L. chinensis. These putative genes will be valuable resources for improving the seed germination rate in future breeding studies.


Assuntos
Giberelinas/metabolismo , Metaboloma , Dormência de Plantas , Poaceae/genética , Transcriptoma , Giberelinas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
BMC Plant Biol ; 21(1): 202, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33906598

RESUMO

BACKGROUND: Lodging is one of the important factors causing maize yield. Plant height is an important factor in determining plant architecture in maize (Zea mays L.), which is closely related to lodging resistance under high planting density. Coronatine (COR), which is a phytotoxin and produced by the pathogen Pseudomonas syringae, is a functional and structural analogue of jasmonic acid (JA). RESULTS: In this study, we found COR, as a new plant growth regulator, could effectively reduce plant height and ear height of both hybrids (ZD958 and XY335) and inbred (B73) maize by inhibiting internode growth during elongation, thus improve maize lodging resistance. To study gene expression changes in internode after COR treatment, we collected spatio-temporal transcriptome of inbred B73 internode under normal condition and COR treatment, including the three different regions of internode (fixed, meristem and elongation regions) at three different developmental stages. The gene expression levels of the three regions at normal condition were described and then compared with that upon COR treatment. In total, 8605 COR-responsive genes (COR-RGs) were found, consist of 802 genes specifically expressed in internode. For these COR-RGs, 614, 870, 2123 of which showed expression changes in only fixed, meristem and elongation region, respectively. Both the number and function were significantly changed for COR-RGs identified in different regions, indicating genes with different functions were regulated at the three regions. Besides, we found more than 80% genes of gibberellin and jasmonic acid were changed under COR treatment. CONCLUSIONS: These data provide a gene expression profiling in different regions of internode development and molecular mechanism of COR affecting internode elongation. A putative schematic of the internode response to COR treatment is proposed which shows the basic process of COR affecting internode elongation. This research provides a useful resource for studying maize internode development and improves our understanding of the COR regulation mechanism based on plant height.


Assuntos
Aminoácidos/farmacologia , Giberelinas/farmacologia , Indenos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Pseudomonas syringae/química , Transcriptoma , Zea mays/genética , Ciclopentanos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oxilipinas/farmacologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
18.
PLoS One ; 16(3): e0244591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33730027

RESUMO

Proper development of the maize kernel is of great significance for high and stable maize yield to ensure national food security. Gibberellin (GA), one of the hormones regulating plant growth, is involved in modulating the development of maize kernels. Cellulose, one of the main components of plant cells, is also regulated by gibberellin. The mechanism of hormone regulation during maize grain development is highly complicated, and reports on GA-mediated modulation of cellulose synthesis during maize grain development are rare. Our study revealed that during grain growth and development, the grain length and bulk density of GA-treated corn kernels improved significantly, and the cellulose content of grains increased, while seed coat thickness decreased. The transcription factor basic region/leucine zipper motif 53 (bZIP53), which is strongly correlated with cellulose synthase gene 1 (CesA1) expression, was screened by transcriptome sequencing and the expression of the cellulose synthase gene in maize grain development after GA treatment was determined. It was found that bZIP53 expression significantly promoted the expression of CesA1. Further, analysis of the transcription factor bZIP53 determined that the gene-encoded protein was localized in the cell and nuclear membranes, but the transcription factor bZIP53 itself showed no transcriptional activation. Further studies are required to explore the interaction of bZIP53 with CesA1.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Glucosiltransferases/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Celulose/metabolismo , Glucosiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ligação Proteica , Sementes/metabolismo , Sementes/fisiologia , Ativação Transcricional/efeitos dos fármacos , Zea mays/genética
19.
J Plant Res ; 134(2): 355-363, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33559785

RESUMO

Pollen tube growth is inhibited and promoted by long- and short-chain carboxylic acids, respectively, but is not affected by formic acid. For auxin- and gibberellin-induced elongation of in vitro cultured epicotyl segments of adzuki bean (Vigna angularis), a series of carboxylic acids showed similar effects as that on pollen tube growth except that formic acid showed the strongest promotive effect. The effects of formic acid and GA3 on IAA-induced elongation were additive and both were strongly inhibited by inhibitors of cellulose synthesis (coumarin) and microtubule formation (colchicine). Formic acid, possibly by incorporation into the segments, prolonged the promotion by IAA and GA3 of the elongation of epicotyl segments. Based on these results and later advances in our understanding of metabolism and the role of formic acid in protecting against oxidative stress, a possible role of formic acid on stem elongation is discussed.


Assuntos
Ácidos Indolacéticos , Vigna , Ácidos Carboxílicos , Giberelinas/farmacologia
20.
Plant Cell Rep ; 40(4): 691-705, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33559721

RESUMO

KEY MESSAGE: Endogenous hydrogen peroxide (H2O2) is involved in regulating the gibberellic acid-induced programmed cell death (PCD) of the aleurone layers by cooperating with OsVPE3 during rice seed germination. Preliminary experiments revealed that H2O2 produced by the NOX pathway is the key factor affecting rice germination. Histochemical analysis indicated that H2O2 is located in the aleurone layer. Both the H2O2 scavenger DMTU and the NOX inhibitor DPI decreased H2O2 content and significantly slowed down vacuolation in a dose-dependent manner. Interestingly, DMTU down-regulated the OsNOX8 transcript or DMTU and DPI decreased the intracellular H2O2 level, resulting in a delay of PCD. In contrast, GA and H2O2 up-regulated the OsNOX8 transcript and intracellular H2O2 level, leading to premature PCD, and the effects of GA and H2O2 were reversed by DMTU and DPI, respectively. These results showed that the imbalance of intracellular H2O2 levels leads to the delayed or premature PCD. Further experiments indicated that GA up-regulated the OsVPE3 transcript and VPE activity, and the effect was reversed by DPI. Furthermore, Ac-YVAD-CMK significantly blocked H2O2 accumulation, and DPI + Ac-YVAD-CMK had a more significant inhibitory effect compared with DPI alone, resulting in the delayed PCD, suggesting that OsVPE3 regulates PCD by promoting H2O2 generation. Meanwhile, DPI significantly inhibited the OsVPE3 transcript and VPE activity, and in turn delayed PCD occurrence, suggesting that the H2O2 produced by the NOX pathway may regulate PCD by up-regulating the OsVPE3 transcript. Thus, the endogenous H2O2 produced by the NOX pathway mediates the GA-induced PCD of rice aleurone layers by interacting with OsVPE3.


Assuntos
Giberelinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Apoptose , Regulação da Expressão Gênica de Plantas , Germinação/efeitos dos fármacos , Germinação/fisiologia , Giberelinas/farmacologia , Peróxido de Hidrogênio/farmacologia , Oryza/efeitos dos fármacos , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Sementes/citologia , Sementes/efeitos dos fármacos , Sementes/metabolismo , Tioureia/análogos & derivados , Tioureia/farmacologia , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...