Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.656
Filtrar
1.
J Sci Food Agric ; 102(1): 259-267, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091902

RESUMO

BACKGROUND: Damage from cracking, russeting, and sunscalds causes significant yield losses in pomegranate worldwide and may result from stressful environmental conditions. Although foliar sprays with minerals or growth regulators could be an important orchard management, little is known on the effectiveness of glycine betaine, silicon (Si)-based fertilizers or the response of cv. Wonderful to gibberellin A3 (GA3 ). RESULTS: During a 2-year study, foliar spraying with GA3 at 75 or 150 mg L-1 applied in July substantially reduced cracking, russeting, and sunscald symptoms and increased fruit size, yield, and 100-aril weight, without affecting the % edible portion or % juice, suggesting that arils and skin increased similarly. Nevertheless, they reduced the skin red coloration, especially at the higher dose. GA3 at 75 mg L-1 applied in September resulted in a low number of harvested fruit as a result of delayed maturation. Spraying with glycine betaine at seven repeated times at biweekly intervals starting in July, reduced sunscald symptoms, red coloration, and maturity index only in the year with high damage. Foliar sprays with calcium chloride or Si-based fertilizer containing potassium, applied as in the glycine betaine treatment, did not affect the occurrence of physiological disorders, whereas Si-based fertilizer containing potassium and calcium increased cracking and decreased sunscald only in the year with high damage. CONCLUSION: Spraying with GA3 at 75 mg L-1 in July could have a significant impact on a grower's income by reducing damage from physiological disorders, improving yield with a minimum decrease in red skin coloration. The efficacy of nutrient-related fertilizers and glycine betaine were not constant, and this would be useful to evaluate at earlier application times and under stress conditions. © 2021 Society of Chemical Industry.


Assuntos
Betaína/farmacologia , Cloreto de Cálcio/farmacologia , Fertilizantes/análise , Frutas/química , Giberelinas/farmacologia , Romã (Fruta)/crescimento & desenvolvimento , Potássio/farmacologia , Silício/farmacologia , Betaína/metabolismo , Cloreto de Cálcio/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Giberelinas/metabolismo , Romã (Fruta)/química , Romã (Fruta)/metabolismo , Potássio/metabolismo
2.
Int J Mol Sci ; 22(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34576007

RESUMO

Seedless fruit is a feature appreciated by consumers. The ovule abortion process is highly orchestrated and controlled by numerous environmental and endogenous signals. However, the mechanisms underlying ovule abortion in pear remain obscure. Here, we found that gibberellins (GAs) have diverse functions during ovules development between seedless pear '1913' and seeded pear, and that GA4+7 activates a potential programmed cell death process in '1913' ovules. After hormone analyses, strong correlations were determined among jasmonic acid (JA), ethylene and salicylic acid (SA) in seedless and seeded cultivars, and GA4+7 treatments altered the hormone accumulation levels in ovules, resulting in significant correlations between GA and both JA and ethylene. Additionally, SA contributed to ovule abortion in '1913'. Exogenously supplying JA, SA or the ethylene precursor 1-aminocyclopropane-1-carboxylic acid promoted 'Bartlett' seed death. The regulatory mechanism in which ethylene controls ovule death has been demonstrated; therefore, JA's role in regulating '1913' ovule abortion was investigated. A further study identified that the JA signaling receptor MYC2 bound the SENESCENCE-ASSOCIATED 39 promoter and triggered its expression to regulate ovule abortion. Thus, we established ovule abortion-related relationships between GA and the hormones JA, ethylene and SA, and we determined their synergistic functions in regulating ovule death.


Assuntos
Apoptose/efeitos dos fármacos , Ciclopentanos/farmacologia , Etilenos/farmacologia , Giberelinas/farmacologia , Óvulo Vegetal/metabolismo , Oxilipinas/farmacologia , Pyrus/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Giberelinas/metabolismo , Oxilipinas/metabolismo
3.
PLoS One ; 16(9): e0250678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34473720

RESUMO

Apricot bud gall mite, Acalitus phloeocoptes (Nalepa), is a destructive arthropod pest that causes significant economic losses to apricot trees worldwide. The current study explores the ways to understand the mode of dispersal of A. phloeocoptes, the development and ultrastructure of apricot bud gall, and the role of phytohormones in the formation of the apricot bud galls. The results demonstrated that the starch granules in the bud axon were extended at the onset of the attack. During the later stages of the attack, the cytoplasm was found to deteriorate in infected tissues. Furthermore, we have observed that the accumulation of large amounts of cytokinin (zeatin, ZT) and auxin (indoleacetic acid, IAA) led to rapid bud proliferation during rapid growth period, while abscisic acid (ABA) controls the development of gall buds and plays a vital role in gall bud maturity. The reduction of gibberellic acid (GA3) content led to rapid lignification at the later phase of bud development. Overall, our results have revealed that the mechanism underlying the interaction of apricot bud gall with its parasite and have provided reliable information for designing valuable Apricot breeding programs. This study will be quite useful for pest management and will provide a comprehensive evaluation of ecology-based cost-effective control, life history and demographic parameters of A. phloeocoptes.


Assuntos
Ácaros/patogenicidade , Reguladores de Crescimento de Plantas/metabolismo , Prunus armeniaca/parasitologia , Amido/metabolismo , Ácido Abscísico/metabolismo , Animais , Citocininas/metabolismo , Feminino , Giberelinas/metabolismo , Interações Hospedeiro-Parasita , Ácidos Indolacéticos/metabolismo , Masculino , Melhoramento Vegetal , Prunus armeniaca/fisiologia
4.
Plant Mol Biol ; 107(3): 147-158, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34562198

RESUMO

KEY MESSAGE: The GAF1 transcription factor is shown to bind to the promoter of the Arabidopsis GA-biosynthetic enzyme GA20ox1 and, in association with DELLA protein, promotes GA20ox1 expression, thereby contributing to its feedback regulation and tissue specificity. Gibberellins (GAs) are phytohormones that promote plant growth and development, including germination, elongation, flowering, and floral development. Homeostasis of endogenous GA levels is controlled by GA feedback regulation. DELLAs are negative regulators of GA signaling that are rapidly degraded in the presence of GAs. DELLAs regulate several target genes, including AtGA20ox2 and AtGA3ox1, encoding the GA-biosynthetic enzymes GA 20-oxidase and GA 3-oxidase, respectively. Previous studies have identified GAI-ASSOCIATED FACTOR 1 (GAF1) as a DELLA interactor, with which DELLAs act as transcriptional coactivators; furthermore, AtGA20ox2, AtGA3ox1, and AtGID1b were identified as target genes of the DELLA-GAF1 complex. Among the five Arabidopsis GA20ox genes, AtGA20ox1 is the most highly expressed gene during vegetative growth; its expression is controlled by GA feedback regulation. Here, we investigated whether AtGA20ox1 is regulated by the DELLA-GAF1 complex. The electrophoretic mobility shift and transactivation assays showed that three GAF1-binding sites exist in the AtGA20ox1 promoter. Using transgenic plants, we further evaluated the contribution of the DELLA-GAF1 complex to GA feedback regulation and tissue-specific expression. Mutations in two GAF1-binding sites obliterated the negative feedback regulation and tissue-specific expression of AtGA20ox1 in transgenic plants. Thus, our results showed that GAF1-binding sites are involved in GA feedback regulation and tissue-specific expression of AtGA20ox1 in Arabidopsis, suggesting that the DELLA-GAF1 complex is involved in both processes.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Ligação ao Cálcio/metabolismo , Giberelinas/metabolismo , Oxigenases de Função Mista/genética , Arabidopsis/efeitos dos fármacos , Sítios de Ligação , Proteínas de Ligação ao Cálcio/genética , Retroalimentação Fisiológica , Flores/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/farmacologia , Oxigenases de Função Mista/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
5.
BMC Plant Biol ; 21(1): 442, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34587914

RESUMO

BACKGROUND: Stone-hardening stage is crucial to the development of grape seed and berry quality. A significant body of evidence supports the important roles of MicroRNAs in grape-berry development, but their specific molecular functions during grape stone-hardening stage remain unclear. RESULTS: Here, a total of 161 conserved and 85 species-specific miRNAs/miRNAs* (precursor) were identified in grape berries at stone-hardening stage using Solexa sequencing. Amongst them, 30 VvmiRNAs were stone-hardening stage-specific, whereas 52 exhibited differential expression profiles during berry development, potentially participating in the modulation of berry development as verified by their expression patterns. GO and KEGG pathway analysis showed that 13 VvmiRNAs might be involved in the regulation of embryo development, another 11 in lignin and cellulose biosynthesis, and also 28 in the modulation of hormone signaling, sugar, and proline metabolism. Furthermore, the target genes for 4 novel VvmiRNAs related to berry development were validated using RNA Ligase-Mediated (RLM)-RACE and Poly(A) Polymerase-Mediated (PPM)-RACE methods, and their cleavage mainly occurred at the 9th-11th sites from the 5' ends of miRNAs at their binding regions. In view of the regulatory roles of GA in seed embryo development and stone-hardening in grape, we investigated the expression modes of VvmiRNAs and their target genes during GA-induced grape seedless-berry development, and we validated that GA induced the expression of VvmiR31-3p and VvmiR8-5p to negatively regulate the expression levels of CAFFEOYL COENZYME A-3-O-METHYLTRANSFERASE (VvCCoAOMT), and DDB1-CUL4 ASSOCIATED FACTOR1 (VvDCAF1). The series of changes might repress grape stone hardening and embryo development, which might be a potential key molecular mechanism in GA-induced grape seedless-berry development. Finally, a schematic model of miRNA-mediated grape seed and stone-hardening development was proposed. CONCLUSION: This work identified 30 stone-hardening stage-specific VvmiRNAs and 52 significant differential expression ones, and preliminary interpreted the potential molecular mechanism of GA-induced grape parthenocarpy. GA negatively manipulate the expression of VvCCoAOMT and VvDCAF1 by up-regulation the expression of VvmiR31-3p and VvmiR8-5p, thereby repressing seed stone and embryo development to produce grape seedless berries.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Giberelinas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Transdução de Sinais/efeitos dos fármacos , Vitis/crescimento & desenvolvimento , Vitis/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , MicroRNAs/genética , Vitis/metabolismo
6.
Theor Appl Genet ; 134(10): 3443-3457, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34390352

RESUMO

KEY MESSAGE: A dwarfism gene LacDWARF1 was mapped by combined BSA-Seq and comparative genomics analyses to a 65.4 kb physical genomic region on chromosome 05. Dwarf architecture is one of the most important traits utilized in Cucurbitaceae breeding because it saves labor and increases the harvest index. To our knowledge, there has been no prior research about dwarfism in the sponge gourd. This study reports the first dwarf mutant WJ209 with a decrease in cell size and internodes. A genetic analysis revealed that the mutant phenotype was controlled by a single recessive gene, which is designated Lacdwarf1 (Lacd1). Combined with bulked segregate analysis and next-generation sequencing, we quickly mapped a 65.4 kb region on chromosome 5 using F2 segregation population with InDel and SNP polymorphism markers. Gene annotation revealed that Lac05g019500 encodes a gibberellin 3ß-hydroxylase (GA3ox) that functions as the most likely candidate gene for Lacd1. DNA sequence analysis showed that there is an approximately 4 kb insertion in the first intron of Lac05g019500 in WJ209. Lac05g019500 is transcribed incorrectly in the dwarf mutant owing to the presence of the insertion. Moreover, the bioactive GAs decreased significantly in WJ209, and the dwarf phenotype could be restored by exogenous GA3 treatment, indicating that WJ209 is a GA-deficient mutant. All these results support the conclusion that Lac05g019500 is the Lacd1 gene. In addition, RNA-Seq revealed that many genes, including those related to plant hormones, cellular process, cell wall, membrane and response to stress, were significantly altered in WJ209 compared with the wild type. This study will aid in the use of molecular marker-assisted breeding in the dwarf sponge gourd.


Assuntos
Cromossomos de Plantas/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Luffa/crescimento & desenvolvimento , Mutação , Fenótipo , Proteínas de Plantas/metabolismo , Íntrons , Luffa/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética
7.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361039

RESUMO

Plant G proteins are versatile components of transmembrane signaling transduction pathways. The deficient mutant of heterotrimeric G protein leads to defects in plant growth and development, suggesting that it regulates the GA pathway in Arabidopsis. However, the molecular mechanism of G protein regulation of the GA pathway is not understood in plants. In this study, two G protein ß subunit (AGB1) mutants, agb1-2 and N692967, were dwarfed after exogenous application of GA3. AGB1 interacts with the DNA-binding domain MYB62, a GA pathway suppressor. Transgenic plants were obtained through overexpression of MYB62 in two backgrounds including the wild-type (MYB62/WT Col-0) and agb1 mutants (MYB62/agb1) in Arabidopsis. Genetic analysis showed that under GA3 treatment, the height of the transgenic plants MYB62/WT and MYB62/agb1 was lower than that of WT. The height of MYB62/agb1 plants was closer to MYB62/WT plants and higher than that of mutants agb1-2 and N692967, suggesting that MYB62 is downstream of AGB1 in the GA pathway. qRT-PCR and competitive DNA binding assays indicated that MYB62 can bind MYB elements in the promoter of GA2ox7, a GA degradation gene, to activate GA2ox7 transcription. AGB1 affected binding of MYB62 on the promoter of GA2ox7, thereby negatively regulating th eactivity of MYB62.


Assuntos
Proteínas de Arabidopsis/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Giberelinas/metabolismo , Arabidopsis , Proteínas de Arabidopsis/genética , Sítios de Ligação , Subunidades beta da Proteína de Ligação ao GTP/genética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica
8.
Dokl Biochem Biophys ; 499(1): 233-237, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34426918

RESUMO

The effect of T-DNA insertion in the 3'-UTR region of Arabidopsis thaliana At3g58450 gene encoding the Germination-Related Universal Stress Protein (GRUSP) was studied. It was found that under a long-day condition this mutation delays transition to flowering of grusp-115 transgenic line that due to a reduced content of endogenous bioactive gibberellins GA1 and GA3 in comparison to the wild-type plants (Col-0). Exogenous GA accelerated flowering of both lines but did not change the time of difference in the onset of flowering between Col-0 and grusp-115. In addition to changes in GA metabolism, grusp-115 evidently has disturbances in realization of the signal that induces flowering. This is confirmed by the results of gene expression of the floral integrator FLOWERING LOCUS T (FT) and the floral repressor FLOWERING LOCUS C (FLC), which are key flowering regulators and acting opposite. We hypothesize that the formation of grusp-115 phenotype can also be affected by a low expression level of FT due to up-regulated FLC expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , Arabidopsis/citologia , Fenótipo , Transdução de Sinais
9.
Int J Mol Sci ; 22(12)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203082

RESUMO

Ideal Plant Architecture 1 (IPA1) encodes SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 14 (SPL14) with a pleiotropic effect on regulating rice development and biotic stress responses. To investigate the role of IPA1 in early seedling development, we developed a pair of IPA1/ipal-NILs and found that seed germination and early seedling growth were retarded in the ipa1-NIL. Analysis of the soluble sugar content, activity of amylase, and expression of the α-amylase genes revealed that the starch metabolism was weakened in the ipa1-NIL germinating seeds. Additionally, the content of bioactive gibberellin (GA) was significantly lower than that in the IPA1-NIL seeds at 48 h of imbibition. Meanwhile, the expression of GA synthesis-related gene OsGA20ox1 was downregulated, whereas the expression of GA inactivation-related genes was upregulated in ipa1-NIL seeds. In addition, the expression of OsWRKY51 and OsWRKY71 was significantly upregulated in ipa1-NIL seeds. Using transient dual-luciferase and yeast one-hybrid assays, IPA1 was found to directly activate the expression of OsWRKY51 and OsWRKY71, which would interfere with the binding affinity of GA-induced transcription factor OsGAMYB to inhibit the expression of α-amylase genes. In summary, our results suggest that IPA1 negatively regulates seed germination and early seedling growth by interfering with starch metabolism via the GA and WRKY pathways.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Giberelinas/metabolismo , Oryza/fisiologia , Desenvolvimento Vegetal , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Amido/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Fenótipo , Ligação Proteica , alfa-Amilases/metabolismo
10.
BMC Plant Biol ; 21(1): 314, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215194

RESUMO

BACKGROUND: Anther dehiscence resulting in the release of pollen grains is tightly regulated in a spatiotemporal manner by various factors. In yellow lupine (Lupinus luteus L.), a species that shows cleistogamy, the anthers split before the flowers open, but the course and regulation of this process are unknown. The specific control of anther development takes place via hormonal pathways, the wide action of which ensures reproductive success. In our previous research concerning flower and early pod development in yellow lupine, we showed that the lowest transcript level of LlDELLA1, a main repressor of gibberellin (GA) signalling, occurs approximately at the time of anther opening; therefore, the main purpose of this study was to precisely investigate the gibberellic acid (GA3)-dependent regulation of the anther dehiscence in this species. RESULTS: In this paper, we showed the specific changes in the yellow lupine anther structure during dehiscence, including secondary thickening in the endothecium by lignocellulosic deposition, enzymatic cell wall breakdown at the septum/stomium and cell degeneration via programmed cell death (PCD), and identified several genes widely associated with this process. The expression profile of genes varied over time, with the most intense mRNA accumulation in the phases prior to or at the time of anther opening. The transcriptional activity also revealed that these genes are highly coexpressed and regulated in a GA-dependent manner. The cellular and tissue localization of GA3 showed that these molecules are present before anther opening, mainly in septum cells, near the vascular bundle and in the endothecium, and that they are subsequently undetectable. GA3 localization strongly correlates with the transcriptional activity of genes related to GA biosynthesis and deactivation. The results also suggest that GA3 controls LlGAMYB expression via an LlMIR159-dependent pathway. CONCLUSIONS: The presented results show a clear contribution of GA3 in the control of the extensive anther dehiscence process in yellow lupine. Understanding the processes underlying pollen release at the hormonal and molecular levels is a significant aspect of controlling fertility in this economically important legume crop species and is of increasing interest to breeders.


Assuntos
Flores/fisiologia , Giberelinas/farmacologia , Lupinus/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Sequência de Bases , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Simulação por Computador , Flores/efeitos dos fármacos , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Lupinus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
BMC Plant Biol ; 21(1): 323, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225663

RESUMO

BACKGROUND: Sufficient low temperature accumulation is the key strategy to break bud dormancy and promote subsequent flowering in tree peony anti-season culturing production. Exogenous gibberellins (GAs) could partially replace chilling to accelerate dormancy release, and different kinds of GAs showed inconsistent effects in various plants. To understand the effects of exogenous GA3 and GA4 on dormancy release and subsequent growth, the morphological changes were observed after exogenous GAs applications, the differentially expressed genes (DEGs) were identified, and the contents of endogenous phytohormones, starch and sugar were measured, respectively. RESULTS: Morphological observation and photosynthesis measurements indicated that both GA3 and GA4 applications accelerated bud dormancy release, but GA3 feeding induced faster bud burst, higher shoot and more flowers per plant. Full-length transcriptome of dormant bud was used as the reference genome. Totally 124 110 459, 124 015 148 and 126 239 836 reads by illumina transcriptome sequencing were obtained in mock, GA3 and GA4 groups, respectively. Compared with the mock, there were 879 DEGs and 2 595 DEGs in GA3 and GA4 group, 1 179 DEGs in GA3 vs GA4, and 849 DEGs were common in these comparison groups. The significant enrichment KEGG pathways of 849 DEGs highlighted plant hormone signal transduction, starch and sucrose metabolism, cell cycle, DNA replication, etc. Interestingly, the contents of endogenous GA1, GA3, GA4, GA7 and IAA significantly increased, ABA decreased after GA3 and GA4 treatments by LC-MS/MS. Additionally, the soluble glucose, fructose and trehalose increased after exogenous GAs applications. Compared to GA4 treatment, GA3 induced higher GA1, GA3 and IAA level, more starch degradation to generate more monosaccharide for use, and promoted cell cycle and photosynthesis. Higher expression levels of dormancy-related genes, TFL, FT, EBB1, EBB3 and CYCD, and lower of SVP by GA3 treatment implied more efficiency of GA3. CONCLUSIONS: Exogenous GA3 and GA4 significantly accelerated bud dormancy release and subsequent growth by increasing the contents of endogenous bioactive GAs, IAA, and soluble glucose such as fructose and trehalose, and accelerated cell cycle process, accompanied by decreasing ABA contents. GA3 was superior to GA4 in tree peony forcing culture, which might because tree peony was more sensitive to GA3 than GA4, and GA3 had a more effective ability to induce cell division and starch hydrolysis. These results provided the value data for understanding the mechanism of dormancy release in tree peony.


Assuntos
Flores/fisiologia , Giberelinas/metabolismo , Paeonia/fisiologia , Flores/efeitos dos fármacos , Congelamento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Giberelinas/farmacologia , Modelos Biológicos , Paeonia/efeitos dos fármacos , Paeonia/genética , Reguladores de Crescimento de Plantas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Amido/metabolismo , Sacarose/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
12.
Plant Sci ; 310: 110958, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315584

RESUMO

'Nantongxiaofangshi' (Diospyros kaki Thunb., D. kaki Thunb.) is a local cultivar of persimmon with dwarf-like traits in Jiangsu, China. Closely spaced planting afforded by dwarfism is usually one of the most important ways to promote fruit cultivation and production. However, the understanding of dwarfism in D. kaki Thunb. is very limited at the molecular level, which hinders the further increase of the fruit production. In this work, a persimmon transgenic system was successfully established, and the field experiments of grafting phenotype were carried out. The results showed that D. kaki Thunb. could be used as an interstock to induce dwarfing in grafted scions, and the dwarf character was better when interstock lengths were between 20 and 25 cm. Furthermore, the key genes related to dwarfism in D. kaki Thunb. were screened and verified, and subsequently, the regulatory role of related genes in persimmon dwarfism was figured out. It was found that the gene encoding gibberellin 2-oxidase-1 (DkGA2ox1) involved in GA biosynthesis was associated with the dwarfing in D. kaki Thunb. Overexpression of DkGA2ox1 in Diospyros lotus resulted in a typical dwarf phenotype. Meanwhile, the microRNA data showed that the miR171f_3 demonstrated the active involvement in GA pathway response in persimmon dwarfism. DkGA2ox1 and MIR171f_3, as two highly expressed genes in D. kaki Thunb. interstock, could be used as stimulus signals to affect the content of GA in scion, however, the specific transmission mechanism still needs to be further explored. Ultimately, the bioactive GA level was decreased, resulting in the scion dwarfism.


Assuntos
Diospyros/metabolismo , Frutas/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Diospyros/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
13.
Int J Mol Sci ; 22(13)2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34281216

RESUMO

GAox is a key enzyme for the transformation of gibberellins, and belongs to the 2-ketoglutarate dependent dioxygenase gene family (2ODD). However, a systematic analysis of GAox in the angiosperm L. chinense has not yet been reported. Here, we identified all LcGAox gene family members in L. chinense, which were classified into the three subgroups of GA20ox, C19GA2ox, and C20GA2ox. Comparison of the gene structure, conserve motifs, phylogenetic relationships, and syntenic relationships of gibberellin oxidase gene families in different species indicated that the gene functional differences may be due to the partial deletion of their domains during evolution. Furthermore, evidence for purifying selection was detected between orthologous GAox genes in rice, grape, Arabidopsis, and L. chinense. Analysis of the codon usage patterns showed that mutation pressure and natural selection might have induced codon usage bias in angiosperms; however, the LcGAox genes in mosses, lycophytes, and ambarella plants exhibited no obvious codon usage preference. These results suggested that the gibberellin oxidase genes were more primitive. The gene expression pattern was analyzed in different organs subjected to multiple abiotic stresses, including GA, abscisic acid (ABA), and chlormequat (CCC) treatment, by RNA-seq and qRT-PCR, and the stress- and phytohormone-responsive cis-elements were counted. The results showed that the synthesis and decomposition of GA were regulated by different LcGAox genes in the vegetative and reproductive organs of L. chinense, and only LcGA2ox1,4, and 7 responded to the NaCl, polyethylene glycol, 4 °C, GA, ABA, and CCC treatment in the roots, stems, and leaves of seedlings at different time periods, revealing the potential role of LcGAox in stress resistance.


Assuntos
Giberelinas/metabolismo , Liriodendron/genética , Oxirredutases/genética , Uso do Códon , Regulação da Expressão Gênica de Plantas , Liriodendron/enzimologia , Família Multigênica , Regiões Promotoras Genéticas , Estresse Fisiológico
14.
Sci Rep ; 11(1): 14592, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272422

RESUMO

Banana, one of the most important staple fruit among global consumers is highly sterile owing to natural parthenocarpy. Identification of genetic factors responsible for parthenocarpy would facilitate the conventional breeders to improve the seeded accessions. We have constructed Protein-protein interaction (PPI) network through mining differentially expressed genes and the genes used for transgenic studies with respect to parthenocarpy. Based on the topological and pathway enrichment analysis of proteins in PPI network, 12 candidate genes were shortlisted. By further validating these candidate genes in seeded and seedless accession of Musa spp. we put forward MaAGL8, MaMADS16, MaGH3.8, MaMADS29, MaRGA1, MaEXPA1, MaGID1C, MaHK2 and MaBAM1 as possible target genes in the study of natural parthenocarpy. In contrary, expression profile of MaACLB-2 and MaZEP is anticipated to highlight the difference in artificially induced and natural parthenocarpy. By exploring the PPI of validated genes from the network, we postulated a putative pathway that bring insights into the significance of cytokinin mediated CLAVATA(CLV)-WUSHEL(WUS) signaling pathway in addition to gibberellin mediated auxin signaling in parthenocarpy. Our analysis is the first attempt to identify candidate genes and to hypothesize a putative mechanism that bridges the gaps in understanding natural parthenocarpy through PPI network.


Assuntos
Frutas/genética , Musa/genética , Partenogênese , Proteínas de Plantas/genética , Mapas de Interação de Proteínas , Transdução de Sinais , Citocininas/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Musa/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/genética
15.
Plant Mol Biol ; 106(4-5): 433-448, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34142302

RESUMO

KEY MESSAGE: Endogenous and exogenous GA3 responses to DoEXP and DoXTH depend on the DoGA20ox1, DoGA3ox1, DoGA2ox3, DoGA2ox4, DoGID1a, and DoDELLA1 to regulate yam tuber growth. Yam tuber undergoes significant alteration in morphogenesis and functions during growth, and gibberellins (GA) are considered potentially important regulators of tuber growth. However, it is little known about the regulation of GA metabolism and GA signaling components genes in tuber growth of yam. In this study, the cloning and expressions of GA3 level, GA metabolism and signaling genes, and cell wall genes in tuber growth in response to GA3 and GA biosynthesis inhibitor paclobutrazol (PP333) treatments were studied. The contents of GA3 accumulated at the tuber growth, with the highest levels in the early expansion stage. DoGA20ox1, DoGA3ox1, and four DoGA2ox genes were significantly abundant in the early expansion stage of tuber and gradually declined along with tuber growth. Three DoGID1 and three DoDELLA genes were showed different expression patterns in the early expansion stage of tuber and gradually declined along with tuber growth. Five DoEXP and three DoXTH genes expression levels were higher in the early expansion stage than in other stages. Exogenous GA3 increased endogenous GA3 levels, whereas the expression levels of DoGA20ox1, DoGA3ox1, DoGID1a, and DoDELLA1 were down-regulated in the early expansion stage of tuber by GA3 treatment, DoGA2ox3 and DoGA2ox4 were up-regulated. PP333 application exhibited opposite consequences. Thus, a mechanism of GA3 regulating yam tuber growth by DELLA-dependent pathway is established.


Assuntos
Dioscorea/crescimento & desenvolvimento , Giberelinas/metabolismo , Proteínas de Plantas/fisiologia , Tubérculos/crescimento & desenvolvimento , Clonagem Molecular , Dioscorea/genética , Dioscorea/metabolismo , Proteínas de Plantas/genética , Tubérculos/genética , Tubérculos/metabolismo
16.
Plant Sci ; 309: 110940, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34134852

RESUMO

Jasmonate restricts accumulation of constitutive and fungus-induced root soluble sugars at flowering stage, and thus reduces root beneficial fungal colonization, but little is known about how these are achieved. To determine whether jasmonate-mediated depletion of soluble sugars is the result of direct phytohormonal cross-talk or indirect induced defensive secondary metabolism, we first profiled soluble sugar and tryptophan (Trp)-derived defensive secondary metabolites in the roots of wild-type and jasmonate signaling-impaired Arabidopsis thaliana at flowering upon a beneficial fungus Phomopsis liquidambaris inoculation. Next, jasmonate and gibberellin signaling were manipulated to determine the relationship between jasmonate and gibberellin, and to quantify the effects of these phytohormones on fungal colonization degree, soluble sugar accumulation, Trp-derived secondary metabolites production, and sugar source-sink transport and metabolism. Gibberellin complementation increased Ph. liquidambaris colonization and rescued jasmonate-dependent root soluble sugar depletion and phloem sugar transport and root invertase activity without influencing jasmonate-induced Trp-derived secondary metabolites production at flowering. Furthermore, jasmonate signaling antagonized gibberellin biosynthesis in Ph. liquidambaris-inoculated roots. Our results suggest a phytohormonal antagonism model that jasmonate signaling restricts root soluble sugar accumulation through antagonizing gibberellin biosynthesis rather than through promoting Trp-derived secondary metabolites production and thus drives beneficial fungal colonization decline at flowering.


Assuntos
Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Carboidratos/genética , Giberelinas/metabolismo , Floema/metabolismo , Metabolismo Secundário , Açúcares/metabolismo , Simbiose
17.
Sci Rep ; 11(1): 13075, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158527

RESUMO

Gibberellin (GA) negatively affects color evolution and other ripening-related processes in non-climacteric fruits. The bioactive GA, gibberellic acid (GA3), is commonly applied at the light green-to-straw yellow transition to increase firmness and delay ripening in sweet cherry (Prunus avium L.), though causing different effects depending on the variety. Recently, we reported that GA3 delayed the IAD parameter (a ripening index) in a mid-season variety, whereas GA3 did not delay IAD but reduced it at ripeness in an early-season variety. To further explore this contrasting behavior between varieties, we analyzed the transcriptomic responses to GA3 applied on two sweet cherry varieties with different maturity time phenotypes. At harvest, GA3 produced fruits with less color in both varieties. Similar to our previous report, GA3 delayed fruit color initiation and IAD only in the mid-season variety and reduced IAD at harvest only in the early-season variety. RNA-seq analysis of control- and GA3-treated fruits revealed that ripening-related categories were overrepresented in the early-season variety, including 'photosynthesis' and 'auxin response'. GA3 also changed the expression of carotenoid and abscisic acid (ABA) biosynthetic genes in this variety. In contrast, overrepresented categories in the mid-season variety were mainly related to metabolic processes. In this variety, some PP2Cs putative genes were positively regulated by GA3, which are negative regulators of ABA responses, and MYB44-like genes (putative repressors of PP2Cs expression) were downregulated. These results show that GA3 differentially modulates the transcriptome at the onset of ripening in a variety-dependent manner and suggest that GA3 impairs ripening through the modification of ripening associated gene expression only in the early-season variety; whereas in the mid-season variety, control of the ripening timing may occur through the PP2C gene expression regulation. This work contributes to the understanding of the role of GA in non-climacteric fruit ripening.


Assuntos
Giberelinas/metabolismo , Prunus avium/genética , Agricultura/métodos , Antocianinas/metabolismo , Sequência de Bases/genética , Frutas/genética , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Giberelinas/farmacologia , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Prunus avium/metabolismo , Análise de Sequência de RNA/métodos , Fatores de Transcrição/metabolismo , Transcriptoma/genética
18.
Sci Rep ; 11(1): 12381, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34117332

RESUMO

Zoysia japonica is a commonly used turfgrass species around the world. Seed germination is a crucial stage in the plant life cycle and is particularly important for turf establishment and management. Experiments have confirmed that melatonin can be a potential regulator signal in seeds. To determine the effect of exogenous melatonin administration and explore the its potential in regulating seed growth, we studied the concentrations of several hormones and performed a transcriptome analysis of zoysia seeds after the application of melatonin. The total antioxidant capacity determination results showed that melatonin treatment could significantly improve the antioxidant capacity of zoysia seeds. The transcriptome analysis indicated that several of the regulatory pathways were involved in antioxidant activity and hormone activity. The hormones concentrations determination results showed that melatonin treatment contributed to decreased levels of cytokinin, abscisic acid and gibberellin in seeds, but had no significant effect on the secretion of auxin in early stages. Melatonin is able to affect the expression of IAA (indoleacetic acid) response genes. In addition, melatonin influences the other hormones by its synergy with other hormones. Transcriptome research in zoysia is helpful for understanding the regulation of melatonin and mechanisms underlying melatonin-mediated developmental processes in zoysia seeds.


Assuntos
Genes de Plantas , Germinação , Melatonina/farmacologia , Poaceae/efeitos dos fármacos , Ácido Abscísico/metabolismo , Citocininas/genética , Citocininas/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Transcriptoma
19.
Plant Cell Rep ; 40(8): 1585-1602, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34003317

RESUMO

KEY MESSAGE: Melatonin enhanced arsenic (As) tolerance by inhibiting As bioaccumulation, modulating the expression of As transporters and phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid. The present study was aimed at investigating the influence of exogenous melatonin on the regulation of endogenous plant growth regulators and their cumulative effects on metal(loid)-binding ligands in two contrasting indica rice cultivars, viz., Khitish (arsenic sensitive) and Muktashri (arsenic tolerant) under arsenic stress. Melatonin supplementation ameliorated arsenic-induced perturbations by triggering endogenous levels of gibberellic acid and melatonin, via up-regulating the expression of key biosynthetic genes like GA3ox, TDC, SNAT and ASMT. The endogenous abscisic acid content was also enhanced upon melatonin treatment by induced expression of the key anabolic gene, NCED3 and concomitant suppression of ABA8ox1. Enhanced melatonin content induced accumulation of higher polyamines (spermidine and spermine), together with up-regulation of SPDS and SPMS in Khitish, thereby modulating stress condition. On the contrary, melatonin escalated putrescine and spermidine levels in Muktashri, via enhanced expression of ADC and SAMDC. The role of melatonin appeared to be more prominent in Khitish, as evident from better utilization of thiol components like cysteine, GSH, non-protein thiols and phytochelatins, with higher GSH/GSSG ratio, despite down-regulated expression of corresponding thiol-metabolic genes (OsMT2 and OsPCS1) to deal with arsenic toxicity. The extent of arsenic bioaccumulation, which was magnified several folds, particularly in Khitish, was decreased upon melatonin application. Overall, our observation highlighted the fact that melatonin enhanced arsenic tolerance by inhibiting arsenic bioaccumulation, via modulating the expression levels of selected arsenic transporters (OsNramp1, OsPT2, OsPT8, OsLsi1) and controlling endogenous phytohormone homeostasis, leading to efficient utilization of thiol machinery for sequestration and detoxification of this toxic metalloid.


Assuntos
Arsênio/toxicidade , Melatonina/farmacologia , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Ácido Abscísico/metabolismo , Arsênio/farmacocinética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/metabolismo , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Inativação Metabólica , Melatonina/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Estresse Fisiológico/efeitos dos fármacos
20.
BMC Plant Biol ; 21(1): 206, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33931042

RESUMO

BACKGROUND: Tartary buckwheat is an important minor crop species with high nutritional and medicinal value and is widely planted worldwide. Cultivated Tartary buckwheat plants are tall and have hollow stems that lodge easily, which severely affects their yield and hinders the development of the Tartary buckwheat industry. METHODS: Heifeng No. 1 seeds were treated with ethylmethanesulfonate (EMS) to generate a mutant library. The dwarf mutant ftdm was selected from the mutagenized population, and the agronomic characteristics giving rise to the dwarf phenotype were evaluated. Ultra-fast liquid chromatography-electrospray ionization tandem mass spectrometry (UFLC-ESI-MS/MS) was performed to determine the factors underlying the different phenotypes between the wild-type (WT) and ftdm plants. In addition, RNA sequencing (RNA-seq) was performed via the HiSeq 2000 platform, and the resulting transcriptomic data were analysed to identify differentially expressed genes (DEGs). Single-nucleotide polymorphism (SNP) variant analysis revealed possible sites associated with dwarfism. The expression levels of the potential DEGs between the WT and ftdm mutant were then measured via qRT-PCR and fragments per kilobase of transcript per million mapped reads (FPKM). RESULT: The plant height (PH) of the ftdm mutant decreased to 42% of that of the WT, and compared with the WT, the mutant and had a higher breaking force (BF) and lower lodging index (LI). Lower GA4 and GA7 contents and higher contents of jasmonic acid (JA), salicylic acid (SA) and brassinolactone (BR) were detected in the stems of the ftdm mutant compared with the WT. Exogenous application of GAs could not revert the dwarfism of the ftdm mutant. On the basis of the transcriptomic analysis, 146 homozygous SNP loci were identified. In total, 12 DEGs with nonsynonymous mutations were ultimately identified, which were considered potential candidate genes related to the dwarf trait. When the sequences of eight genes whose expression was downregulated and four genes whose expression was upregulated were compared, SKIP14, an F-box protein whose sequence is 85% homologous to that of SLY1 in Arabidopsis, presented an amino acid change (from Ser to Asn) and was expressed at a lower level in the stems of the ftdm mutant compared with the WT. Hence, we speculated that this amino acid change in SKIP14 resulted in a disruption in GA signal transduction, indirectly decreasing the GA content and downregulating the expression of genes involved in GA biosynthesis or the GA response. Further studies are needed to determine the molecular basis underlying the dwarf phenotype of the ftdm mutant. CONCLUSION: We report a Tartary buckwheat EMS dwarf mutant, ftdm, suitable for high-density planting and commercial farming. A significant decrease in GA4 and GA7 levels was detected in the ftdm mutant, and 12 DEGs expressed in the stems of the ftdm mutant were selected as candidates of the dwarfing gene. One nonsynonymous mutation was detected in the SKIP14 gene in the ftdm mutant, and this gene had a lower transcript level compared with that in the WT.


Assuntos
Fagopyrum/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transcriptoma , Fagopyrum/anatomia & histologia , Fagopyrum/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Mutação , Fenótipo , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...