Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.369
Filtrar
1.
Exp Eye Res ; 210: 108728, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34390734

RESUMO

PURPOSE: Activation of bone morphogenetic protein (BMP) 4 signaling promotes the survival of retinal ganglion cell (RGC) after acute injury. Chordin-like 1 (CHRDL1) is an endogenous BMP antagonist. In this study, we researched whether CHRDL1 was involved in BMP4 signaling and regulation of RGC degeneration in a mouse model of glaucoma. METHODS: Magnetic microbeads were intracameral injected to induce experimental glaucoma in a mouse model. A recombinant adeno-associated virus (rAAV) system was designed for overexpression of BMP4 or CHRDL1 in mouse retina. Immunohistochemistry and hematoxylin-eosin (HE) stains were performed to identify changes in retinal morphology. Electroretinogram (ERG) recordings were used to assess changes in visual function. RESULTS: The mRNA expression levels of Bmp4 and its downstream BMPRIa, small mothers against decapentaplegic 1 (Smad1), were significantly upregulated in retinas with glaucoma. RGC survival was significantly enhanced in the beads + AAV-BMP4 group and significantly reduced in the beads + AAV-CHRDL1 group, compared with the beads + AAV-EGFP group. Similar results were observed in retinal explant culture in vitro. Consistent with these findings, the photopic negative response (PhNR)responses in ERG, which indicate RGC function, were restored in mice overexpressing BMP4, whereas a-wave and b-wave responses were not. Activation of CHRLD1 inhibited Smad1/5/8 phosphorylation and exacerbated RGC damage. The expression of Glial fibrillary acidic protein (GFAP) was decreased significantly in beads + AAV-BMP4 group. CONCLUSIONS: BMP4 promoted RGC survival and visual function in an experimental glaucoma model. Activation of CHRDL1 exaggerated RGC degeneration by inhibiting the BMP4/Smad1/5/8 pathway. The mechanism of BMP4/Smad1/5/8 pathway may be related to the inhibition of glial cell activation. Our studies suggested that BMP4 and CHRLD1 might serve as therapeutic targets in glaucoma.


Assuntos
Proteína Morfogenética Óssea 4/genética , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/fisiologia , Glaucoma/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células Ganglionares da Retina/fisiologia , Animais , Proteína Morfogenética Óssea 4/antagonistas & inibidores , Sobrevivência Celular , Dependovirus/genética , Eletrorretinografia , Vetores Genéticos , Glaucoma/fisiopatologia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Pressão Intraocular/fisiologia , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retina/fisiopatologia
2.
Biomolecules ; 11(8)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34439851

RESUMO

Glaucoma is a multifactorial neuropathy characterized by increased intraocular pressure (IOP), and it is the second leading cause of blindness worldwide after cataracts. Glaucoma combines a group of optic neuropathies characterized by the progressive degeneration of retinal ganglionic cells (RGCs). Increased IOP and short-term IOP fluctuation are two of the most critical risk factors in glaucoma progression. Histamine is a well-characterized neuromodulator that follows a circadian rhythm, regulates IOP and modulates retinal circuits and vision. This review summarizes findings from animal models on the role of histamine and its receptors in the eye, focusing on the effects of histamine H3 receptor antagonists for the future treatment of glaucomatous patients.


Assuntos
Glaucoma , Antagonistas dos Receptores Histamínicos H3/uso terapêutico , Histamina/fisiologia , Receptores Histamínicos H3/fisiologia , Animais , Modelos Animais de Doenças , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Humanos
3.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360760

RESUMO

Retinal ganglion cells (RGCs) are a population of neurons of the central nervous system (CNS) extending with their soma to the inner retina and with their axons to the optic nerve. Glaucoma represents a group of neurodegenerative diseases where the slow progressive death of RGCs results in a permanent loss of vision. To date, although Intra Ocular Pressure (IOP) is considered the main therapeutic target, the precise mechanisms by which RGCs die in glaucoma have not yet been clarified. In fact, Primary Open Angle Glaucoma (POAG), which is the most common glaucoma form, also occurs without elevated IOP. This present review provides a summary of some pathological conditions, i.e., axonal transport blockade, glutamate excitotoxicity and changes in pro-inflammatory cytokines along the RGC projection, all involved in the glaucoma cascade. Moreover, neuro-protective therapeutic approaches, which aim to improve RGC degeneration, have also been taken into consideration.


Assuntos
Glaucoma , Neuroproteção , Células Ganglionares da Retina , Animais , Transporte Axonal , Axônios/metabolismo , Axônios/patologia , Modelos Animais de Doenças , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/terapia , Humanos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
4.
Biomolecules ; 11(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356611

RESUMO

Glaucoma is a group of irreversible blinding eye diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons. Currently, there is no effective method to fundamentally resolve the issue of RGC degeneration. Recent advances have revealed that visual function recovery could be achieved with stem cell-based therapy by replacing damaged RGCs with cell transplantation, providing nutritional factors for damaged RGCs, and supplying healthy mitochondria and other cellular components to exert neuroprotective effects and mediate transdifferentiation of autologous retinal stem cells to accomplish endogenous regeneration of RGC. This article reviews the recent research progress in the above-mentioned fields, including the breakthroughs in the fields of in vivo transdifferentiation of retinal endogenous stem cells and reversal of the RGC aging phenotype, and discusses the obstacles in the clinical translation of the stem cell therapy.


Assuntos
Glaucoma , Regeneração , Células Ganglionares da Retina/fisiologia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Glaucoma/metabolismo , Glaucoma/patologia , Glaucoma/terapia , Humanos , Células-Tronco/patologia
5.
Nat Commun ; 12(1): 4877, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385434

RESUMO

Chronically elevated intraocular pressure (IOP) is the major risk factor of primary open-angle glaucoma, a leading cause of blindness. Dysfunction of the trabecular meshwork (TM), which controls the outflow of aqueous humor (AqH) from the anterior chamber, is the major cause of elevated IOP. Here, we demonstrate that mice deficient in the Krüppel-like zinc finger transcriptional factor GLI-similar-1 (GLIS1) develop chronically elevated IOP. Magnetic resonance imaging and histopathological analysis reveal that deficiency in GLIS1 expression induces progressive degeneration of the TM, leading to inefficient AqH drainage from the anterior chamber and elevated IOP. Transcriptome and cistrome analyses identified several glaucoma- and extracellular matrix-associated genes as direct transcriptional targets of GLIS1. We also identified a significant association between GLIS1 variant rs941125 and glaucoma in humans (P = 4.73 × 10-6), further supporting a role for GLIS1 into glaucoma etiology. Our study identifies GLIS1 as a critical regulator of TM function and maintenance, AqH dynamics, and IOP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Glaucoma/fisiopatologia , Pressão Intraocular/fisiologia , Malha Trabecular/fisiopatologia , Fatores de Transcrição/metabolismo , Animais , Humor Aquoso/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Glaucoma/genética , Glaucoma/metabolismo , Células HEK293 , Humanos , Pressão Intraocular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA-Seq/métodos , Malha Trabecular/metabolismo , Fatores de Transcrição/genética
6.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299211

RESUMO

Glaucoma is a leading cause of irreversible blindness worldwide, and increased intraocular pressure (IOP) is a major risk factor. We aimed to determine if early functional and molecular differences in the glaucomatous retina manifest before significant retinal ganglion cell (RGC) loss is apparent. Adenoviral vectors expressing a pathogenic form of myocilin (Ad5.MYOC) were used to induce IOP elevation in C57BL/6 mice. IOP and pattern electroretinograms (pERG) were recorded, and retinas were prepared for RNA sequencing, immunohistochemistry, or to determine RGC loss. Ocular injection of Ad5.MYOC leads to reliable IOP elevation, resulting in significant loss of RGC after nine weeks. A significant decrease in the pERG amplitude was evident in eyes three weeks after IOP elevation. Retinal gene expression analysis revealed increased expression for 291 genes related to complement cascade, inflammation, and antigen presentation in hypertensive eyes. Decreased expression was found for 378 genes associated with the γ-aminobutyric acid (GABA)ergic and glutamatergic systems and axon guidance. These data suggest that early functional changes in RGC might be due to reduced GABAA receptor signaling and neuroinflammation that precedes RGC loss in this glaucoma model. These initial changes may offer new targets for early detection of glaucoma and the development of new interventions.


Assuntos
Neurônios GABAérgicos/metabolismo , Glaucoma/patologia , Células Ganglionares da Retina/patologia , Ácido gama-Aminobutírico/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Neurônios GABAérgicos/patologia , Regulação da Expressão Gênica , Glaucoma/etiologia , Glaucoma/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Pressão Intraocular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Ganglionares da Retina/metabolismo
7.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299278

RESUMO

During the pathogenesis of glaucoma, optic nerve (ON) axons become continuously damaged at the optic nerve head (ONH). This often is associated with reactive astrocytes and increased transforming growth factor (TGF-ß) 2 levels. In this study we tested the hypothesis if the presence or absence of decorin (DCN), a small leucine-rich proteoglycan and a natural inhibitor of several members of the TGF family, would affect the expression of the TGF-ßs and connective tissue growth factor (CTGF/CCN2) in human ONH astrocytes and murine ON astrocytes. We found that DCN is present in the mouse ON and is expressed by human ONH and murine ON astrocytes. DCN expression and synthesis was significantly reduced after 24 h treatment with 3 nM CTGF/CCN2, while treatment with 4 pM TGF-ß2 only reduced expression of DCN significantly. Conversely, DCN treatment significantly reduced the expression of TGF-ß1, TGF-ß2 and CTGF/CCN2 vis-a-vis untreated controls. Furthermore, DCN treatment significantly reduced expression of fibronectin (FN) and collagen IV (COL IV). Notably, combined treatment with DCN and triciribine, a small molecule inhibitor of protein kinase B (AKT), attenuated effects of DCN on CTGF/CCN2, TGF-ß1, and TGF-ß2 mRNA expression. We conclude (1) that DCN is an important regulator of TGF-ß and CTGF/CCN2 expression in astrocytes of the ON and ONH, (2) that DCN thereby regulates the expression of extracellular matrix (ECM) components and (3) that DCN executes its negative regulatory effects on TGF-ß and CTGF/CCN2 via the pAKT/AKT signaling pathway in ON astrocytes.


Assuntos
Astrócitos/metabolismo , Decorina/farmacologia , Proteínas da Matriz Extracelular/metabolismo , Glaucoma/patologia , Proteína Oncogênica v-akt/metabolismo , Nervo Óptico/metabolismo , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Animais , Astrócitos/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Glaucoma/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nervo Óptico/efeitos dos fármacos , Transdução de Sinais
8.
Int J Mol Sci ; 22(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072647

RESUMO

Steroid-induced glaucoma is a severe pathological condition, sustained by a rapidly progressive increase in intraocular pressure (IOP), which is diagnosed in a subset of subjects who adhere to a glucocorticoid (GC)-based therapy. Molecular and clinical studies suggest that either natural or synthetic GCs induce a severe metabolic dysregulation of Trabecular Meshwork Cells (TMCs), an endothelial-derived histotype with phagocytic and secretive functions which lay at the iridocorneal angle in the anterior segment of the eye. Since TMCs physiologically regulate the composition and architecture of trabecular meshwork (TM), which is the main outflow pathway of aqueous humor, a fluid which shapes the eye globe and nourishes the lining cell types, GCs are supposed to trigger a pathological remodeling of the TM, inducing an IOP increase and retina mechanical compression. The metabolic dysregulation of TMCs induced by GCs exposure has never been characterized at the molecular detail. Herein, we report that, upon dexamethasone exposure, a TMCs strain develops a marked inhibition of the autophagosome biogenesis pathway through an enhanced turnover of two members of the Ulk-1 complex, the main platform for autophagy induction, through the Ubiquitin Proteasome System (UPS).


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Dexametasona/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/metabolismo , Malha Trabecular/efeitos dos fármacos , Malha Trabecular/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proliferação de Células/efeitos dos fármacos , Dexametasona/efeitos adversos , Suscetibilidade a Doenças , Glaucoma/etiologia , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
9.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073191

RESUMO

Despite being one of the most studied eye diseases, clinical translation of glaucoma research is hampered, at least in part, by the lack of validated preclinical models and readouts. The most popular experimental glaucoma model is the murine microbead occlusion model, yet the observed mild phenotype, mixed success rate, and weak reproducibility urge for an expansion of available readout tools. For this purpose, we evaluated various measures that reflect early onset glaucomatous changes in the murine microbead occlusion model. Anterior chamber depth measurements and scotopic threshold response recordings were identified as an outstanding set of tools to assess the model's success rate and to chart glaucomatous damage (or neuroprotection in future studies), respectively. Both are easy-to-measure, in vivo tools with a fast acquisition time and high translatability to the clinic and can be used, whenever judged beneficial, in combination with the more conventional measures in present-day glaucoma research (i.e., intraocular pressure measurements and post-mortem histological analyses). Furthermore, we highlighted the use of dendritic arbor analysis as an alternative histological readout for retinal ganglion cell density counts.


Assuntos
Glaucoma , Microesferas , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Feminino , Glaucoma/induzido quimicamente , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Camundongos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
10.
Theranostics ; 11(13): 6154-6172, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995651

RESUMO

SH2 domain containing tyrosine phosphatase 2 (Shp2; PTPN11) regulates several intracellular pathways downstream of multiple growth factor receptors. Our studies implicate that Shp2 interacts with Caveolin-1 (Cav-1) protein in retinal ganglion cells (RGCs) and negatively regulates BDNF/TrkB signaling. This study aimed to investigate the mechanisms underlying the protective effects of shp2 silencing in the RGCs in glaucomatous conditions. Methods: Shp2 was silenced in the Cav-1 deficient mice and the age matched wildtype littermates using adeno-associated viral (AAV) constructs. Shp2 expression modulation was performed in an acute and a chronic mouse model of experimental glaucoma. AAV2 expressing Shp2 eGFP-shRNA under a strong synthetic CAG promoter was administered intravitreally in the animals' eyes. The contralateral eye received AAV-eGFP-scramble-shRNA as control. Animals with Shp2 downregulation were subjected to either microbead injections or acute ocular hypertension experimental paradigm. Changes in inner retinal function were evaluated by measuring positive scotopic threshold response (pSTR) while structural and biochemical alterations were evaluated through H&E staining, western blotting and immunohistochemical analysis of the retinal tissues. Results: A greater loss of pSTR amplitudes was observed in the WT mice compared to Cav-1-/- retinas in both the models. Silencing of Shp2 phosphatase imparted protection against inner retinal function loss in chronic glaucoma model in WT mice. The functional rescue also translated to structural preservation of ganglion cell layer in the chronic glaucoma condition in WT mice which was not evident in Cav-1-/- mice retinas. Conclusions: This study indicates that protective effects of Shp2 ablation under chronic experimental glaucoma conditions are dependent on Cav-1 in the retina, suggesting in vivo interactions between the two proteins.


Assuntos
Caveolina 1/fisiologia , Terapia Genética , Vetores Genéticos/uso terapêutico , Glaucoma/terapia , Proteína Tirosina Fosfatase não Receptora Tipo 11/antagonistas & inibidores , Retina/patologia , alfa-Globulinas/genética , Animais , Apoptose , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Caveolina 1/deficiência , Caveolina 1/genética , DNA Complementar/genética , Dependovirus/genética , Quinase 1 de Adesão Focal/fisiologia , Técnicas de Silenciamento de Genes , Genes Reporter , Genes Sintéticos , Glaucoma/metabolismo , Glaucoma/patologia , Integrina beta1/fisiologia , Pressão Intraocular , Injeções Intravítreas , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Proteína Tirosina Fosfatase não Receptora Tipo 11/biossíntese , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteínas Tirosina Quinases/fisiologia , Regulação para Cima
11.
Life Sci ; 278: 119564, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33961857

RESUMO

AIMS: Elevated intraocular pressure is primarily induced by the increased resistance of conventional outflow of aqueous humor. Dysfunction of the juxtacanalicular region of trabecular meshwork (TM) and Schlemm's canal (SC) endothelium, as the main conventional outflow tissue, have been implicated as the major reasons for the increased resistance. Integrins are widespread in these tissues, especially alpha8 integrin (ITGA8). We aim to investigate the properties of cells expressing ITGA8 in the conventional outflow tissue. MAIN METHODS: Fluorescence in situ hybridization (FISH) and immunofluorescence (IF) were performed to detect the mRNA and protein levels of ITGA8 in human conventional outflow tissue. ITGA8-positive cells were isolated from the cultured human TM cells through a magnetic bead-based approach. Flow Cytometry was used to determine the purification efficiency. The expressions of TM and SC biomarkers and dexamethasone-induced myocilin secretion capacity of ITGA8-positive cells was assessed by Real-time PCR, IF and Western blot. A gel contraction assay was performed to evaluate contractility of ITGA8-positive cells after endothelin 1 treatment. KEY FINDINGS: ITGA8 was found with robust expression near the inner wall of SC endothelium. After purification, the proportion of ITGA8-positive cells were increased by about 10%. ITGA8-positive cells were identified with the properties as SC endothelial cells, such as more robust expressions of SC biomarkers, less dexamethasone-inducible myocilin expression, and stronger contractility. SIGNIFICANCE: This study demonstrated that cells expressing ITGA8 in SC region possess more properties as SC endothelial cells. Our data implicate a crucial role of ITGA8 in aqueous humor (AH) outflow resistance regulation.


Assuntos
Humor Aquoso/metabolismo , Células Endoteliais/metabolismo , Glaucoma/metabolismo , Cadeias alfa de Integrinas/metabolismo , Pressão Intraocular , Malha Trabecular/metabolismo , Biomarcadores/metabolismo , Sobrevivência Celular , Proteínas do Citoesqueleto/metabolismo , Dexametasona/farmacologia , Endotelina-1/metabolismo , Endotélio/metabolismo , Proteínas do Olho/metabolismo , Glaucoma/fisiopatologia , Glucocorticoides/metabolismo , Glicoproteínas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Integrinas/metabolismo
12.
Invest Ophthalmol Vis Sci ; 62(4): 20, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33856415

RESUMO

Purpose: Inflammatory cytokines are involved in glaucoma pathogenesis. The purpose is to compare cytokine levels in the tear film of Boston keratoprosthesis (KPro) patients with and without glaucoma, relative to controls, and correlate levels with clinical parameters. Methods: This cross-sectional study enrolled 58 eyes (58 patients): 41 KPro eyes with glaucoma, 7 KPro eyes without glaucoma, and 10 healthy controls. Twenty-seven cytokines were measured by multiplex bead immunoassay. Intraocular pressure (IOP), cup-to-disk ratio (CDR), retinal nerve fiber layer, visual acuity, topical medications, and angle closure were assessed in all KPro eyes. Cytokine levels between groups were analyzed by nonparametric tests, and correlations with clinical parameters by Spearman's test. Results: Levels of TNF-ɑ, IL-1ß, FGF-basic, and IFN-É£ were significantly higher in KPro with glaucoma compared to KPro without (P = 0.020; 0.008; 0.043; 0.018, respectively). KPro groups had similar characteristics and topical antibiotic/steroid regimen. Levels of IL-1Ra, IL-15, VEGF, and RANTES were significantly higher in KPro with glaucoma compared to controls (P < 0.001; = 0.034; < 0.001; = 0.001, respectively). IL-1ß and IFN-É£ levels were positively correlated with CDR (r = 0.309, P = 0.039 and r = 0.452, P = 0.006, respectively) and IOP (r = 0.292, P = 0.047 and r = 0.368, P = 0.023, respectively). TNF-α and FGF-basic levels were positively correlated with CDR (r = 0.348, P = 0.022 and r = 0.344, P = 0.021, respectively). Conclusions: TNF-α, IL-1ß, FGF-basic, IFN-É£ are elevated in tears of KPro patients with glaucoma and correlate with CDR and IOP. These results show, for the first time in humans, concordance with documented elevations of TNF-α and IL-1ß in the murine KPro model. Ocular surface inflammation may reflect inflammatory processes of KPro glaucoma.


Assuntos
Órgãos Artificiais , Doenças da Córnea/cirurgia , Citocinas/metabolismo , Glaucoma/complicações , Pressão Intraocular , Lágrimas/metabolismo , Acuidade Visual , Idoso , Biomarcadores/metabolismo , Doenças da Córnea/complicações , Doenças da Córnea/metabolismo , Estudos Transversais , Feminino , Seguimentos , Glaucoma/metabolismo , Glaucoma/fisiopatologia , Humanos , Masculino , Estudos Prospectivos
13.
J Tradit Chin Med ; 41(2): 236-245, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33825403

RESUMO

OBJECTIVE: To explore the effects of Qingguang'an () containing serum on the expression levels of autophagy related genes in the transforming growth factor beta 1 (TGF-ß1)-activated human Tenon's fibroblasts (HTFs). METHODS: (a) Primary HTFs were stimulated by TGF-ß1 and underwent immunohistochemistry, which established a cell model after Glaucoma filtration surgery (GFS). (b) The cell models were divided into 4 group: normal group (normal cells), model group (+TGF-ß1),treatment group (+TGF-ß1+ medicated serum), and positive control group (TGF-ß1+ rapamycin). Then, Qingguang'an medicated serum with optimum concentration was added to the corresponding group. The autophagy positive cells were identified by the Cyto-ID autophagy detection kits under fluorescent microscope and Cytation 5 multifunctional instrument for cell imaging. And the mean fluorescence intensity of autophagy positive cells was determined by flow cytometry. The expression levels of autophagy related genes - Beclin-1, autophagy related gene 5 (ATG-5), and microtubule-associated protein 1 light chain 3 (LC-3Ⅱ were detected by quantitative reverse transcription-polymerase chain reaction and Western blot analysis. RESULTS: Compared with the normal group and the model group, the relative mRNA expression levels of autophagy-related genes (Beclin-1, ATG-5 and LC-3Ⅱ in the experimental group were notably increased (P < 0.05, P < 0.01), and with the extension of treatment time, it had an increasing trend (48 h was more obvious), which showed a certain time dependency; the protein expression levels of autophagy-related genes (Beclin-1, ATG-5, and LC-3Ⅱ were significantly increased in the experimental group (P < 0.05, P < 0.01). With the prolongation of treatment time, there was an increasing trend (48 h was relatively obvious), and it revealed a certain time dependency. CONCLUSION: The Qingguang'an medicated serum could up-regulate autophagy related genes (Beclin1, ATG5, and LC3Ⅱ in the TGF-ß1-activated HTFs.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/efeitos dos fármacos , Proteína Beclina-1/metabolismo , Fibroblastos/efeitos dos fármacos , Glaucoma/tratamento farmacológico , Cápsula de Tenon/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/genética , Proteína Beclina-1/genética , Células Cultivadas , Fibroblastos/metabolismo , Glaucoma/genética , Glaucoma/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Soro/química , Cápsula de Tenon/citologia , Cápsula de Tenon/metabolismo , Fator de Crescimento Transformador beta1/genética
14.
Genes (Basel) ; 12(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799827

RESUMO

Glaucoma is a multifactorial neurodegenerative disease, characterized by degeneration of the retinal ganglion cells (RGCs). There has been little progress in developing efficient strategies for neuroprotection in glaucoma. We profiled the retina transcriptome of Lister Hooded rats at 2 weeks after optic nerve crush (ONC) and analyzed the data from the genomic fabric paradigm (GFP) to bring additional insights into the molecular mechanisms of the retinal remodeling after induction of RGC degeneration. GFP considers three independent characteristics for the expression of each gene: level, variability, and correlation with each other gene. Thus, the 17,657 quantified genes in our study generated a total of 155,911,310 values to analyze. This represents 8830x more data per condition than a traditional transcriptomic analysis. ONC led to a 57% reduction in RGC numbers as detected by retrograde labeling with 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine perchlorate (DiI). We observed a higher relative expression variability after ONC. Gene expression stability was used as a measure of transcription control and disclosed a robust reduction in the number of very stably expressed genes. Predicted protein-protein interaction (PPI) analysis with STRING revealed axon and neuron projection as mostly decreased processes, consistent with RGC degeneration. Conversely, immune response PPIs were found among upregulated genes. Enrichment analysis showed that complement cascade and Notch signaling pathway, as well as oxidative stress and kit receptor pathway were affected after ONC. To expand our studies of altered molecular pathways, we examined the pairwise coordination of gene expressions within each pathway and within the entire transcriptome using Pearson correlations. ONC increased the number of synergistically coordinated pairs of genes and the number of similar profiles mainly in complement cascade and Notch signaling pathway. This deep bioinformatic study provided novel insights beyond the regulation of individual gene expression and disclosed changes in the control of expression of complement cascade and Notch signaling functional pathways that may be relevant for both RGC degeneration and remodeling of the retinal tissue after ONC.


Assuntos
Glaucoma , Traumatismos do Nervo Óptico , Nervo Óptico , Células Ganglionares da Retina , Transcriptoma , Animais , Feminino , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/patologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Ratos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia
15.
J Mater Chem B ; 9(15): 3335-3345, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33881417

RESUMO

The elevation of intraocular pressure (IOP) is an important risk factor in the development of primary open angle glaucoma (POAG), which is the main cause of irreversible vision loss. miRNAs are promising new anti-glaucoma therapeutic agents. However, the low stability and cellular transfection of miRNA in vivo hinder its further application. This study aims to investigate the use of polydopamine-polyethylenimine nanoparticles (PDA/PEI NPs) as miRNA carriers in the treatment of ocular hypertension and glaucoma. The in vitro study proves that the carrier preserves the activity of nucleic acid for a long period. Besides, it has comparable transfection efficiency with commercially available vehicles, while having lower cytotoxicity. It has been demonstrated in the animal model that PDA/PEI NPs successfully reach the target tissues without an obvious inflammatory response. PDA/PEI NPs/miR-21-5p increases the permeability of porcine angular aqueous plexus cells, thereby reducing IOP by facilitating the conventional outflow pathway at least partially through the pathway involving endothelial nitric oxide synthase. Our results indicate that PDA/PEI NPs/miR-21-5p is a promising anti-glaucoma drug for treating POAG. And the delivery strategy may be extended to other gene therapy in treating intraocular diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Glaucoma/terapia , Indóis/química , Pressão Intraocular , MicroRNAs/metabolismo , Nanopartículas/química , Polímeros/química , Animais , Sobrevivência Celular , Portadores de Fármacos/química , Glaucoma/metabolismo , Glaucoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Estrutura Molecular , Polietilenoimina/química
16.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919241

RESUMO

Glaucoma is a heterogeneous group of chronic neurodegenerative disorders characterized by a relatively selective, progressive damage to the retinal ganglion cells (RGCs) and their axons, which leads to axon loss and visual field alterations. To date, many studies have shown the role of various elements, mainly metals, in maintaining the balance of prooxidative and antioxidative processes, regulation of fluid and ion flow through cell membranes of the ocular tissues. Based on the earlier and current research results, their relationship with the development and progression of glaucoma seems obvious and is increasingly appreciated. In this review, we aimed to summarize the current evidence on the role of trace elements in the pathogenesis and prevention of glaucomatous diseases. Special attention is also paid to the genetic background associated with glaucoma-related abnormalities of physiological processes that regulate or involve the ions of elements considered as trace elements necessary for the functioning of the cells.


Assuntos
Glaucoma/metabolismo , Oligoelementos/metabolismo , Animais , Glaucoma/induzido quimicamente , Glaucoma/prevenção & controle , Humanos , Doenças Neurodegenerativas , Oligoelementos/farmacologia
17.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916246

RESUMO

Glaucoma, the leading cause of irreversible blindness, is a heterogeneous group of diseases characterized by progressive loss of retinal ganglion cells (RGCs) and their axons and leads to visual loss and blindness. Risk factors for the onset and progression of glaucoma include systemic and ocular factors such as older age, lower ocular perfusion pressure, and intraocular pressure (IOP). Early signs of RGC damage comprise impairment of axonal transport, downregulation of specific genes and metabolic changes. The brain is often cited to be the highest energy-demanding tissue of the human body. The retina is estimated to have equally high demands. RGCs are particularly active in metabolism and vulnerable to energy insufficiency. Understanding the energy metabolism of the inner retina, especially of the RGCs, is pivotal for understanding glaucoma's pathophysiology. Here we review the key contributors to the high energy demands in the retina and the distinguishing features of energy metabolism of the inner retina. The major features of glaucoma include progressive cell death of retinal ganglions and optic nerve damage. Therefore, this review focuses on the energetic budget of the retinal ganglion cells, optic nerve and the relevant cells that surround them.


Assuntos
Metabolismo Energético , Glaucoma/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Glaucoma/etiologia , Humanos
18.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917605

RESUMO

Glaucoma is a progressive neurodegenerative disease which constitutes the main frequent cause of irreversible blindness. Recent findings have shown that oxidative stress, inflammation and glutamatergic pathway play key roles in the causes of glaucoma. Recent studies have shown a down regulation of the WNT/ß-catenin pathway in glaucoma, associated with overactivation of the GSK-3ß signaling. WNT/ß-catenin pathway is mainly associated with oxidative stress, inflammation and glutamatergic pathway. Cannabidiol (CBD) is a non-psychotomimetic phytocannabinoid derived from Cannabis sativa plant which possesses many therapeutic properties across a range of neuropsychiatric disorders. Since few years, CBD presents an increased interest as a possible drug in anxiolytic disorders. CBD administration is associated with increase of the WNT/ß-catenin pathway and decrease of the GSK-3ß activity. CBD has a lower affinity for CB1 but can act through other signaling in glaucoma, including the WNT/ß-catenin pathway. CBD downregulates GSK3-ß activity, an inhibitor of WNT/ß-catenin pathway. Moreover, CBD was reported to suppress pro-inflammatory signaling and neuroinflammation, oxidative stress and glutamatergic pathway. Thus, this review focuses on the potential effects of cannabidiol, as a potential therapeutic strategy, on glaucoma and some of the presumed mechanisms by which this phytocannabinoid provides its possible benefit properties through the WNT/ß-catenin pathway.


Assuntos
Canabidiol/uso terapêutico , Glaucoma , Glicogênio Sintase Quinase 3 beta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Animais , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Glaucoma/patologia , Humanos
19.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925119

RESUMO

Glaucoma is a multifactorial disease that is conventionally managed with treatments to lower intraocular pressure (IOP). Despite these efforts, many patients continue to lose their vision. The degeneration of retinal ganglion cells (RGCs) and their axons in the optic tract that characterizes glaucoma is similar to neurodegeneration in other age-related disorders of the central nervous system (CNS). Identifying the different molecular signaling pathways that contribute to early neuronal dysfunction can be utilized for neuroprotective strategies that prevent degeneration. The discovery of insulin and its receptor in the CNS and retina led to exploration of the role of insulin signaling in the CNS. Historically, insulin was considered a peripherally secreted hormone that regulated glucose homeostasis, with no obvious roles in the CNS. However, a growing number of pre-clinical and clinical studies have demonstrated the potential of modulating insulin signaling in the treatment of neurodegenerative diseases. This review will highlight the role that insulin signaling plays in RGC neurodegeneration. We will focus on how this pathway can be therapeutically targeted to promote RGC axon survival and preserve vision.


Assuntos
Glaucoma/metabolismo , Insulina/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Modelos Animais de Doenças , Glaucoma/patologia , Glaucoma/terapia , Humanos , Terapia de Alvo Molecular , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Neuroproteção , Retina/metabolismo , Retina/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Transdução de Sinais
20.
Acc Chem Res ; 54(9): 2205-2215, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33847483

RESUMO

Numerous human disorders arise due to the inability of a particular protein to adopt its correct three-dimensional structure in the context of the cell, leading to aggregation. A new addition to the list of such protein conformational disorders is the inherited subtype of glaucoma. Different and rare coding mutations in myocilin, found in families throughout the world, are causal for early onset ocular hypertension, a key glaucoma risk factor. Myocilin is expressed at high levels in the trabecular meshwork (TM) extracellular matrix. The TM is the anatomical region of the eye that regulates intraocular pressure, and its dysfunction is associated with most forms of glaucoma. Disease variants, distributed across the 30 kDa olfactomedin domain (mOLF), cause myocilin to be sequestered intracellularly instead of being secreted to the TM extracellular matrix. The working hypothesis is that the intracellular aggregates cause a toxic gain of function: TM cell death is thought to lead to TM matrix dysfunction, hastening elevated intraocular pressure and subsequent vision loss.Our lab has provided molecular underpinnings for myocilin structure and misfolding, placing myocilin-associated glaucoma within the context of amyloid diseases like Alzheimer and diabetes. We have dissected complexities of the modular wild-type (WT) myocilin structure and associated misfolded states. Our data support the model that full-length WT myocilin adopts a Y-shaped dimer-of-dimers conferred by two different coiled-coil regions, generating new hypotheses regarding its mysterious function. The mOLF ß-propellers are paired at each tip of the Y. Disease-associated variants aggregate because mOLFs are less stable, leading to facile aggregation under physiological conditions (37 °C, pH 7.2). Mutant myocilin aggregates exhibit numerous characteristics of amyloid in vitro and in cells, and aggregation proceeds from a partially folded state accessed preferentially by disease variants at physiological conditions. Interestingly, destabilization is not a universal consequence of mutation. We identified counterintuitive, stabilizing point variants that adopt a non-native structure and do not aggregate; however, these variants have not been identified in glaucoma patients. An ongoing effort is predicting the consequence of any given mutation. This effort is relevant to interpreting data from large-scale sequencing projects where clinical and family history data are not available. Finally, our work suggests avenues to develop disease-modifying precision medicines for myocilin-associated glaucoma.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Olho/metabolismo , Glaucoma/metabolismo , Glicoproteínas/metabolismo , Proteínas do Citoesqueleto/química , Proteínas da Matriz Extracelular/química , Proteínas do Olho/química , Glicoproteínas/química , Humanos , Modelos Moleculares , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...