Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.035
Filtrar
1.
Ann Hematol ; 99(11): 2589-2598, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32892275

RESUMO

The induction therapy containing ixazomib, an oral proteasome inhibitor, has shown favorable efficacy and safety in clinical trials, but its experience in real-life remains limited. In routine practice, few patients received ixazomib-based induction therapy due to reasons including (1) patients' preference on oral regimens, (2) concerns on adverse events (AEs) of other intravenous/subcutaneous regimens, (3) requirements for less center visits, and (4) fears of COVID-19 and other infectious disease exposures. With the aim of assessing the real-life effectiveness and safety of ixazomib-based induction therapy, we performed this multi-center, observational study on 85 newly diagnosed multiple myeloma (NDMM) patients from 14 medical centers. Ixazomib-based regimens included ixazomib-lenalidomide-dexamethasone (IRd) in 44.7% of patients, ixazomib-dexamethasone (Id) in 29.4%, and Id plus another agent (doxorubicin, cyclophosphamide, thalidomide, or daratumumab) in 25.9%. Different ixazomib-based therapies were applied due to (1) financial burdens or limitations on local health insurance coverage, (2) concerns on treatment tolerance, and (3) drug accessibility issue. Ten patients received ixazomib maintenance. The median age was 67 years; 43.5% had ISS stage III disease; 48.2% had an Eastern Cooperative Oncology Group performance score ≥ 2; and 17.6% with high-risk cytogenetic abnormalities. Overall response rate for all 85 patients was 95.3%, including 65.9% very good partial response or better and 29.5% complete responses. The median time to response was 30 days. The response rate was similar across different ixazomib-based regimens. Median progression-free survival was not reached. Severe AEs (≥ grade 3) were reported in 29.4% of patients. No grade 3/4 peripheral neuropathy (PN) occurred. Patients received a median of 6 (range 1-20) cycles of ixazomib treatment; 56.6% remained on treatment at data cutoff; 15.3% discontinued treatment due to intolerable AEs. These results support that the ixazomib-based frontline therapy was highly effective with acceptable toxicity in routine practice and the ixazomib oral regimens could be good alternative options for NDMM patients.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Compostos de Boro/administração & dosagem , Glicina/análogos & derivados , Mieloma Múltiplo/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Adolescente , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Compostos de Boro/efeitos adversos , Ciclofosfamida/administração & dosagem , Ciclofosfamida/efeitos adversos , Dexametasona/administração & dosagem , Dexametasona/efeitos adversos , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Esquema de Medicação , Feminino , Glicina/administração & dosagem , Glicina/efeitos adversos , Humanos , Lenalidomida/administração & dosagem , Lenalidomida/efeitos adversos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/patologia , Estadiamento de Neoplasias , Doenças do Sistema Nervoso Periférico/diagnóstico , Doenças do Sistema Nervoso Periférico/fisiopatologia , Indução de Remissão , Análise de Sobrevida , Talidomida/administração & dosagem , Talidomida/efeitos adversos , Resultado do Tratamento
2.
Ecotoxicol Environ Saf ; 203: 111013, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888588

RESUMO

Multiple pesticides originating from plant protection treatments and the treatment of pests infecting honey bees are frequently detected in beehive matrices. Therefore, winter honey bees, which have a long life span, could be exposed to these pesticides for longer periods than summer honey bees. In this study, winter honey bees were exposed through food to the insecticide imidacloprid, the fungicide difenoconazole and the herbicide glyphosate, alone or in binary and ternary mixtures, at environmental concentrations (0 (controls), 0.1, 1 and 10 µg/L) for 20 days. The survival of the honey bees was significantly reduced after exposure to these 3 pesticides individually and in combination. Overall, the combinations had a higher impact than the pesticides alone with a maximum mortality of 52.9% after 20 days of exposure to the insecticide-fungicide binary mixture at 1 µg/L. The analyses of the surviving bees showed that these different pesticide combinations had a systemic global impact on the physiological state of the honey bees, as revealed by the modulation of head, midgut and abdomen glutathione-S-transferase, head acetylcholinesterase, abdomen glucose-6-phosphate dehydrogenase and midgut alkaline phosphatase, which are involved in the detoxification of xenobiotics, the nervous system, defenses against oxidative stress, metabolism and immunity, respectively. These results demonstrate the importance of studying the effects of chemical cocktails based on low realistic exposure levels and developing long-term tests to reveal possible lethal and adverse sublethal interactions in honey bees and other insect pollinators.


Assuntos
Abelhas/fisiologia , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Praguicidas/toxicidade , Animais , Dioxolanos/toxicidade , Sinergismo Farmacológico , Glicina/análogos & derivados , Glicina/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Polinização/efeitos dos fármacos , Triazóis/toxicidade
3.
Rinsho Ketsueki ; 61(8): 870-873, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32908048

RESUMO

A 58-year-old man received high-dose melphalan with autologous peripheral blood stem cell transplantation for multiple myeloma in stringent complete response (sCR). Relapse occurred 4 years after the transplantation, and he was placed on ixazomib, lenalidomide, and dexamethasone (IRd) and achieved sCR. On the 10th day of the 10th course of IRd, he developed fever followed by generalized skin eruption with vesicles, headache, and dizziness. Varicella-zoster virus (VZV) antigen from the vesicle and VZV-DNA from the cerebrospinal fluid were detected, and he was diagnosed with systemic VZV infection. He was placed on intravenous acyclovir (ACV), and the infection resolved completely. VZV infection has been recognized as an important complication associated with the use of proteasome inhibitors; however, to our knowledge, there have been no reported cases of serious systemic VZV infection associated with ixazomib. The clinical course of this case strongly suggests the importance of prophylaxis for VZV infection during treatment with ixazomib.


Assuntos
Compostos de Boro/uso terapêutico , Varicela , Glicina/análogos & derivados , Herpes Zoster , Mieloma Múltiplo , Varicela/complicações , Glicina/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/complicações , Mieloma Múltiplo/tratamento farmacológico , Recidiva Local de Neoplasia
4.
J Environ Pathol Toxicol Oncol ; 39(3): 281-290, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32865918

RESUMO

Objective-To investigate cystathionine ß synthase (CBS)/hydrogen sulfide (H2S) signaling in multiple myeloma (MM) patients and to identify its effect on the proliferation of U266 cells. Methods-Bone marrow samples of 19 MM patients and 23 healthy donors were collected. qRT-PCR was performed to measure the mRNA expression levels of H2S synthases, cystathionine ß synthase, and cystathionine γ lyase. ELISA assays quantified the amount of H2S produced by the two enzymes CBS and CSE. CCK-8 experiment was used to investigate the influence of the CBS inhibitor amino oxyacetic acid and the CSE inhibitor propargylglycine on the proliferation of U266 cells. Flow cytometry and western blotting were performed to determine the effects of AOAA, PAG, and NaHS on cell cycle distribution as well as Caspase-3 and Bcl-2 expression. Results-Patients with MM had higher level of CBS compared with healthy donors. AOAA significantly inhibited cell proliferation in both a time and concentration dependent characteristic, whereas PAG does not. After 24 hours of treatment, AOAA significantly elevated the G0/G1 phase proportion of cells, and reduced the cell distribution in both S and G2/M phases, while NaHS accelerated cell cycle progression by reducing the relative number of cells in G0/G1 phase and increasing the proportion of cells in the G2/M phase. Moreover, AOAA abolished the impact of NaHS on cell cycle progression of U266 cells. AOAA treatment also led to a significant decrease in Bcl-2 expression and dramatic increase in Caspase-3 expression, though NaHS reversed these effects. Conclusion-CBS/H2S system might have a certain effect on the proliferation and apoptosis of MM cells.


Assuntos
Apoptose , Proliferação de Células , Cistationina beta-Sintase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Mieloma Múltiplo/metabolismo , Adulto , Idoso , Alquinos/farmacologia , Ácido Amino-Oxiacético/farmacologia , Apoptose/efeitos dos fármacos , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Estudos de Casos e Controles , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cistationina beta-Sintase/antagonistas & inibidores , Cistationina gama-Liase/antagonistas & inibidores , Cistationina gama-Liase/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia , Transdução de Sinais
7.
Environ Pollut ; 265(Pt B): 115027, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32806452

RESUMO

Glyphosate-based herbicides (GBHs) are the most widely used pesticides for weed control. In parallel with the renewal of the active ingredient, polyethoxylated POE(15) containing GBHs were banned in the EU in 2016. Since then, co-formulants were changed and numerous GBHs are marketed with different excipients declared as inert substances. In our study, we focused to determine acute and chronic cytotoxicity (by Aliivibrio fischeri assay) and direct hormonal activity (estrogenic and androgenic effects measured by Saccharomyces cerevisiae BLYES/BLYAS strains, respectively) of glyphosate, AMPA, polyethoxylated POE(15) and 13 GBHs from which 11 formulations do not contain polyethoxylated POE(15). Among the pure substances, neither glyphosate nor AMPA had any effects, while polyethoxylated POE(15) exhibited pronounced toxicity and was also estrogenic but not androgenic. Regarding the acute and chronic cytotoxicity and hormonal activity of GBHs, dilution percentages calculated from EC50 values were in the most cases by one or two order of magnitude lower than the minimum recommended dilution for agricultural and household use. Relation could not be observed between the biological effects and type of glyphosate-salts; hence toxicity could be linked to the co-formulants, which are not even declared in 3 GBHs. Toxicological evaluation must focus on these substances and free accessibility of GBHs should be reconsidered.


Assuntos
Herbicidas , Glicina/análogos & derivados
8.
Environ Pollut ; 266(Pt 1): 115108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32768925

RESUMO

Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. GBH residues in the wild, in animal and human food may expose non-target organisms to health risks, yet the developmental and cumulative effects of GBHs on physiology and reproduction remain poorly understood. We present the first long-term study on the effects of subtoxic GBH exposure (160 mg/kg) on multiple key physiological biomarkers (cellular oxidative status and neurotransmitters), gut microbiome, reproductive hormones, and reproduction in an avian model. We experimentally exposed in Japanese quail females and males (Coturnix japonica) to GBHs and respective controls from the age of 10 days-52 weeks. GBH exposure decreased hepatic activity of an intracellular antioxidant enzyme (catalase), independent of sex, but did not influence other intracellular oxidative stress biomarkers or neurotransmitter enzyme (acetylcholinesterase). GBH exposure altered overall gut microbiome composition, especially at a younger age and in females, and suppressed potentially beneficial microbes at an early age. Many of the microbial groups increased in frequency from 12 to 28 weeks under GBH exposure. GBH exposure decreased male testosterone levels both at sexual maturity and at 52 weeks of exposure, but did not clearly influence reproduction in either sex (maturation, testis size or egg production). Future studies are needed to characterize the effects on reproductive physiology in more detail. Our results suggest that cumulative GBH exposure may influence health and reproduction-related traits, which is important in predicting their effects on wild populations and global poultry industry.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Animais , Antioxidantes , Coturnix , Feminino , Glicina/análogos & derivados , Humanos , Masculino
9.
Ecotoxicol Environ Saf ; 204: 111108, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798750

RESUMO

Honeybees (Apis mellifera) play an important role in agriculture worldwide. Several factors including agrochemicals can affect honey bee health including habitat fragmentation, pesticide application, and pests. The growing human population and subsequent increasing crop production have led to widespread use of agrochemicals and there is growing concern that pollinators are being negatively impacted by these pesticides. The present study compares acute exposure to imidacloprid (0.2 and 0.4 mgL-1), ethion (80 and 106.7 mgL-1) or glyphosate (0.12 and 0.24 mgL-1) on aversive learning and movement, to chronic exposure at these and higher concentrations on movement, circadian rhythms, and survival in honey bee foragers. For acute learning studies, a blue/yellow shuttle box experiment was conducted; we observed honey bee choice following aversive and neutral stimuli. In learning studies, control bees spent >50% of the time on yellow which is not consistent with previous color bias literature in the subspecies or region of the study. The learning apparatus was also used to estimate mobility effects within 20 min of exposure. Chronic exposure (up to 2 weeks) with the above metrics was recorded by an automated monitoring system. In chronic exposure experiments, RoundUp®, was also tested to compare to its active ingredient, glyphosate. We found that imidacloprid and ethion have negative impacts on aversive learning and movement following a single-dose and that chronic exposure effects were dose-dependent for these two insecticides. In contrast, glyphosate had no effect on learning and less of an effect on movement; RoundUp® showed dose-dependent results on circadian rhythmicity. Overall, the results suggest that short-term exposure to imidacloprid and ethion adversely affect honey bee foragers and chronic exposure to glyphosate may affect pollination success.


Assuntos
Abelhas/fisiologia , Inseticidas/toxicidade , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Aprendizagem/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Compostos Organotiofosforados/toxicidade , Polinização
10.
Ann Hematol ; 99(8): 1793-1804, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613281

RESUMO

The phase 3, double-blind, placebo-controlled TOURMALINE-MM3 study (NCT02181413) demonstrated improved progression-free survival with ixazomib maintenance versus placebo post autologous stem cell transplant (ASCT) in multiple myeloma patients. We report additional safety data from TOURMALINE-MM3 to inform adverse event (AE) management recommendations. Patients were randomized 3:2 to receive ixazomib (n = 395) or placebo (n = 261) on days 1, 8, and 15 of 28-day cycles for ~ 2 years or until progressive disease/toxicity. The initial 3-mg ixazomib dose was escalated to 4 mg in cycle 5, if tolerated in cycles 1-4. Safety was a secondary endpoint assessed in all treated patients; AEs were graded using Common Terminology Criteria for AEs v4.03. The rate of grade ≥ 3 AEs was higher in the ixazomib arm (19%) than in the placebo arm (5%), but the rate of discontinuation due to AEs was similar (7% vs. 5%). For AEs of clinical interest, rates were higher with ixazomib versus placebo: nausea 39% versus 15%, vomiting 27% versus 11%, diarrhea 35% versus 24%, thrombocytopenia 13% versus 3%, and peripheral neuropathy 19% versus 15%. However, the majority of events were low-grade, manageable with supportive therapy or dose reduction, and reversible, and did not result in discontinuation. There was no evidence of cumulative, long-term, or late-onset toxicity with ixazomib maintenance. Ixazomib is an efficacious and tolerable option for post-ASCT maintenance. AEs associated with ixazomib maintenance can be managed in the context of routine post-ASCT supportive care due to the limited additional toxicity. ClinicalTrials.gov NCT02181413.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Mieloma Múltiplo , Transplante de Células-Tronco , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Autoenxertos , Compostos de Boro/administração & dosagem , Compostos de Boro/efeitos adversos , Intervalo Livre de Doença , Feminino , Seguimentos , Glicina/administração & dosagem , Glicina/efeitos adversos , Glicina/análogos & derivados , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/terapia , Silicatos/administração & dosagem , Silicatos/efeitos adversos , Taxa de Sobrevida
11.
Huan Jing Ke Xue ; 41(2): 979-985, 2020 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608760

RESUMO

Chelating agents can increase the bioavailability of heavy metals and enhance their enrichment in plants. The effects of different concentrations of biodegradable chelating agent L-glutamic acid N, N-diacetic acid (GLDA) on the remediation of heavy metal-contaminated soil by super-enriched plant Trifolium repens were investigated by pot experiments with Cd-contaminated soil. Results show that low-dose GLDA could significantly promote the growth of Trifolium repens, and the biomass of Trifolium repens was the highest at 2.5 mmol·kg-1-GLDA, which was 1.30 times that of the control group. Different concentrations of GLDA can increase Cd content of various parts of Trifolium repens. In general, the treatment effect of 5 mmol·kg-1 GLDA was ideal. In this scenario, the root, aerial parts, and whole Cd content were 3.57, 4.69, and 4.67 times of the control group, respectively. GLDA can significantly increase the available Cd content in soil, promote direct absorption at the Trifolium repens roots, and provide better transport to the aerial parts. The prediction model obtained by fitting the linear relationship between physical and chemical properties of soil indicates that GLDA and Trifolium repens Cd content can provide references for the future research of soil-Trifolium repens enrichment. Studies have shown that the biodegradable chelating agent GLDA has potential applications for enhancing phytoremediation of heavy metal Cd contaminated soil.


Assuntos
Cádmio/metabolismo , Glutamatos , Glicina/análogos & derivados , Poluentes do Solo/metabolismo , Trifolium/metabolismo , Biodegradação Ambiental , Ácido Glutâmico , Metais Pesados
12.
Mol Cell ; 79(1): 180-190.e4, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619468

RESUMO

Rigosertib is a styryl benzyl sulfone that inhibits growth of tumor cells and acts as a RAS mimetic by binding to Ras binding domains of RAS effectors. A recent study attributed rigosertib's mechanism of action to microtubule binding. In that study, rigosertib was obtained from a commercial vendor. We compared the purity of clinical-grade and commercially sourced rigosertib and found that commercially sourced rigosertib contains approximately 5% ON01500, a potent inhibitor of tubulin polymerization. Clinical-grade rigosertib, which is free of this impurity, does not exhibit tubulin-binding activity. Cell lines expressing mutant ß-tubulin have also been reported to be resistant to rigosertib. However, our study showed that these cells failed to proliferate in the presence of rigosertib at concentrations that are lethal to wild-type cells. Rigosertib induced a senescence-like phenotype in the small percentage of surviving cells, which could be incorrectly scored as resistant using short-term cultures.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Glicina/análogos & derivados , Neoplasias Pulmonares/patologia , Sulfonas/farmacologia , Tubulina (Proteína)/metabolismo , Contaminação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glicina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Mutação , Tubulina (Proteína)/química , Tubulina (Proteína)/genética , Células Tumorais Cultivadas
13.
Mol Cell ; 79(1): 191-198.e3, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32619469

RESUMO

We recently used CRISPRi/a-based chemical-genetic screens and cell biological, biochemical, and structural assays to determine that rigosertib, an anti-cancer agent in phase III clinical trials, kills cancer cells by destabilizing microtubules. Reddy and co-workers (Baker et al., 2020, this issue of Molecular Cell) suggest that a contaminating degradation product in commercial formulations of rigosertib is responsible for the microtubule-destabilizing activity. Here, we demonstrate that cells treated with pharmaceutical-grade rigosertib (>99.9% purity) or commercially obtained rigosertib have qualitatively indistinguishable phenotypes across multiple assays. The two formulations have indistinguishable chemical-genetic interactions with genes that modulate microtubule stability, both destabilize microtubules in cells and in vitro, and expression of a rationally designed tubulin mutant with a mutation in the rigosertib binding site (L240F TUBB) allows cells to proliferate in the presence of either formulation. Importantly, the specificity of the L240F TUBB mutant for microtubule-destabilizing agents has been confirmed independently. Thus, rigosertib kills cancer cells by destabilizing microtubules, in agreement with our original findings.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células , Glicina/análogos & derivados , Microtúbulos/efeitos dos fármacos , Neoplasias/patologia , Preparações Farmacêuticas/metabolismo , Sulfonas/farmacologia , Tubulina (Proteína)/metabolismo , Células Cultivadas , Cristalografia por Raios X , Contaminação de Medicamentos , Glicina/farmacologia , Humanos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Preparações Farmacêuticas/química , Conformação Proteica , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
20.
Sci Total Environ ; 745: 140932, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32731069

RESUMO

Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function can have serious consequences on their health, not to mention the economic effects. Recent studies that addressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information. Therefore, we chose an experimental design with a short incubation time in which effects on the community structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles a worst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the single cell level by microbiota flow cytometry. Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated microbiota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some effects on the functional level. This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the conditions applied.


Assuntos
Microbioma Gastrointestinal , Herbicidas/toxicidade , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Humanos , Metaboloma , RNA Ribossômico 16S/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA