Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.674
Filtrar
1.
Nat Commun ; 12(1): 5255, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489438

RESUMO

Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.


Assuntos
Tecido Adiposo Marrom/citologia , Monócitos/fisiologia , Adiponectina/genética , Tecido Adiposo Marrom/fisiologia , Animais , Diferenciação Celular/genética , Contagem de Leucócitos , Macrófagos/citologia , Macrófagos/fisiologia , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Monócitos/citologia , Tomografia por Emissão de Pósitrons , Receptores CCR2/genética , Receptores CCR2/metabolismo
2.
Biomed Res Int ; 2021: 5554991, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337024

RESUMO

Background: Obesity is a main contributing factor for the development of glucose intolerance and type 2 diabetes mellitus (T2D). Roux-en-Y gastric bypass (RYGB) is believed to be one of the most effective treatments to reduce body weight and improve glucose metabolism. In this study, we sought to explore the underlying mechanisms of weight reduction and insulin resistance improvement after RYGB. Methods: This was a prospective observational study using consecutive samples of 14 obese subjects undergoing bariatric surgery. Main assessments were serum indexes (blood metabolites, glucose-lipid regulating hormones, trimethylamine-N-oxide (TMAO), and lipopolysaccharide-binding protein (LBP), fecal short-chain fatty acids (SCFAs), and gut microbiota. Correlation analysis of the factors changed by RYGB was used to indicate the potential mechanism by which surgery improves insulin resistance. Results: The subjects showed significant improvement on indices of obesity and insulin resistance and a correlated change of gut microbiota components at 1 month, 3 months, and 6 months post-RYGB operation. In particular, the abundance of a counterobese strain, Akkemansia muciniphila, had gradually increased with the postoperative time. Moreover, these changes were negatively correlated to serum levels of LBP and positively correlated to serum TMAO and fecal SCFAs. Conclusions: Our findings uncovered links between intestinal microbiota alterations, circulating endotoxemia, and insulin resistance. This suggests that the underlying mechanism of protection of the intestine by RYGB in obesity may be through changing the gut microbiota.


Assuntos
Endotoxemia/microbiologia , Endotoxemia/cirurgia , Derivação Gástrica , Microbioma Gastrointestinal , Resistência à Insulina , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Regulação para Baixo , Humanos , Glicoproteínas de Membrana/metabolismo , Metaboloma , Metilaminas/metabolismo , Obesidade/microbiologia , Obesidade/cirurgia
3.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360710

RESUMO

A presynaptic active zone organizer protein Bassoon orchestrates numerous important functions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adulthood. We further provide evidence for a potential involvement of tropomyosin-related kinase B (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3-5 months-old) but not in adolescent (~4-5 weeks-old) mice. Electrophysiological analysis reveals increased field-excitatory-postsynaptic-potentials (fEPSPs) in the DG of the adult, but not in adolescent BsnEmx1cKO mice. In line with an increased TrkB expression during adulthood in BsnEmx1cKO, blockade of TrkB normalizes the increased synaptic excitability in the DG during adulthood, while no such effect was observed in adolescence. Accordingly, neurogenesis, which has previously been found to be increased in adult BsnEmx1cKO mice, was unaffected at adolescent age. Our results suggest that Bassoon plays a crucial role in the TrkB-dependent postnatal maturation of the hippocampus.


Assuntos
Hipocampo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Prosencéfalo/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Transmissão Sináptica , Animais , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas Tirosina Quinases/genética
4.
J Immunol ; 207(5): 1448-1455, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34362834

RESUMO

Identification of the receptors involved in innate immune recognition of Staphylococcus aureus, a major cause of morbidity and mortality in humans, is essential to develop alternative strategies to treat infections caused by antibiotic-resistant strains. In the current study, we examine the role of endosomal TLRs, which sense the presence of prokaryotic-type nucleic acids, in anti-staphylococcal host defenses using infection models involving genetically defective mice. Single deficiencies in TLR7, 9, or 13 resulted in mild or no decrease in host defenses. However, the simultaneous absence of TLR7, 9, and 13 resulted in markedly increased susceptibility to cutaneous and systemic S. aureus infection concomitantly with decreased production of proinflammatory chemokines and cytokines, neutrophil recruitment to infection sites, and reduced production of reactive oxygen species. This phenotype was significantly more severe than that of mice lacking TLR2, which senses the presence of staphylococcal lipoproteins. Notably, the combined absence of TLR7, 9, and 13 resulted in complete abrogation of IL-12 p70 and IFN-ß responses to staphylococcal stimulation in macrophages. Taken together, our data highlight the presence of a highly integrated endosomal detection system, whereby TLR7, 9, and 13 cooperate in sensing the presence of staphylococcal nucleic acids. We demonstrate that the combined absence of these receptors cannot be compensated for by cell surface-associated TLRs, such as TLR2, or cytosolic receptors. These data may be useful to devise strategies aimed at stimulating innate immune receptors to treat S. aureus infections.


Assuntos
Endossomos/metabolismo , Glicoproteínas de Membrana/metabolismo , Neutrófilos/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 7 Toll-Like/genética , Receptor Toll-Like 9/genética , Receptores Toll-Like/genética
5.
Science ; 373(6553)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34437091

RESUMO

The biogenesis of high-density lipoprotein (HDL) requires apoA1 and the cholesterol transporter ABCA1. Although the liver generates most of the HDL in the blood, HDL synthesis also occurs in the small intestine. Here, we show that intestine-derived HDL traverses the portal vein in the HDL3 subspecies form, in complex with lipopolysaccharide (LPS)-binding protein (LBP). HDL3, but not HDL2 or low-density lipoprotein, prevented LPS binding to and inflammatory activation of liver macrophages and instead supported extracellular inactivation of LPS. In mouse models involving surgical, dietary, or alcoholic intestinal insult, loss of intestine-derived HDL worsened liver injury, whereas outcomes were improved by therapeutics that elevated and depended upon raising intestinal HDL. Thus, protection of the liver from injury in response to gut-derived LPS is a major function of intestinally synthesized HDL.


Assuntos
Intestino Delgado/metabolismo , Lipoproteínas HDL3/metabolismo , Hepatopatias/prevenção & controle , Fígado/metabolismo , Veia Porta/metabolismo , Proteínas de Fase Aguda/metabolismo , Adulto , Animais , Proteínas de Transporte/metabolismo , HDL-Colesterol/sangue , HDL-Colesterol/metabolismo , Enterócitos/metabolismo , Humanos , Intestino Delgado/cirurgia , Macrófagos do Fígado/imunologia , Macrófagos do Fígado/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas HDL3/sangue , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Hepatopatias/patologia , Receptores X do Fígado/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34445283

RESUMO

Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.


Assuntos
Ácido Aurintricarboxílico/farmacologia , Toxinas Botulínicas Tipo A/toxicidade , Toxinas Botulínicas/toxicidade , Botulismo/tratamento farmacológico , Botulismo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Botulismo/genética , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
7.
Front Immunol ; 12: 708149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335624

RESUMO

Microbial translocation (MT) and intestinal damage (ID) are poorly explored in COVID-19. Aims were to assess whether alteration of gut permeability and cell integrity characterize COVID-19 patients, whether it is more pronounced in severe infections and whether it influences the development of subsequent bloodstream infection (BSI). Furthermore, we looked at the potential predictive role of TM and ID markers on Intensive Care Unit (ICU) admission and in-hospital mortality. Over March-July 2020, 45 COVID-19 patients were enrolled. Markers of MT [LPB (Lipopolysacharide Binding Protein) and EndoCab IgM] and ID [I-FABP (Intestinal Fatty Acid Binding Protein)] were evaluated at COVID-19 diagnosis and after 7 days. As a control group, age- and gender-matched healthy donors (HDs) enrolled during the same study period were included. Median age was 66 (56-71) years. Twenty-one (46.6%) were admitted to ICU and mortality was 22% (10/45). Compared to HD, a high degree of MT and ID was observed. ICU patients had higher levels of MT, but not of ID, than non-ICU ones. Likewise, patients with BSI had lower EndoCab IgM than non-BSI. Interestingly, patients with high degree of MT and low ID were likely to be admitted to ICU (AUC 0.822). Patients with COVID-19 exhibited high level of MT, especially subjects admitted to ICU. COVID-19 is associated with gut permeability.


Assuntos
COVID-19/metabolismo , Mucosa Intestinal/metabolismo , SARS-CoV-2/fisiologia , Proteínas de Fase Aguda/metabolismo , Idoso , Biomarcadores/metabolismo , COVID-19/diagnóstico , COVID-19/mortalidade , COVID-19/patologia , Proteínas de Transporte/metabolismo , Progressão da Doença , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Humanos , Unidades de Terapia Intensiva , Mucosa Intestinal/patologia , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Análise de Sobrevida , Junções Íntimas/metabolismo
8.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361094

RESUMO

Protein-protein interactions between G protein-coupled receptors (GPCRs) can augment their functionality and increase the repertoire of signaling pathways they regulate. New therapeutics designed to modulate such interactions may allow for targeting of a specific GPCR activity, thus reducing potential for side effects. Dopamine receptor (DR) heteromers are promising candidates for targeted therapy of neurological conditions such as Parkinson's disease since current treatments can have severe side effects. To facilitate development of such therapies, it is necessary to identify the various DR binding partners. We report here a new interaction partner for DRD2 and DRD3, the orphan receptor G protein-coupled receptor 143 (GPR143), an atypical GPCR that plays multiple roles in pigment cells and is expressed in several regions of the brain. We previously demonstrated that the DRD2/ DRD3 antagonist pimozide also modulates GPR143 activity. Using confocal microscopy and two FRET methods, we observed that the DRs and GPR143 colocalize and interact at intracellular membranes. Furthermore, co-expression of wildtype GPR143 resulted in a 57% and 67% decrease in DRD2 and DRD3 activity, respectively, as determined by ß-Arrestin recruitment assay. GPR143-DR dimerization may negatively modulate DR activity by changing affinity for dopamine or delaying delivery of the DRs to the plasma membrane.


Assuntos
Dopamina/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , beta-Arrestinas/metabolismo , Proteínas do Olho/genética , Humanos , Glicoproteínas de Membrana/genética , Mutação , Ligação Proteica , Receptores de Dopamina D2/genética , Receptores de Dopamina D3/genética , Transdução de Sinais
9.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34360648

RESUMO

Proteins interact with many charged biological macromolecules (polyelectrolytes), including inorganic polyphosphates. Recently a new protein post-translational modification, polyphosphorylation, or a covalent binding of polyphosphate chain to lysine, was demonstrated in human and yeast. Herein, we performed the first molecular modeling study of a possible effect of polyphosphorylation on behavior of the modified protein using replica exchange molecular dynamics simulations in atomistic force field with explicit water. Human endoplasmin (GRP-94), a member of heat shock protein 90 family, was selected as a model protein. Intrinsically disordered region in N-terminal domain serving as a charged linker between domains and containing a polyacidic serine and lysine-rich motif, was selected as a potent polyphosphorylation site according to literature data. Polyphosphorylation, depending on exact modification site, has been shown to influence on the disordered loop flexibility and induce its further expanding, as well as induce changes in interaction with ordered part of the molecule. As a result, polyphosphorylation in N-terminal domain might affect interaction of HSP90 with client proteins since these chaperones play a key role in protein folding.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Polifosfatos/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Humanos , Fosforilação , Ligação Proteica , Conformação Proteica , Homologia de Sequência
10.
Anticancer Res ; 41(8): 4047-4052, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34281873

RESUMO

BACKGROUND/AIM: Tropomyosin-related kinase B (TrkB)/brain-derived neurotrophic factor (BDNF) signaling plays a role in inducing malignant phenotypes in several aggressive types of cancers. To create a conclusive therapy targeting TrkB/BDNF signaling in solid refractory cancers, the biological significance of TrkB/BDNF signaling was analyzed in pancreatic ductal adenocarcinoma (PDAC) cells. MATERIALS AND METHODS: Three PDAC cell lines were used as target cells to investigate proliferation and invasiveness. Small interfering RNA (siRNA) and the TrkB tyrosine kinase inhibitor k252a were used as TrkB/BDNF signaling inhibitors. RESULTS: All PDAC cell lines expressed TrkB and BDNF. When TrkB and BDNF were inhibited by siRNA or k252a, the invasiveness of PANC-1 and SUIT-2 cells significantly decreased. When TrkB was inhibited by siRNA or k252a, proliferation was significantly inhibited in PDAC cells. CONCLUSION: TrkB/BDNF signaling may be a new therapeutic target for PDAC. Therapies targeting TrkB/BDNF signaling may be a conclusive cancer therapy for refractory solid cancer.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Glicoproteínas de Membrana/metabolismo , Neoplasias Pancreáticas/metabolismo , Receptor trkB/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Carbazóis/farmacologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Alcaloides Indólicos/farmacologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Neoplasias Pancreáticas/patologia , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , RNA Interferente Pequeno/genética , Receptor trkB/antagonistas & inibidores , Receptor trkB/genética , Transdução de Sinais/efeitos dos fármacos
11.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299025

RESUMO

Several studies have demonstrated that melanoma-derived extracellular vesicles (EVs) are involved in lymph node metastasis; however, the molecular mechanisms involved are not completely defined. Here, we found that EMILIN-1 is proteolyzed and secreted in small EVs (sEVs) as a novel mechanism to reduce its intracellular levels favoring metastasis in mouse melanoma lymph node metastatic cells. Interestingly, we observed that EMILIN-1 has intrinsic tumor and metastasis suppressive-like properties reducing effective migration, cell viability, primary tumor growth, and metastasis. Overall, our analysis suggests that the inactivation of EMILIN-1 by proteolysis and secretion in sEVs reduce its intrinsic tumor suppressive activities in melanoma favoring tumor progression and metastasis.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Biologia Computacional , Metástase Linfática/genética , Masculino , Espectrometria de Massas , Melanoma/genética , Melanoma/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299325

RESUMO

Extramammary Paget's disease (EMPD) is a rare skin cancer arising in the apocrine gland-rich areas. Most EMPD tumors are dormant, but metastatic lesions are associated with poor outcomes owing to the lack of effective systemic therapies. Trophoblast cell surface antigen 2 (Trop2), a surface glycoprotein, has drawn attention as a potential therapeutic target for solid tumors. Sacituzumab govitecan, an antibody-drug conjugate of Trop2, has recently entered clinical use for the treatment of various solid cancers. However, little is known about the role of Trop2 in EMPD. In this study, we immunohistochemically examined Trop2 expression in 116 EMPD tissue samples and 10 normal skin tissues. In normal skin, Trop2 was expressed in the epidermal keratinocytes, inner root sheaths, and infundibulum/isthmus epithelium of hair follicles, eccrine/apocrine glands, and sebaceous glands. Most EMPD tissues exhibited homogeneous and strong Trop2 expression, and high Trop2 expression was significantly associated with worse disease-free survival (p = 0.0343). These results suggest the potential use of Trop2-targeted therapy for EMPD and improve our understanding of the skin-related adverse effects of current Trop2-targeted therapies such as sacituzumab govitecan.


Assuntos
Antígenos de Neoplasias/biossíntese , Moléculas de Adesão Celular/biossíntese , Doença de Paget Extramamária/metabolismo , Neoplasias Cutâneas/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Glândulas Apócrinas/metabolismo , Biomarcadores Tumorais , Camptotecina/análogos & derivados , Camptotecina/farmacologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Folículo Piloso/metabolismo , Humanos , Imunoconjugados/farmacologia , Queratinócitos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Doença de Paget Extramamária/tratamento farmacológico , Doença de Paget Extramamária/genética , Doença de Paget Extramamária/patologia , Glândulas Sebáceas/metabolismo , Pele/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
13.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299408

RESUMO

In the production of red wines, the pressing of marcs and extended maceration techniques can increase the extraction of phenolic compounds, often imparting high bitterness and astringency to finished wines. Among various oenological products, mannoproteins have been shown to improve the mouthfeel of red wines. In this work, extended maceration (E), marc-pressed (P), and free-run (F) Sangiovese wines were aged for six months in contact with three different commercial mannoprotein-rich yeast extracts (MP, MS, and MF) at a concentration of 20 g/hL. Phenolic compounds were measured in treated and control wines, and sensory characteristics related to the astringency, aroma, and colour of the wines were studied. A multivariate analysis revealed that mannoproteins had a different effect depending on the anthocyanin/tannin (A/T) ratio of the wine. When tannins are strongly present (extended maceration wines with A/T = 0.2), the MP conferred mouthcoating and soft and velvety sensations, as well as colour stability to the wine. At A/T = 0.3, as in marc-pressed wines, both MF and MP improved the mouthfeel and colour of Sangiovese. However, in free-run wine, where the A/T ratio is 0.5, the formation of polymeric pigments was allowed by all treatments and correlated with silk, velvet, and mouthcoat subqualities. A decrease in bitterness was also obtained. Commercial mannoproteins may represent a way to improve the mouthfeel and colour of very tannic wines.


Assuntos
Cor , Glicoproteínas de Membrana/metabolismo , Odorantes/análise , Sensação , Taninos/química , Paladar , Vinho/análise , Humanos
14.
Am J Physiol Regul Integr Comp Physiol ; 321(3): R377-R384, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34318705

RESUMO

The purpose of this study was to investigate if the cardiovascular system is important for ammonia excretion in the early life stages of zebrafish. Morpholino knockdowns of cardiac troponin T (TNNT2) or vascular endothelial growth factor A (VEGFA) provided morphants with nonfunctional circulation. At the embryonic stage [30-36 h postfertilization (hpf)], ammonia excretion was not constrained by a lack of cardiovascular function. At 2 days postfertilization (dpf) and 4 dpf, morpholino knockdowns of TNNT2 or VEGFA significantly reduced ammonia excretion in all morphants. Expression of rhag, rhbg, and rhcgb showed no significant changes but the mRNA levels of the urea transporter (ut) were upregulated in the 4 dpf morphants. Taken together, rhag, rhbg, rhcgb, and ut gene expression and an unchanged tissue ammonia concentration but an increased tissue urea concentration, suggest that impaired ammonia excretion led to increased urea synthesis. However, in larvae anesthetized with tricaine or clove oil, ammonia excretion was not reduced in the 4 dpf morphants compared with controls. Furthermore, oxygen consumption was reduced in morphants regardless of anesthesia. These results suggest that cardiovascular function is not directly involved in ammonia excretion, but rather reduced activity and external convection may explain reduced ammonia excretion and compensatory urea accumulation in morphants with reduced cardiovascular function.


Assuntos
Sistema Cardiovascular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ureia/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Brânquias/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
Cell Death Dis ; 12(7): 696, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257270

RESUMO

Trastuzumab resistance negatively influences the clinical efficacy of the therapy for human epidermal growth factor receptor 2 (HER2) positive gastric cancer (GC), and the underlying mechanisms remain elusive. Exploring the mechanisms and finding effective approaches to address trastuzumab resistance are of great necessity. Here, we confirmed that endoplasmic reticulum (ER) stress-induced trastuzumab resistance by up-regulating miR-301a-3p in HER2-positive GC cells. Moreover, we elucidated that miR-301a-3p mediated trastuzumab resistance by down-regulating the expression of leucine-rich repeats and immunoglobulin-like domains containing protein 1 (LRIG1) and subsequently activating the expression of insulin-like growth factor 1 receptor (IGF-1R) and fibroblast growth factor receptor 1 (FGFR1) under ER stress. We also found that intercellular transfer of miR-301a-3p by exosomes disseminated trastuzumab resistance. The present study demonstrated that exosomal miR-301a-3p could serve as a non-invasive biomarker for trastuzumab resistance, which was maybe a novel potential therapeutic target to overcome trastuzumab resistance and improve the curative effect of trastuzumab in HER2-positive GC patients.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , MicroRNAs/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Receptor ErbB-2/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Cell Death Dis ; 12(7): 680, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226519

RESUMO

It has been recently reported that CD38 expressed on tumor cells of multiple murine and human origins could be upregulated in response to PD-L1 antibody therapy, which led to dysfunction of tumor-infiltrating CD8+ T immune cells due to increasing the production of adenosine. However, the role of tumor expressed-CD38 on neoplastic formation and progression remains elusive. In the present study, we aimed to delineate the molecular and biochemical function of the tumor-associated CD38 in lung adenocarcinoma progression. Our clinical data showed that the upregulation of tumor-originated CD38 was correlated with poor survival of lung cancer patients. Using multiple in vitro assays we found that the enzymatic activity of tumor expressed-CD38 facilitated lung cancer cell migration, proliferation, colony formation, and tumor development. Consistently, our in vivo results showed that inhibition of the enzymatic activity or antagonizing the enzymatic product of CD38 resulted in the similar inhibition of tumor proliferation and metastasis as CD38 gene knock-out or mutation. At biochemical level, we further identified that cADPR, the mainly hydrolytic product of CD38, was responsible for inducing the opening of TRPM2 iron channel leading to the influx of intracellular Ca2+ and then led to increasing levels of NRF2 while decreasing expression of KEAP1 in lung cancer cells. These findings suggested that malignant lung cancer cells were capable of using cADPR catalyzed by CD38 to facilitate tumor progression, and blocking the enzymatic activity of CD38 could be represented as an important strategy for preventing tumor progression.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Adenocarcinoma de Pulmão/enzimologia , ADP-Ribose Cíclica/metabolismo , Neoplasias Pulmonares/enzimologia , Glicoproteínas de Membrana/metabolismo , Células A549 , ADP-Ribosil Ciclase 1/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/secundário , Animais , Sinalização do Cálcio , Carcinoma Pulmonar de Lewis/enzimologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Movimento Celular , Proliferação de Células , Bases de Dados Genéticas , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Invasividade Neoplásica , Canais de Cátion TRPM/metabolismo
17.
Transl Psychiatry ; 11(1): 394, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34282131

RESUMO

Synaptic glycoprotein neuroplastin is involved in synaptic plasticity and complex molecular events underlying learning and memory. Studies in mice and rats suggest that neuroplastin is essential for cognition, as it is needed for long-term potentiation and associative memory formation. Recently, it was found that some of the effects of neuroplastin are related to regulation of calcium homeostasis through interactions with plasma membrane calcium ATPases. Neuroplastin is increasingly seen as a key factor in complex brain functions, but studies in humans remain scarce. Here we summarize present knowledge about neuroplastin in human tissues and argue its genetic association with cortical thickness, intelligence, schizophrenia, and autism; specific immunolocalization depicting hippocampal trisynaptic pathway; potential role in tissue compensatory response in neurodegeneration; and high, almost housekeeping, level of spatio-temporal gene expression in the human brain. We also propose that neuroplastin acts as a housekeeper of neuroplasticity, and that it may be considered as an important novel cognition-related molecule in humans. Several promising directions for future investigations are suggested, which may complete our understanding of neuroplastin actions in molecular basis of human cognition.


Assuntos
Cognição , Hipocampo , Glicoproteínas de Membrana , Animais , Hipocampo/metabolismo , Humanos , Potenciação de Longa Duração , Glicoproteínas de Membrana/metabolismo , Camundongos , Plasticidade Neuronal , Ratos
18.
Cancer Sci ; 112(9): 3645-3654, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34288263

RESUMO

CD38 expression on myeloma cells is a critical factor affecting the early response to the anti-CD38 antibody daratumumab. However, factors affecting CD38 expression in untreated multiple myeloma are not fully elucidated. In this study, we found that CD38 expression was significantly lower in myeloma patients with the translocation t(11;14)-associated immature plasma cell phenotype, and particularly in those expressing B-cell-associated genes such as PAX5 and CD79A. CD138, a representative marker of plasmacytic differentiation, was also significantly lower in these patients, suggesting that CD38 expression may be associated with the differentiation and maturation stages of myeloma cells. Furthermore, the BCL2/BCL2L1 ratio, a response marker of the BCL2 inhibitor venetoclax, was significantly higher in patients with the immature phenotype expressing B-cell-associated genes. The BCL2/BCL2L1 ratio and CD38 expression were significantly negatively correlated. We also confirmed that patients with translocation t(11;14) expressing B-cell-associated genes were indeed less sensitive to daratumumab-mediated direct cytotoxicity but highly sensitive to venetoclax treatment in ex vivo assays. Moreover, all-trans-retinoic acid, which enhances CD38 expression and induces cell differentiation in myeloma cells, reduced B-cell marker expression and the BCL2/BCL2L1 ratio in myeloma cell lines, leading to reduced efficacy of venetoclax. Venetoclax specifically induces cell death in myeloma with t(11;14), although why patients with translocation t(11;14) show BCL2 dependence is unclear. These results suggest that BCL2 dependence, as well as CD38 expression, are deeply associated with the differentiation and maturation stages of myeloma cells. This study highlights the importance of examining t(11;14) and considering cell maturity in myeloma treatment strategies.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Translocação Genética/genética , ADP-Ribosil Ciclase 1/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos B/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 14/genética , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tretinoína/farmacologia
19.
Cell Prolif ; 54(8): e13094, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34312932

RESUMO

OBJECTIVES: Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the progressive and selective degeneration of dopaminergic neurons. Microglial activation and neuroinflammation are associated with the pathogenesis of PD. However, the relationship between microglial activation and PD pathology remains to be explored. MATERIALS AND METHODS: An acute regimen of MPTP was administered to adult C57BL/6J mice with normal, much reduced or repopulated microglial population. Damages of the dopaminergic system were comprehensively assessed. Inflammation-related factors were assessed by quantitative PCR and Multiplex immunoassay. Behavioural tests were carried out to evaluate the motor deficits in MPTP-challenged mice. RESULTS: The receptor for colony-stimulating factor 1 inhibitor PLX3397 could effectively deplete microglia in the nigrostriatal pathway of mice via feeding a PLX3397-formulated diet for 21 days. Microglial depletion downregulated both pro-inflammatory and anti-inflammatory molecule expression at baseline and after MPTP administration. At 1d post-MPTP injection, dopaminergic neurons showed a significant reduction in PLX3397-fed mice, but not in control diet (CD)-fed mice. However, partial microglial depletion in mice exerted little effect on MPTP-induced dopaminergic injuries compared with CD mice at later time points. Interestingly, microglial repopulation brought about apparent resistance to MPTP intoxication. CONCLUSIONS: Microglia can inhibit PD development at a very early stage; partial microglial depletion has little effect in terms of the whole process of the disease; and microglial replenishment elicits neuroprotection in PD mice.


Assuntos
Intoxicação por MPTP/patologia , Microglia/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Aminopiridinas/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Mediadores da Inflamação/metabolismo , Intoxicação por MPTP/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Pirróis/farmacologia , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo
20.
Nat Commun ; 12(1): 4502, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301937

RESUMO

Cells in many tissues, such as bone, muscle, and placenta, fuse into syncytia to acquire new functions and transcriptional programs. While it is known that fused cells are specialized, it is unclear whether cell-fusion itself contributes to programmatic-changes that generate the new cellular state. Here, we address this by employing a fusogen-mediated, cell-fusion system to create syncytia from undifferentiated cells. RNA-Seq analysis reveals VSV-G-induced cell fusion precedes transcriptional changes. To gain mechanistic insights, we measure the plasma membrane surface area after cell-fusion and observe it diminishes through increases in endocytosis. Consequently, glucose transporters internalize, and cytoplasmic glucose and ATP transiently decrease. This reduced energetic state activates AMPK, which inhibits YAP1, causing transcriptional-reprogramming and cell-cycle arrest. Impairing either endocytosis or AMPK activity prevents YAP1 inhibition and cell-cycle arrest after fusion. Together, these data demonstrate plasma membrane diminishment upon cell-fusion causes transient nutrient stress that may promote transcriptional-reprogramming independent from extrinsic cues.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética/genética , Proteínas do Envelope Viral/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transporte Biológico , Fusão Celular , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Células Gigantes/metabolismo , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Camundongos , RNA-Seq/métodos , Transdução de Sinais/genética , Fatores de Transcrição/genética , Proteínas do Envelope Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...