Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.415
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445409

RESUMO

This article describes the synthesis, characterization, and biological activity of novel square-planar cationic platinum(II) complexes containing glucoconjugated triazole ligands and a comparison with the results obtained from the corresponding five-coordinate complexes bearing the same triazole ligands. Stability in solution, reactivity with DNA and small molecules of the new compounds were evaluated by NMR, fluorescence, and UV-vis absorption spectroscopy, together with their cytotoxic action against pairs of immortalized and tumorigenic cell lines. The results show that the square-planar species exhibit greater stability than the corresponding five-coordinate ones. Furthermore, although the square-planar complexes are less cytotoxic than the latter ones, they exhibit a certain selectivity. These results simultaneously demonstrate that overall stability is a fundamental prerequisite for preserving the performance of the agents and that coordinative saturation constitutes a point in favor of their biological action.


Assuntos
Antineoplásicos/síntese química , Glucose/química , Compostos Organoplatínicos/síntese química , Triazóis/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ligantes , Células MCF-7 , Estrutura Molecular , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Ratos
2.
ACS Appl Mater Interfaces ; 13(33): 39112-39125, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34384220

RESUMO

Autophagy inhibition could hinder the underlying protective mechanisms in the course of tumor treatment. The advances in autophagy inhibition have driven focus on the functionalized nanoplatforms by combining the current treatment paradigms with complementary autophagy inhibition for enhanced efficacy. Furthermore, Ca2+ overload is also a promising adjuvant target for the tumor treatment by augmenting mitochondrial damage. In this view, complementary mitochondrial Ca2+ overload and autophagy inhibition were first demonstrated as a novel strategy suitable for homing in on the shortage of photodynamic therapy (PDT). We constructed biodegradable tumor-targeted inorganic/organic hybrid nanocomposites (DPGC/OI) synchronously encapsulating IR780 and Obatoclax by biomineralization of the nanofilm method, which consists of pH-triggered calcium phosphate (CP), long circulation phospholipid block copolymers 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-poly(ethylene glycol) (PEG)2000-glucose (DPG). In the presence of the hydrophilic PEG chain and glucose transporter 1 (Glut-1) ligands, DPGC would become an effectively tumor-oriented nanoplatform. Subsequently, IR780 as an outstanding photosensitizer could produce increased amounts of toxic reactive oxygen species (ROS) after laser irradiation. Calcium phosphate (CP) as the Ca2+ nanogenerator could generate Ca2+ at low pH to induce mitochondrial Ca2+ overload. The dysfunction of mitochondria could enhance increased amounts of ROS. Based on the premise that autophagy would degrade dysfunctional organelles to sustain metabolism and homeostasis, which might participate in resistance to PDT, Obatoclax as an autophagy inhibitor would hinder the protective mechanism from cancer cells with negligible toxicity. Such an enhanced PDT via mitochondrial Ca2+ overload and autophagy inhibition could be realized by DPGC/OI.


Assuntos
Autofagia/efeitos dos fármacos , Fosfatos de Cálcio/química , Glucose/química , Indóis/química , Nanocompostos/química , Fosfatidiletanolaminas/química , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Animais , Transporte Biológico , Melhoramento Biomédico , Feminino , Humanos , Indóis/metabolismo , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Fosfolipídeos/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Pirróis/química , Pirróis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Propriedades de Superfície , Distribuição Tecidual
3.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361792

RESUMO

Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway and a potential therapeutic target in the management of type 2 diabetes. It catalyzes a reversible reaction: the release of the terminal glucosyl residue from glycogen as glucose 1-phosphate; or the transfer of glucose from glucose 1-phosphate to glycogen. A colorimetric method to follow in vitro the activity of GP with usefulness in structure-activity relationship studies and high-throughput screening capability is herein described. The obtained results allowed the choice of the optimal concentration of enzyme of 0.38 U/mL, 0.25 mM glucose 1-phosphate, 0.25 mg/mL glycogen, and temperature of 37 °C. Three known GP inhibitors, CP-91149, a synthetic inhibitor, caffeine, an alkaloid, and ellagic acid, a polyphenol, were used to validate the method, CP-91149 being the most active inhibitor. The effect of glucose on the IC50 value of CP-91149 was also investigated, which decreased when the concentration of glucose increased. The assay parameters for a high-throughput screening method for discovery of new potential GP inhibitors were optimized and standardized, which is desirable for the reproducibility and comparison of results in the literature. The optimized method can be applied to the study of a panel of synthetic and/or natural compounds, such as polyphenols.


Assuntos
Glucose/química , Glucofosfatos/química , Glicogênio Fosforilase/química , Glicogênio/química , Amidas/farmacologia , Animais , Cafeína/farmacologia , Ácido Elágico/farmacologia , Ensaios Enzimáticos , Glicogênio Fosforilase/antagonistas & inibidores , Glicogênio Fosforilase/isolamento & purificação , Ensaios de Triagem em Larga Escala , Indóis/farmacologia , Cinética , Coelhos , Soluções , Relação Estrutura-Atividade
4.
Molecules ; 26(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299635

RESUMO

Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7-12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property-activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90-37.87 µM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.


Assuntos
Antineoplásicos , Catequina/análogos & derivados , Proliferação de Células/efeitos dos fármacos , Citotoxinas , Glucose , Simulação de Acoplamento Molecular , Proteínas de Neoplasias , Neoplasias , Células A549 , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Catequina/síntese química , Catequina/química , Catequina/farmacologia , Citotoxinas/síntese química , Citotoxinas/química , Citotoxinas/farmacologia , Receptores ErbB/biossíntese , Receptores ErbB/química , Glucose/análogos & derivados , Glucose/síntese química , Glucose/química , Glucose/farmacologia , Células HL-60 , Humanos , Células MCF-7 , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/química , Neoplasias/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos
5.
Chem Commun (Camb) ; 57(65): 8019-8022, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34287435

RESUMO

Feedback-controlled detection of subtle changes of extracellular biomolecules as known from cells is also needed in protocells. Artificial organelles, located in protocells, detect the small variation in pH which is triggered by different amounts of invading glucose, converted by glucose-oxidase into gluconic acid. The approach paves the way for using pH fluctuations-detecting artificial organelles in the lumen of protocells.


Assuntos
Células Artificiais/química , Glucose/análise , Fosfatase Alcalina/química , Carbocianinas/química , Catalase/química , Fluoresceínas/química , Corantes Fluorescentes/química , Glucose/química , Glucose Oxidase/química , Concentração de Íons de Hidrogênio , Microscopia Confocal , Microscopia de Fluorescência , Oxirredução
6.
Phys Chem Chem Phys ; 23(27): 14873-14888, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34223589

RESUMO

The COVID-19 disease caused by the virus SARS-CoV-2, first detected in December 2019, is still emerging through virus mutations. Although almost under control in some countries due to effective vaccines that are mitigating the worldwide pandemic, the urgency to develop additional vaccines and therapeutic treatments is imperative. In this work, the natural polyphenols corilagin and 1,3,6-tri-O-galloy-ß-d-glucose (TGG) are investigated to determine the structural basis of inhibitor interactions as potential candidates to inhibit SARS-CoV-2 viral entry into target cells. First, the therapeutic potential of the ligands are assessed on the ACE2/wild-type RBD. We first use molecular docking followed by molecular dynamics, to take into account the conformational flexibility that plays a significant role in ligand binding and that cannot be captured using only docking, and then analyze more precisely the affinity of these ligands using MMPBSA binding free energy. We show that both ligands bind to the ACE2/wild-type RBD interface with good affinities which might prevent the ACE2/RBD association. Second, we confirm the potency of these ligands to block the ACE2/RBD association using a combination of surface plasmon resonance and biochemical inhibition assays. These experiments confirm that TGG and, to a lesser extent, corilagin, inhibit the binding of RBD to ACE2. Both experiments and simulations show that the ligands interact preferentially with RBD, while weak binding is observed with ACE2, hence, avoiding potential physiological side-effects induced by the inhibition of ACE2. In addition to the wild-type RBD, we also study numerically three RBD mutations (E484K, N501Y and E484K/N501Y) found in the main SARS-CoV-2 variants of concerns. We find that corilagin could be as effective for RBD/E484K but less effective for the RBD/N501Y and RBD/E484K-N501Y mutants, while TGG strongly binds at relevant locations to all three mutants, demonstrating the significant interest of these molecules as potential inhibitors for variants of SARS-CoV-2.


Assuntos
Antivirais/química , Ácido Gálico/análogos & derivados , Glucose/análogos & derivados , Glucosídeos/química , Taninos Hidrolisáveis/química , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/metabolismo , Sítios de Ligação , Ácido Gálico/química , Glucose/química , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/genética , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos
7.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281160

RESUMO

Silk fibroin (SF) has attracted much attention due to its high, tunable mechanical strength and excellent biocompatibility. Imparting the ability to respond to external stimuli can further enhance its scope of application. In order to imbue stimuli-responsive behavior in silk fibroin, we propose a new conjugated material, namely cationic SF (CSF) obtained by chemical modification of silk fibroin with ε-Poly-(L-lysine) (ε-PLL). This pH-responsive CSF hydrogel was prepared by enzymatic crosslinking using horseradish peroxidase and H2O2. Zeta potential measurements and SDS-PAGE gel electrophoresis show successful synthesis, with an increase in isoelectric point from 4.1 to 8.6. Fourier transform infrared (FTIR) and X-ray diffraction (XRD) results show that the modification does not affect the crystalline structure of SF. Most importantly, the synthesized CSF hydrogel has an excellent pH response. At 10 wt.% ε-PLL, a significant change in swelling with pH is observed. We further demonstrate that the hydrogel can be glucose-responsive by the addition of glucose oxidase (GOx). At high glucose concentration (400 mg/dL), the swelling of CSF/GOx hydrogel is as high as 345 ± 16%, while swelling in 200 mg/dL, 100 mg/dL and 0 mg/dL glucose solutions is 237 ± 12%, 163 ± 12% and 98 ± 15%, respectively. This shows the responsive swelling of CSF/GOx hydrogels to glucose, thus providing sufficient conditions for rapid drug release. Together with the versatility and biological properties of fibroin, such stimuli-responsive silk hydrogels have great potential in intelligent drug delivery, as soft matter substrates for enzymatic reactions and in other biomedical applications.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fibroínas/química , Glucose/metabolismo , Hidrogéis/síntese química , Materiais Biocompatíveis/química , Liberação Controlada de Fármacos , Fibroínas/metabolismo , Glucose/química , Peroxidase do Rábano Silvestre/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Polilisina/química , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X
8.
Transfusion ; 61 Suppl 1: S80-S89, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269444

RESUMO

BACKGROUND: Collection of non-leukoreduced citrate-phosphate-dextrose-adenine (CPDA-1) whole blood is performed in walking blood banks. Blood collected under field conditions may have increased risk of bacterial contamination. This study was conducted to examine the effects of WBC reduction and storage temperature on growth of Escherichia coli (ATCC® 25922™) in CPDA-1 whole blood. METHODS: CPDA-1 whole blood of 450 ml from 10 group O donors was inoculated with E. coli. Two hours after inoculation, the test bags were leukoreduced with a platelet-sparing filter. The control bags remained unfiltered. Each whole blood bag was then split into three smaller bags for further storage at 2-6°C, 20-24°C, or 33-37°C. Bacterial growth was quantified immediately, 2 and 3 h after inoculation, on days 1, 3, 7, and 14 for all storage temperatures, and on days 21 and 35 for storage at 2-6°C. RESULTS: Whole blood was inoculated with a median of 19.5 (range 12.0-32.0) colony-forming units per ml (CFU/ml) E. coli. After leukoreduction, a median of 3.3 CFU/ml (range 0.0-33.3) E. coli remained. In the control arm, the WBCs phagocytized E. coli within 24 h at 20-24°C and 33-37°C in 9 of 10 bags. During storage at 2-6°C, a slow self-sterilization occurred over time with and without leukoreduction. CONCLUSIONS: Storage at 20-24°C and 33-37°C for up to 24 h before leukoreduction reduces the risk of E. coli-contamination in CPDA-1 whole blood. Subsequent storage at 2-6°C will further reduce the growth of E. coli.


Assuntos
Preservação de Sangue , Segurança do Sangue , Infecções por Escherichia coli/microbiologia , Escherichia coli/crescimento & desenvolvimento , Procedimentos de Redução de Leucócitos , Adenina/química , Preservação de Sangue/métodos , Citratos/química , Escherichia coli/isolamento & purificação , Glucose/química , Humanos , Temperatura
9.
Chem Commun (Camb) ; 57(57): 6999-7002, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34159977

RESUMO

A bio-conjugated redox network matrix based on glucose dehydrogenase, thionine (diamine-containing mediator), and poly(ethylene glycol) diglycidyl ether (crosslinker) is developed on a glassy carbon electrode through covalent bonding with one-pot crosslinking. Electrons from the enzyme diffuse through the network producing 400 µA cm-2 of glucose oxidation current at 25 °C.


Assuntos
Técnicas Biossensoriais/métodos , Glucose 1-Desidrogenase/metabolismo , Biocatálise , Carbono/química , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose/química , Glucose 1-Desidrogenase/química , Oxirredução
10.
ACS Appl Mater Interfaces ; 13(24): 28010-28016, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101422

RESUMO

The broad applications of implantable glucose biofuel cells (GBFCs) have become very attractive in biomedical sciences. The key challenge of GBFCs is eliminating the inevitable product H2O2 generated from the oxidation of glucose when glucose oxidase (GOx) is used as a catalyst while improving the performance of GBFCs. In this work, the cascade electrocatalyst, RBCs@NPDA was obtained through the in situ polymerization of dopamine to form nanopolydopamine (NPDA) on the surface of red blood cells (RBCs). The RBCs@NPDA can catalyze both fuels of H2O2 and O2, so as to generate a high cathodic current (0.414 mA cm-2). Furthermore, when RBCs@NPDA was used as a cathodic catalyst in the membraneless GBFC, it exhibited the cascade catalytic activity in the reduction of O2-H2O2 and minimized the damage to RBCs caused by the high concentration of H2O2. The mechanism research indicates that RBCs@NPDA integrates the property of NPDA and RBCs. Specifically, NPDA plays a catalase-like role in catalyzing the decomposition of H2O2, while RBCs play a laccase-like role in electrocatalyzing the O2 reduction reaction. This work offers the cascade catalyst for improving the performance of implantable GBFC and presents a strategy for constructing catalysts using living cells and nanomaterials to replace deformable and unstable enzymes in other biofuel cells.


Assuntos
Fontes de Energia Bioelétrica , Eritrócitos/metabolismo , Glucose/metabolismo , Indóis/química , Polímeros/química , Animais , Catálise , Eletrodos , Eritrócitos/química , Glucose/química , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Nanotubos de Carbono/química , Oxirredução , Oxigênio/química , Oxigênio/metabolismo , Suínos
11.
Molecules ; 26(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066480

RESUMO

This paper investigates the potential of the enzymatic management of high pH in white juice and wine using a combination of enzymes-glucose oxidase coupled with catalase. Catazyme® 25 L, a commercially available blend of the two enzymes, was added at different doses (0.2 g/L, 0.6 g/L, and 1g/L) to white grape juice and various parameters (glucose, gluconic acid, pH) were monitored over 24 h of treatment. Treated wines were fermented to dryness without any difficulty and the wines were chemically and sensorially evaluated. At the highest dose (1 g/L), pH was reduced from 3.9 to 3.2, with 20.5 g of gluconic acid produced, while at the lowest dose (0.2 g/L), pH decreased from 4.0 to 3.5 and 8.8 g of gluconic acid was produced. Flash profiling indicated that treated wines were lighter in color than the control and were described using terms such as floral, fruit, citrus, and sour while the control wine was described as being fermented, medicinal, pungent, and oxidized. In conclusion, glucose oxidase coupled with catalase was shown to be effective at significantly reducing juice and wine pH in a short amount of time and with a positive impact on the organoleptic profiles of the treated wines.


Assuntos
Enzimas/química , Análise de Alimentos/métodos , Tecnologia de Alimentos/métodos , Vitis/química , Vinho/análise , Catalase/química , Clima , Fermentação , Frutas/química , Gluconatos/química , Glucose/química , Glucose Oxidase/química , Concentração de Íons de Hidrogênio
12.
ACS Appl Mater Interfaces ; 13(23): 26682-26693, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34061501

RESUMO

Glioma is one of the most lethal and complex tumors, and thus, an effective drug delivery system must selectively target the tumor sites and release its cargos in a controlled manner. For the first time, we combined chemotherapeutic agent doxorubicin (DOX) and chemosensitizer lonidamine (LND) to synergistically treat glioma. We also designed and prepared multitargeted redox-sensitive liposomes (Lip-SPG) co-modified with glucose and triphenylphosphonium (TPP) to effectively deliver DOX and LND for anti-glioma therapy. The anti-glioma evaluation shows that DOX and LND have a synergistic effect and Lip-SPG could further enhance their cooperation. In vitro, Lip-SPG could increase the cellular uptake and mitochondrial uptake on bEnd.3 cells and C6 cells with multitargeting ability on the brain, tumor, and mitochondria mediated by glucose and TPP. Lip-SPG can also escape from lysosomes before entering the mitochondria. The anti-glioma efficacy in vitro shows that Lip-SPG can inhibit tumor cell proliferation and induce apoptosis. In addition, Lip-SPG have a remarkable interference to mitochondria, such as reducing intracellular ATP production, inducing ROS generation, and promoting mitochondrial membrane potential depolarization. Furthermore, in vivo, the introduction of PEGylation via glutathione-sensitive disulfide bonds endows Lip-SPG with favorable pharmacokinetic properties, brain targeting ability, low toxicity to normal tissues, and great anti-glioma efficacy with the survival time extended from 19 to 39 days. In conclusion, Lip-SPG are an effective delivery system for synergistically treating glioma with DOX and LND.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Glioma/tratamento farmacológico , Glucose/química , Lipossomos/administração & dosagem , Compostos Organofosforados/química , Apoptose , Doxorrubicina/administração & dosagem , Glioma/patologia , Humanos , Indazóis/administração & dosagem , Lipossomos/química , Oxirredução , Células Tumorais Cultivadas
13.
Food Chem ; 362: 130169, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34102509

RESUMO

Advanced glycation end-products (AGEs) are produced during protein glycation and associated with diabetic complications. Peanut skin is rich in procyanidins, which may be used as an inhibitor of glycation. This study evaluated the potential anti-glycation effect of peanut skin extract (PSE) and dissected the underlying mechanism. PSE could effectively inhibit the formation of AGEs in BSA-Glc and BSA-MGO/GO models, with 44%, 37% and 82% lower IC50 values than the positive control (AG), respectively. The inhibitory effect of PSE on BSA glycation might be ascribed to its binding interaction with BSA, attenuated formation of early glycation products and trapping of reactive dicarbonyl compounds. Notably, PSE showed a remarkably stronger inhibitory effect on Amadori products than AG. Furthermore, three new types of PSE-MGO adducts were formed as identified by UPLC-Q-TOF-MS. These findings suggest that PSE may serve as an inhibitor of glycation and provide new insights into its application.


Assuntos
Arachis/química , Produtos Finais de Glicação Avançada/química , Extratos Vegetais/química , Frutosamina/química , Glucose/química , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Extratos Vegetais/análise , Proantocianidinas/análise , Proantocianidinas/química , Aldeído Pirúvico/química , Soroalbumina Bovina/química
14.
Molecules ; 26(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071404

RESUMO

Broccoli microgreens have shown potential health benefits due to their high glucosinolate (GL) levels. Previously, we observed that postharvest UVB treatment did not have much effect on increasing GLs in broccoli microgreens. In this study, we investigated the influence of preharvest UVB irradiation on GL levels in broccoli microgreens. UHPLC-ESI/ITMS analysis showed that preharvest UVB treatments with UVB 0.09 and 0.27 Wh/m2 significantly increased the glucoraphanin (GLR), glucoerucin (GLE), and total aliphatic GL levels by 13.7 and 16.9%, respectively, in broccoli microgreens when measured on harvest day. The nutritional qualities of UVB-treated microgreens were stable during 21-day storage, with only small changes in their GL levels. Broccoli microgreens treated before harvest with UVB 0.27 Wh/m2 and 10 mM CaCl2 spray maintained their overall quality, and had the lowest tissue electrolyte leakage and off-odor values during the storage. Furthermore, preharvest UVB 0.27 Wh/m2 treatment significantly increased GL biosynthesis genes when evaluated before harvest, and reduced the expression level of myrosinase, a gene responsible for GL breakdown during postharvest storage. Overall, preharvest UVB treatment, together with calcium chloride spray, can increase and maintain health-beneficial compound levels such as GLs and prolong the postharvest quality of broccoli microgreens.


Assuntos
Brassica/metabolismo , Glucosinolatos/química , Raios Ultravioleta , Antioxidantes/química , Cálcio/química , Cloreto de Cálcio/química , Cromatografia Líquida de Alta Pressão , Glucose/análogos & derivados , Glucose/química , Imidoésteres/química , Valor Nutritivo , Estresse Oxidativo , Oximas/química , Fenol , Sementes , Espectrometria de Massas por Ionização por Electrospray , Sulfóxidos/química
15.
J Chromatogr A ; 1651: 462314, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34144396

RESUMO

Structural and functional characteristics of the two core-shell resins Capto™ Core 400 and 700, which are useful for the flow-through purification of bioparticles such as viruses, viral vectors, and vaccines, are compared using bovine serum albumin (BSA) and thyroglobulin (Tg) as models for small and large protein contaminants. Both resins are agarose-based and contain an adsorbing core surrounded by an inert shell. Although shell thicknesses are comparable (3.6 and 4.2 µm for Capto Core 400 and 700, respectively), the two resins differ substantially in pore size (pore radii of 19 and 50 nm, respectively). Because of the smaller pores and higher surface area, the BSA binding capacity of Capto Core 400 is approximately double that of Capto Core 700. However, for the much larger Tg, the attainable capacity is substantially larger for Capto Core 700. Mass transfer in both resins is affected by diffusional resistances through the shell and within the adsorbing core. For BSA, core and shell effective pore diffusivities are about 0.25 × 10-7 and 0.6 × 10-7 cm2/s, respectively, for Capto Core 400, and about 1.6 × 10-7 and 2.6 × 10-7 cm2/s, respectively, for Capto Core 700. These values decrease dramatically for Tg to 0.022 × 10-7 and 0.088 × 10-7 cm2/s and to 0.13 × 10-7 and 0.59 × 10-7 cm2/s for Capto Core 400 and 700, respectively. Adsorbed Tg further hinders diffusion of BSA in both resins. Column measurements show that, despite the higher static capacity of Capto Core 400 for BSA, the dynamic binding capacity is greater for Capto Core 700 as a result of its faster kinetics. However, some of this advantage is lost if the feed is a mixture of BSA and Tg since, in this case, Tg binding leads to greater diffusional hindrance for BSA.


Assuntos
Resinas Sintéticas/química , Soroalbumina Bovina/isolamento & purificação , Tireoglobulina/isolamento & purificação , Adsorção , Animais , Bovinos , Dextranos/química , Difusão , Glucose/química , Cinética , Microscopia Confocal , Tamanho da Partícula
16.
Pan Afr Med J ; 38: 280, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122707

RESUMO

Introduction: during the storage of transfusion blood, it may undergo a series of cellular changes that in speculation could be the reason behind the risk of using prolonged stored blood. It's important therefore to monitor the cellular changes that may reduce its survival and function. The objective was to assess the cellular changes in whole blood stored for transfusion at Bungoma county referral hospital. Methods: a single center, prospective and observational study design involving 20 randomly selected donor blood units in citrate phosphate dextrose adenine (CPDA-1) anticoagulant was employed, cellular changes were evaluated for 35 days. The changes were tested using the Celtac F Haematology analyzer. Statistical Analysis of variance was employed in the descriptive statistics. All the investigation was executed using statistical package for social sciences (SPSS V.23). Results were regarded as significant at P<0.05. Results were presented in tables and charts. Results: at the end of the 35 days blood storage at blood bank conditions, WBC, RBC, platelets counts and MCHC decreased significantly (P<0.0001, =0.0182, <0.0001, =0.0035). The MCV, HCT and MCH increased significantly (P <0.0001, =0.0003, =0.0115) while HGB had insignificant variance (P =0.4185). Conclusion: platelets, WBC, RBC counts, and indices are significantly altered in stored blood especially when stored over two weeks based on most of the cellular components analyzed in this study. The study, therefore, recommends the utilization of fresh blood to avoid the adverse outcome of cellular changes of reserved blood.


Assuntos
Adenina/química , Células Sanguíneas/citologia , Preservação de Sangue/métodos , Citratos/química , Glucose/química , Fosfatos/química , Anticoagulantes/química , Transfusão de Sangue , Hospitais , Humanos , Quênia , Estudos Prospectivos , Fatores de Tempo
17.
Biosensors (Basel) ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064591

RESUMO

This study proposes a non-enzymatic glucose sensor fabricated by synthesizing high-purity TiO2 nanoparticles in thermal plasma and depositing it directly on a substrate and then depositing chitosan-polypyrrole (CS-PPy) conductive polymer films by electrochemical method. The structural properties of the deposited TiO2 nanoparticles were analyzed by X-ray diffraction (XRD) and dynamic light scattering (DLS) system. The chemical composition and structural properties of the TiO2 nanoparticle layer and the conductive polymer films were confirmed by X-ray photoelectron spectroscopy (XPS) spectra and scanning electron microscope (SEM). The glucose detection characteristics of the fabricated biosensor were determined by cyclic voltammetry (CV). CS-PPy/TiO2 biosensor showed high sensitivity of 302.0 µA mM-1 cm-2 (R2 = 0.9957) and low detection limit of 6.7 µM. The easily manufactured CS-PPy/TiO2 biosensor showed excellent selectivity and reactivity.


Assuntos
Técnicas Biossensoriais , Glucose/química , Nanopartículas/química , Quitosana/química , Técnicas Eletroquímicas , Polímeros , Pirróis , Titânio
18.
Biomolecules ; 11(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947124

RESUMO

(1) Background: White adipose tissue (WAT) is a dynamic and plastic tissue showing high sensitivity to carbohydrate supply. In such a context, the WAT may accordingly modulate its mitochondrial metabolic activity. We previously demonstrated that a partial replacement of glucose by galactose in a culture medium of 3T3-L1 cells leads to a poorer adipogenic yield and improved global mitochondrial health. In the present study, we investigate key mitochondrial metabolic actors reflecting mitochondrial adaptation in response to different carbohydrate supplies. (2) Methods: The metabolome of 3T3-L1 cells was investigated during the differentiation process using different glucose/galactose ratios and by a targeted approach using 1H-NMR (Proton nuclear magnetic resonance) spectroscopy; (3) Results: Our findings indicate a reduction of adipogenic and metabolic overload markers under the low glucose/galactose condition. In addition, a remodeling of the mitochondrial function triggers the secretion of metabolites with signaling and systemic energetical homeostasis functions. Finally, this study also sheds light on a new way to consider the mitochondrial metabolic function by considering noncarbohydrates related pathways reflecting both healthier cellular and mitochondrial adaptation mechanisms; (4) Conclusions: Different carbohydrates supplies induce deep mitochondrial metabolic and function adaptations leading to overall adipocytes function and profile remodeling during the adipogenesis.


Assuntos
Adipogenia , Meios de Cultura/química , Metabolômica/métodos , Mitocôndrias/metabolismo , Células 3T3-L1 , Animais , Metabolismo dos Carboidratos , Técnicas de Cultura de Células , Diferenciação Celular , Galactose/química , Glucose/química , Camundongos , Espectroscopia de Prótons por Ressonância Magnética
19.
Chem Pharm Bull (Tokyo) ; 69(8): 741-746, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34024880

RESUMO

Citrus-type crude drugs (CCDs) are commonly used to formulate decoctions in Kampo formula (traditional Japanese medicine). Our previous study reported metabolomic analyses for differentiation of the methanol extracts of Citrus-type crude drugs (CCDs) using ultra-HPLC (UHPLC)/MS, and 13C- and 1H-NMR. The present study expanded the scope of its application by analyzing four CCD water extracts (Kijitsu, Tohi, Chimpi, and Kippi); these CCDs are usually used as decoction ingredients in the Kampo formula. A principal component analysis score plot of processed UPLC/MS and NMR analysis data indicated that the CCD water extracts could be classified into three groups. The loading plots showed that naringin and neohesperidin were the distinguishing components. Three primary metabolites, α-glucose, ß-glucose, and sucrose were identified as distinguishing compounds by NMR spectroscopy. During the preparation of CCD dry extracts, some compounds volatilized or decomposed. Consequently, fewer compounds were detected than in our previous studies using methanol extract. However, these results suggested that the combined NMR- and LC/MS-based metabolomics can discriminate crude drugs in dried water extracts of CCDs.


Assuntos
Citrus/química , Sucos de Frutas e Vegetais/análise , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão , Flavanonas/química , Glucose/química , Hesperidina/análogos & derivados , Hesperidina/química , Espectroscopia de Ressonância Magnética , Metabolômica , Metanol/química , Análise de Componente Principal , Sacarose/química , Espectrometria de Massas em Tandem , Água
20.
Biochem Biophys Res Commun ; 559: 42-47, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33933991

RESUMO

There is growing interest in the use of isochoric (constant volume) freezing for cryopreservation of biological matter. The goal of this study is to generate fundamental experimental data on the pressure temperature relation during the freezing of an isochoric system of aqueous solutions of two compounds, glucose and glycerol. Glucose and glycerol are commonly used as cryoprotectants in conventional isobaric (constant pressure) cryopreservation protocols. Earlier studies have shown that the increase in pressure during isochoric freezing is detrimental to biological matter and limits the range of temperatures in which isochoric freezing can be used for preservation to temperatures corresponding to pressures below 40 MPa. In physiological saline solution this pressure corresponds to a temperature of - 4 °C. Our new experimental data shows that the addition of 2 M glycerol to the saline solution lowers the temperature at which the isochoric freezing pressure is 40 MPa to -11 °C, 3 M glycerol to - 16.5 °C, and 4 M glycerol to - 24.5 °C, thereby substantially expending the range of temperatures in which cryopreservation by isochoric freezing can be practiced.


Assuntos
Criopreservação/métodos , Crioprotetores/química , Glucose/química , Glicerol/química , Água/química , Temperatura Baixa , Congelamento , Pressão , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...