Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.965
Filtrar
1.
Food Chem ; 399: 134000, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037689

RESUMO

A novel cross-linked enzyme aggregates (CLEAs) catalyst was produced by precipitation and cross-linking sucrose isomerase (SIase) for isomaltulose production. The effects of precipitants and cross-linkers on the catalytic performance of the CLEAs were first evaluated. Then, bovine serum albumin (BSA) was used as additive and two immobilized enzymes, cross-linked SIase aggregates (CLSIAs) and CLSIAs-BSA were obtained. All the immobilized preparations exhibited superior thermal stability, pH tolerance, and storage stability compared to the soluble SIase, and showed excellent reusability. These samples still retained more than 61% of their initial activity after ten reuse cycles, with CLSIAs-BSA retaining up to 91.7%. The conversion ratios of sucrose into isomaltulose using CLSIAs-BSA reached 88.4 and 81.2% with sucrose and sugar cane juice as substrate, respectively. Therefore, CLSIAs are a highly effective biocatalyst for the preparation of isomaltulose with great potential for industrial applications.


Assuntos
Glucosiltransferases , Isomaltose , Reagentes de Ligações Cruzadas , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Glucosiltransferases/metabolismo , Isomaltose/análogos & derivados , Sacarose
2.
Appl Microbiol Biotechnol ; 106(23): 7763-7778, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36334126

RESUMO

Glucosylation cascade consisting of Leloir glycosyltransferase and sucrose synthase with in situ regeneration system of expensive and low available nucleotide sugars is a game-changing strategy for enzyme-based production of glycoconjugates of relevant natural products. We designed a stepwise approach including co-expression and one-step purification and co-immobilization on glass-based EziG resins of sucrose synthase from Glycine max (GmSuSy) with promiscuous glucosyltransferase YjiC from Bacillus licheniformis to produce efficient, robust, and versatile biocatalyst suited for preparative scale flavonoid glucosylation. The undertaken investigations identified optimal reaction conditions (30 °C, pH 7.5, and 10 mM Mg2+) and the best-suited carrier (EziG Opal). The prepared catalyst exhibited excellent reusability, retaining up to 96% of initial activity after 12 cycles of reactions. The semi-preparative glucosylation of poorly soluble isoflavone Biochanin A resulted in the production of 73 mg Sissotrin (Biochanin A 7-O-glucoside). Additionally, the evaluation of the designed double-controlled, monocistronic expression system with two independently induced promoters (rhaBAD and trc) brought beneficial information for dual-expression plasmid design. KEY POINTS: • Simultaneous and titratable expression from two independent promoters is possible, although full control over the expression is limited. • Designed catalyst managed to glucosylate poorly soluble isoflavone. • The STY of Sissotrin using the designed catalyst reached 0.26 g/L∙h∙g of the resin.


Assuntos
Flavonoides , Isoflavonas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Soja/metabolismo , Glucosídeos
3.
Microb Cell Fact ; 21(1): 208, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36217200

RESUMO

BACKGROUND: Glucoside natural products have been showing great medicinal values and potentials. However, the production of glucosides by plant extraction, chemical synthesis, and traditional biotransformation is insufficient to meet the fast-growing pharmaceutical demands. Microbial synthetic biology offers promising strategies for synthesis and diversification of plant glycosides. RESULTS: In this study, the two efficient UDP-glucosyltransferases (UGTs) (UGT85A1 and RrUGT3) of plant origin, that are capable of recognizing phenolic aglycons, are characterized in vitro. The two UGTs show complementary regioselectivity towards the alcoholic and phenolic hydroxyl groups on phenolic substrates. By combining a developed alkylphenol bio-oxidation system and these UGTs, twenty-four phenolic glucosides are enzymatically synthesized from readily accessible alkylphenol substrates. Based on the bio-oxidation and glycosylation systems, a number of microbial cell factories are constructed and applied to biotransformation, giving rise to a variety of plant and plant-like O-glucosides. Remarkably, several unnatural O-glucosides prepared by the two UGTs demonstrate better prolyl endopeptidase inhibitory and/or anti-inflammatory activities than those of the clinically used glucosidic drugs including gastrodin, salidroside and helicid. Furthermore, the two UGTs are also able to catalyze the formation of N- and S-glucosidic bonds to produce N- and S-glucosides. CONCLUSIONS: Two highly efficient UGTs, UGT85A1 and RrUGT3, with distinct regioselectivity were characterized in this study. A group of plant and plant-like glucosides were efficiently synthesized by cell-based biotransformation using a developed alkylphenol bio-oxidation system and these two UGTs. Many of the O-glucosides exhibited better PEP inhibitory or anti-inflammatory activities than plant-origin glucoside drugs, showing significant potentials for new glucosidic drug development.


Assuntos
Produtos Biológicos , Glucosiltransferases , Glucosídeos/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Preparações Farmacêuticas , Prolil Oligopeptidases , Difosfato de Uridina
4.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232739

RESUMO

In plants, the trehalose biosynthetic pathway plays key roles in the regulation of carbon allocation and stress adaptation. Engineering of the pathway holds great promise to increase the stress resilience of crop plants. The synthesis of trehalose proceeds by a two-step pathway in which a trehalose-phosphate synthase (TPS) uses UDP-glucose and glucose-6-phosphate to produce trehalose-6 phosphate (T6P) that is subsequently dephosphorylated by trehalose-6 phosphate phosphatase (TPP). While plants usually do not accumulate high amounts of trehalose, their genome encodes large families of putative trehalose biosynthesis genes, with many members lacking obvious enzymatic activity. Thus, the function of putative trehalose biosynthetic proteins in plants is only vaguely understood. To gain a deeper insight into the role of trehalose biosynthetic proteins in crops, we assessed the enzymatic activity of the TPS/TPP family from tomato (Solanum lycopersicum L.) and investigated their expression pattern in different tissues as well as in response to temperature shifts. From the 10 TPS isoforms tested, only the 2 proteins belonging to class I showed enzymatic activity, while all 5 TPP isoforms investigated were catalytically active. Most of the TPS/TPP family members showed the highest expression in mature leaves, and promoter-reporter gene studies suggest that the two class I TPS genes have largely overlapping expression patterns within the vasculature, with only subtle differences in expression in fruits and flowers. The majority of tomato TPS/TPP genes were induced by heat stress, and individual family members also responded to cold. This suggests that trehalose biosynthetic pathway genes could play an important role during temperature stress adaptation. In summary, our study represents a further step toward the exploitation of the TPS and TPP gene families for the improvement of tomato stress resistance.


Assuntos
Lycopersicon esculentum , Carbono , Glucose , Glucose-6-Fosfato , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Fosfatos , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Recombinantes , Temperatura , Trealose/genética , Trealose/metabolismo , Uridina Difosfato Glucose
5.
Infect Immun ; 90(10): e0039322, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36190255

RESUMO

Helicobacter pylori (H. pylori) is an important pathogen that can cause gastric cancer. Multiple adhesion molecules mediated H. pylori adherence to cells is the initial step in the infection of host cells. H. pylori cholesterol-α-glucosyltransferase (CGT) recognizes and extracts cholesterol from cell membranes to destroy lipid raft structure, further promotes H. pylori adhesion to gastric epithelial cells. O-Glycan, a substance secreted by the deep gastric mucosa, can competitively inhibit CGT activity and may serve as an important factor to prevent H. pylori colonization in the deep gastric mucosa. However, the inhibitory and injury-protection effects of O-Glycan against H. pylori infection has not been well investigated. In this study, we found that O-Glycan significantly inhibited the relative urease content in the coinfection system. In the presence of O-glycan, the injury of GES-1 cells in H. pylori persistent infection model was attenuated and the cell viability was increased. We use fluorescein isothiocyanate-conjugated cholera toxin subunit B (FITC-CTX-B) to detect lipid rafts on gastric epithelial cells and observed that O-glycan can protect H. pylori from damaging lipid raft structures on cell membranes. In addition, transcriptome data showed that O-glycan treatment significantly reduced the activation of inflammatory cancer transformation pathway caused by H. pylori infection. Our results suggest that O-Glycan is able to inhibit H. pylori persistent infection of gastric epithelial cells, reduce the damage caused by H. pylori, and could serve as a potential medicine to treat patients infected with H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/metabolismo , Urease/metabolismo , Toxina da Cólera/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fluoresceína-5-Isotiocianato/farmacologia , Infecções por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo , Células Epiteliais/metabolismo , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Glucosiltransferases/metabolismo , Colesterol/metabolismo
6.
Microbiol Immunol ; 66(11): 493-500, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36047500

RESUMO

Biofilm on dental restorative materials is an important determinant in the etiology of secondary caries development. Formation of biofilm involves adhesion of bacteria onto substrate, bacterial cell, and biofilm surfaces. Glucosyltransferase B and C (GtfB and GtfC) are essential factors for regulation of Streptococcus mutans biofilm formation, but the mechanisms involving different kinds of bacterial adhesion still lack detailed description. In this study, nanoscale adhesion force measurement was performed using atomic force microscopy. Bacteria-coated cantilevers were used to probe S. mutans adhesion to substrates, bacterial cells, and early biofilms. Two representative dental materials, glass ionomer cement (GIC) and composite resin, served as substrates. It was found that deletion of gtfB and gtfC genes both reduced adhesion forces of S. mutans toward substrate and bacterial cell surfaces (P < 0.05). Notably, reduction of the gtfB gene remarkably decreased bacterial adhesion to biofilm surfaces (P < 0.05), while gtfC showed no obvious effect during this stage. Biofilms cultured on GIG further decreased cell-biofilm adhesion, compared with those on resin (P < 0.05). Confocal fluorescence images and scanning electron microscopy images showed that deletion of gtfB lead to reduced microcolony formation and less production of exopolysaccharides (EPSs) in the biofilm, and after bacterial culturing on GIC, the EPS content was further decreased. Our findings suggest that EPSs mainly mediate bacterial adhesion to early biofilm surface. Deletion of gtfB and coculture with GIC could significantly reduce the cell-biofilm adhesion, which is probably through decreasing of EPS production. gtfB exerts a critical role in the bacterial adhesion for the whole process of biofilm development, while gtfC possibly works only in the early stages.


Assuntos
Glucosiltransferases , Streptococcus mutans , Streptococcus mutans/metabolismo , Microscopia de Força Atômica , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Biofilmes , Aderência Bacteriana
7.
Anal Biochem ; 656: 114881, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067866

RESUMO

The Notch pathway represents evolutionarily conserved intercellular signaling essential for cell-to-cell communication during development. Dysregulation of Notch signaling has been implicated in various diseases, and its control represents a potential cancer treatment strategy. Notch signaling is initiated by the interaction of NOTCH receptors with their ligands on neighboring cells. Therefore, the truncated NOTCH ectodomain, composed mainly of tandem repeats of epidermal growth factor-like (EGF) domains, serves as a decoy molecule that competes for ligand binding and thus inhibits ligand-dependent Notch signaling. Although full-length NOTCH EGF repeats exhibited potent Notch inhibitory activity, they were poorly produced in the transfected cells. This study evaluated the effect of EGF domain-modifying glycosyltransferases on the secretion of NOTCH EGF repeats. Our results in HEK293T cells revealed that, unlike the effect on endogenous NOTCH receptors, overexpressed EGF domain-specific O-GlcNAc transferase (EOGT) markedly enhanced the secretion of NOTCH1 EGF repeats in an enzyme activity-dependent manner. The co-expression of protein O-glucosyltransferase 1 further manifested the effect of EOGT. The resultant changes in O-glycosylation of NOTCH3 were evaluated by label-free glycopeptide quantification. This study provides an experimental strategy to efficiently generate NOTCH EGF repeats by manipulating the expression of glycosyltransferases that alter the O-glycosylation of EGF domains.


Assuntos
Fator de Crescimento Epidérmico , Receptores Notch , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Glicopeptídeos , Glicosilação , Células HEK293 , Humanos , Ligantes , Receptores Notch/química , Receptores Notch/metabolismo , Sequências de Repetição em Tandem
8.
ACS Chem Biol ; 17(9): 2507-2518, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36038138

RESUMO

Toxins TcdA and TcdB from Clostridioides difficile glucosylate human colon Rho GTPases. TcdA and TcdB glucosylation of RhoGTPases results in cytoskeletal changes, causing cell rounding and loss of intestinal integrity. Clostridial toxins TcdA and TcdB are proposed to catalyze glucosylation of Rho GTPases with retention of stereochemistry from UDP-glucose. We used kinetic isotope effects to analyze the mechanisms and transition-state structures of the glucohydrolase and glucosyltransferase activities of TcdB. TcdB catalyzes Rho GTPase glucosylation with retention of stereochemistry, while hydrolysis of UDP-glucose by TcdB causes inversion of stereochemistry. Kinetic analysis revealed TcdB glucosylation via the formation of a ternary complex with no intermediate, supporting an SNi mechanism with nucleophilic attack and leaving group departure occurring on the same face of the glucose ring. Kinetic isotope effects combined with quantum mechanical calculations revealed that the transition states of both glucohydrolase and glucosyltransferase activities of TcdB are highly dissociative. Specifically, the TcdB glucosyltransferase reaction proceeds via an SNi mechanism with the formation of a distinct oxocarbenium phosphate ion pair transition state where the glycosidic bond to the UDP leaving group breaks prior to attack of the threonine nucleophile from Rho GTPase.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/química , Glucose , Glucosiltransferases/metabolismo , Humanos , Cinética , Fosfatos , Toxina Tetânica , Treonina , Uridina Difosfato Glucose , Proteínas rho de Ligação ao GTP
9.
Bioorg Chem ; 128: 106094, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985160

RESUMO

Understanding the mechanisms of enzyme specificity is increasingly important from a fundamental viewpoint and for practical applications. Transglycosylation has attracted many attentions due to its importance in improving the functional properties of acceptor substrates both in vivo and in vitro. Cyclodextrin glucanotransferase (CGTase) is one of the key enzymes in transglycosylation, it has a broad substrate spectrum and utilizes sugar as the donor. However, little is known about the acceptor selectivity of CGTase, which greatly hampers efforts toward the rational design of desirable transglycosylated derivatives. In this study, we found that the CGTase from Bacillus circulans, BcCGTase, was able to form glycosylated products with diverse ginsenosides. In particular, it not only carries out diverse mono-, di-, and even higher-order glycosylations via the transfer of glucose moieties to the COGlc positions, but also can glycosylate the C3-OH position of ginsenosides. In contrast, another CGTase from Bacillus licheniformis (BlCGTase) showed relatively specific acceptor preference with only several ginsenosides. Structural comparison between BcCGTase and BlCGTase revealed that the Arg74/K81 position within the acceptor-binding sites of BcCGTase/BlCGTase was responsible for the differences in catalytic specificity for ginsenoside F1. Further mutagenesis confirmed their roles in the acceptor selection. In conclusion, our study not only demonstrates the acceptor selectivity of CGTases, but also provides insight into the catalytic mechanism of CGTases, which will potentially increase the utility of CGTase for biosynthesis of new, rationally designed transglycosylated derivatives.


Assuntos
Ginsenosídeos , Catálise , Glucosiltransferases/metabolismo , Especificidade por Substrato
10.
Biophys Chem ; 289: 106875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987098

RESUMO

Glucosyltransferases catalyze the glucosidic bond formation by transferring a glucose molecule from an activated sugar donor to an acceptor substrate. Glucocorticoids (GCs) are adrenal-derived steroid hormones most widely used for anti-inflammatory treatments. In this study, we biotransformed two selected GCs, cortisone and prednisone, into their O-glucoside derivatives using a versatile UDP-glycosyltransferase UGT-1. Complete structural assignment of glucosylated products revealed that the bioconversion by regio-selective glucosylation of cortisone and prednisone produced cortisone 21-glucoside and prednisone 21-glucoside, respectively. We also combined molecular dynamics (MD) simulation to study the binding feature and mechanism of glucosylation. MD simulation studies showed the formation of a stable complex between protein, glucose donor, and substrate, stabilized by hydrogen bonds. Overall, we were able to provide explanations for the experimentally observed selectivity for glucosylation by integrating experimental and computational techniques.


Assuntos
Cortisona , Glucosiltransferases , Glucocorticoides , Glucose , Glucosídeos , Glucosiltransferases/química , Glucosiltransferases/metabolismo , Prednisona
11.
Muscle Nerve ; 66(5): 530-544, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35968817

RESUMO

The Notch signaling pathway is a key regulator of skeletal muscle development and regeneration. Over the past decade, the discoveries of three new muscle disease genes have added a new dimension to the relationship between the Notch signaling pathway and skeletal muscle: MEGF10, POGLUT1, and JAG2. We review the clinical syndromes associated with pathogenic variants in each of these genes, known molecular and cellular functions of their protein products with a particular focus on the Notch signaling pathway, and potential novel therapeutic targets that may emerge from further investigations of these diseases. The phenotypes associated with two of these genes, POGLUT1 and JAG2, clearly fall within the realm of muscular dystrophy, whereas the third, MEGF10, is associated with a congenital myopathy/muscular dystrophy overlap syndrome classically known as early-onset myopathy, areflexia, respiratory distress, and dysphagia. JAG2 is a canonical Notch ligand, POGLUT1 glycosylates the extracellular domain of Notch receptors, and MEGF10 interacts with the intracellular domain of NOTCH1. Additional genes and their encoded proteins relevant to muscle function and disease with links to the Notch signaling pathway include TRIM32, ATP2A1 (SERCA1), JAG1, PAX7, and NOTCH2NLC. There is enormous potential to identify convergent mechanisms of skeletal muscle disease and new therapeutic targets through further investigations of the Notch signaling pathway in the context of skeletal muscle development, maintenance, and disease.


Assuntos
Doenças Musculares , Distrofias Musculares , Humanos , Ligantes , Receptores Notch/genética , Receptores Notch/metabolismo , Músculo Esquelético , Transdução de Sinais/genética , Doenças Musculares/patologia , Distrofias Musculares/patologia , Glucosiltransferases/metabolismo
12.
Curr Opin Plant Biol ; 69: 102273, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35987011

RESUMO

Cellulose is a critical component of plant cell walls. Cellulose is made at the plasma membrane by cellulose synthase (CESA) enzymes organized into large, multi-subunit cellulose synthase complexes (CSCs). Although CESAs are only active at the plasma membrane, fluorescently-tagged CESAs also substantially label the Golgi apparatus and other intracellular compartments, even when cellulose synthesis rates are high. These data imply that CESA activity is regulated by trafficking to the plasma membrane (exocytosis) and removal from the plasma membrane (endocytosis), as well as recycling of endocytosed CESAs back to the plasma membrane. Key molecular components and events of CESA exocytosis and endocytosis have recently been defined, primarily using mutant analysis and live-cell imaging in Arabidopsis thaliana. Here, we integrate these data into a working model of CESA regulation by exocytosis and endocytosis and highlight key outstanding questions. We present the hypothesis that cycling of CESAs between the plasma membrane and the endomembrane system is important for regulating cellulose synthesis and for maintaining a robust population of active CSCs in the plasma membrane.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Endocitose , Exocitose , Glucosiltransferases/genética , Glucosiltransferases/metabolismo
13.
Biochem Biophys Res Commun ; 625: 60-65, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35947916

RESUMO

Glycoside hydrolase family 94 (GH94) contains enzymes that reversibly catalyze the phosphorolysis of ß-glycosides. We conducted this study to investigate a GH94 protein (PBOR_13355) encoded in the genome of Paenibacillus borealis DSM 13188 with low sequence identity to known phosphorylases. Screening of acceptor substrates for reverse phosphorolysis in the presence of α-d-glucose 1-phosphate as a donor substrate showed that PBOR_13355 utilized d-glucuronic acid and p-nitrophenyl ß-d-glucuronide as acceptors. In the reaction with d-glucuronic acid, 3-O-ß-d-glucopyranosyl-d-glucuronic acid was synthesized. PBOR_13355 showed a higher apparent catalytic efficiency to p-nitrophenyl ß-d-glucuronide than to d-glucuronic acid, and thus, PBOR_13355 was concluded to be a novel glycoside phosphorylase, 3-O-ß-d-glucopyranosyl ß-d-glucuronide phosphorylase. PBOR_13360, encoded by the gene immediately downstream of the PBOR_13355 gene, was shown to be ß-glucuronidase. Collectively, PBOR_13355 and PBOR_13360 are predicted to work together in the cytosol to metabolize oligosaccharides containing the 3-O-ß-d-glucopyranosyl ß-d-glucuronide structure released from bacterial and plant acidic carbohydrates.


Assuntos
Glucuronídeos , Glicosídeo Hidrolases , Glucosiltransferases/metabolismo , Ácido Glucurônico , Glicosídeo Hidrolases/química , Glicosídeos/metabolismo , Redes e Vias Metabólicas , Paenibacillus , Fosforilases/química , Fosforilases/genética , Fosforilases/metabolismo , Especificidade por Substrato
14.
Appl Environ Microbiol ; 88(17): e0102722, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35950845

RESUMO

Hesperidin, a flavonoid enriched in citrus peel, can be enzymatically glycosylated using CGTase with significantly improved water solubility. However, the reaction catalyzed by wild-type CGTase is rather inefficient, reflected in the poor production rate and yield. By focusing on the aglycon attacking step, seven residues were selected for mutagenesis in order to improve the transglycosylation efficiency. Due to the lack of high-throughput screening technology regarding to the studied reaction, we developed a size/polarity guided triple-code strategy in order to reduce the library size. The selected residues were replaced by three rationally chosen amino acids with either changed size or polarity, leading to an extremely condensed library with only 32 mutants to be screened. Twenty-five percent of the constructed mutants were proved to be positive, suggesting the high quality of the constructed library. Specific transglycosylation activity of the best mutant Y217F was assayed to be 935.7 U/g, and its kcat/KmA is 6.43 times greater than that of the wild type. Homology modeling and docking computation suggest the source of notably enhanced catalytic efficiency is resulted from the combination of ligand transfer and binding effect. IMPORTANCE Size/polarity guided triple-code strategy, a novel semirational mutagenesis strategy, was developed in this study and employed to engineer the aglycon attacking site of CGTase. Screening pressure was set as improved hesperidin glucoside synthesis ability, and eight positive mutants were obtained by screening only 32 mutants. The high quality of the designed library confirms the effectiveness of the developed strategy is potentially valuable to future mutagenesis studies. Mechanisms of positive effect were explained. The best mutant exhibits 6.43 times enhanced kcat/KmA value and confirmed to be a superior whole-cell catalyst with potential application value in synthesizing hesperidin glucosides.


Assuntos
Hesperidina , Glucosiltransferases/metabolismo , Mutagênese Sítio-Dirigida , Especificidade por Substrato
15.
J Agric Food Chem ; 70(28): 8725-8737, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35816703

RESUMO

ß-1,3-Glucan synthases play key roles in glucan synthesis, cell wall assembly, and growth of fungi. However, their multi-transmembrane domains (over 14 TMHs) and large molecular masses (over 100 kDa) significantly hamper understanding of their catalytic characteristics and mechanisms. In the present study, the 5841-bp gene CMGLS encoding the 221.7 kDa membrane-bound ß-1,3-glucan synthase CMGLS in Cordyceps militaris was cloned, identified, and structurally analyzed. CMGLS was partially purified with a specific activity of 87.72 pmol/min/µg, a purification fold of 121, and a yield of 10.16% using a product-entrapment purification method. CMGLS showed a strict specificity to UDP-glucose with a Km value of 84.28 µM at pH 7.0 and synthesized ß-1,3-glucan with a maximum degree of polymerization (DP) of 70. With the assistance of AlphaFold and molecular docking, the 3D structure of CMGLS and its binding features with substrate UDP-glucose were proposed for the first time to our knowledge. UDP-glucose potentially bound to at least 11 residues via hydrogen bonds, π-stacking ,and salt bridges, and Arg 1436 was predicted as a key residue directly interacting with the moieties of glucose, phosphate, and the ribose ring on UDP-glucose. These findings would open an avenue to recognize and understand the glucan synthesis process and catalytic mechanism of ß-1,3-glucan synthases in mushrooms.


Assuntos
Agaricales , Cordyceps , Agaricales/metabolismo , Cordyceps/genética , Cordyceps/metabolismo , Glucanos , Glucose , Glucosiltransferases/metabolismo , Simulação de Acoplamento Molecular , Uridina Difosfato Glucose/metabolismo , beta-Glucanas
16.
Cell Rep ; 40(1): 111041, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793618

RESUMO

Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic. Here, we present the human GYS1:GYG1 complex in multiple conformations representing different functional states. We observe an asymmetric conformation of GYS1 that exposes an interface for close GYG1 association, and propose this state facilitates handoff of the GYG1-associated glycogen chain to a GYS1 subunit for elongation. Full activation of GYS1 widens the GYG1-binding groove, enabling GYG1 release concomitant with glycogen chain growth. This structural mechanism connecting chain nucleation and extension explains the apparent stepwise nature of glycogen synthesis and suggests distinct states to target for GSD-modifying therapeutics.


Assuntos
Glicogênio Sintase , Glicogenólise , Glicoproteínas , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Humanos
17.
Toxins (Basel) ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35878183

RESUMO

Oat is susceptible to several Fusarium species that cause contamination with different trichothecene mycotoxins. The molecular mechanisms behind Fusarium resistance in oat have yet to be elucidated. In the present work, we identified and characterised two oat UDP-glucosyltransferases orthologous to barley HvUGT13248. Overexpression of the latter in wheat had been shown previously to increase resistance to deoxynivalenol (DON) and nivalenol (NIV) and to decrease disease the severity of both Fusarium head blight and Fusarium crown rot. Both oat genes are highly inducible by the application of DON and during infection with Fusarium graminearum. Heterologous expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae conferred high levels of resistance to DON, NIV and HT-2 toxins, but not C4-acetylated trichothecenes (T-2, diacetoxyscirpenol). Recombinant enzymes AsUGT1 and AsUGT2 expressed in Escherichia coli rapidly lost activity upon purification, but the treatment of whole cells with the toxin clearly demonstrated the ability to convert DON into DON-3-O-glucoside. The two UGTs could therefore play an important role in counteracting the Fusarium virulence factor DON in oat.


Assuntos
Fusarium , Micotoxinas , Avena/metabolismo , Fusarium/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Micotoxinas/metabolismo , Proteínas de Plantas/metabolismo , Tricotecenos , Difosfato de Uridina/metabolismo
18.
J Basic Microbiol ; 62(11): 1337-1345, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35792532

RESUMO

Trehalose-6-phosphate synthase (TPS) is a key enzyme that participates in trehalose metabolism, which can synthesize trehalose in a two-step pathway with trehalose phosphatase, but its role in fungi is rarely studied, especially in large basidiomycetes. In this study, the tps gene of Ganoderma lucidum was cloned and named as gltps. And gltps-silenced strains were constructed by RNA interference. In this study, it is found that the extracellular polysaccharide content increased 1.6-2-fold, but there was no significant change on intracellular polysaccharide content in gltps-silenced strains compared with the wild-type (WT) strain. Furthermore, the cell wall compositions of the gltps-silenced strains were also altered, which showed that the chitin and ß-1,3-glucan contents were significantly decreased. Compared with WT, the concentration of chitin decreased by 20%-50% and that of ß-1, 3-glucan decreased by 15%-30%. The study found that the cells of gltps-silenced strains were more sensitive to cell wall stress, which might be due to changes in the compounds and structure of the cell wall. These results showed that gltps had an important effect on carbohydrate metabolism of G. lucidum cells.


Assuntos
Reishi , Trealose/metabolismo , Parede Celular/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Quitina/metabolismo , Polissacarídeos/metabolismo , Metabolismo dos Carboidratos
19.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887199

RESUMO

Bacterial cellulose is a natural polymer with an expanding array of applications. Because of this, the main cellulose producers of the Komagataeibacter genus have been extensively studied with the aim to increase its synthesis or to customize its physicochemical features. Up to now, the genetic studies in Komagataeibacter have focused on the first cellulose synthase operon (bcsI) encoding the main enzyme complex. However, the role of other accessory cellulose operons has been understudied. Here we aimed to fill this gap by performing a detailed analysis of the second cellulose synthase operon (bcsII), which is putatively linked with cellulose acylation. In this study we harnessed the genome sequence, gene expression and protein structure information of K. xylinus E25 and other Komagataeibacter species to discuss the probable features of bcsII and the biochemical function of its main protein products. The results of our study support the previous hypothesis that bcsII is involved in the synthesis of the acylated polymer and expand it by presenting the evidence that it may also function in the regulation of its attachment to the cell surface and to the crystalline cellulose fibers.


Assuntos
Acetobacteraceae , Gluconacetobacter xylinus , Acetobacteraceae/metabolismo , Celulose/química , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Óperon
20.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743184

RESUMO

Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and ß-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.


Assuntos
Actinas , Calmodulina , Actinas/metabolismo , Adenilil Ciclases/metabolismo , Proteínas de Bactérias/metabolismo , Calmodulina/metabolismo , Glucosiltransferases/metabolismo , Pseudomonas aeruginosa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...