RESUMO
In brief: FSH leads to glutamine dependence, which is required for mTORC1 activation and in consequence Sertoli cell proliferation. Abstract: The spermatogenic capacity of adult individuals depends on, among other factors, the number of Sertoli cells (SCs) that result from the proliferative waves during development. FSH upregulates SC proliferation at least partly, through the activation of the PI3K/Akt/mTORC1 pathway, among other mechanisms. It is widely known that mTORC1 is a sensor of amino acids. Among amino acids, glutamine acquires relevance since it might contribute to cell cycle progression through the modulation of mTORC1 activity. It has not been studied yet whether glutamine intervenes in FSH-mediated regulation of SC proliferation and cell cycle progression, or if FSH has any effect on glutamine metabolism. Eight-day-old rat SCs were incubated in culture media without glutamine or with glutamine in the absence or presence of a glutamine transporter inhibitor or a glutaminase activity inhibitor under basal conditions or stimulated with FSH. The results obtained show that FSH does not promote SC proliferation and mTORC1 activation in the absence of glutamine. Also, FSH modulates glutamine metabolism increasing glutaminase isoform 2 and reducing glutamine synthetaseexpression. FSH did not promote SC proliferation and mTORC1 activation when glutaminase activity was inhibited. The results suggest that glutamine or its metabolites might cooperate with FSH in the upregulation of SC proliferation through mTORC1. In addition, as FSH modulates glutamine metabolism through the induction of glutaminase isoform 2, the hormonal control of glutamine metabolism might be part of the intricate signaling network triggered by FSH, which is crucial to establish the population of mature SCs that supports the reproductive function.
Assuntos
Proliferação de Células , Hormônio Foliculoestimulante , Glutamina , Alvo Mecanístico do Complexo 1 de Rapamicina , Células de Sertoli , Animais , Glutamina/metabolismo , Glutamina/farmacologia , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/citologia , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Proliferação de Células/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ratos , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos , Glutaminase/metabolismo , Ratos Sprague-Dawley , Ratos WistarRESUMO
Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.
Assuntos
Neoplasias da Mama , Proteína Semelhante a ELAV 1 , Glutaminase , Glutaminase/metabolismo , Glutaminase/genética , Glutaminase/antagonistas & inibidores , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação Neoplásica da Expressão Gênica , Processamento Alternativo , Proliferação de Células , Glutamina/metabolismo , Estabilidade de RNARESUMO
This work aimed to set inline Raman spectroscopy models to monitor biochemically (viable cell density, cell viability, glucose, lactate, glutamine, glutamate, and ammonium) all upstream stages of a virus-like particle-making process. Linear (Partial least squares, PLS; Principal components regression, PCR) and nonlinear (Artificial neural networks, ANN; supported vector machine, SVM) modeling approaches were assessed. The nonlinear models, ANN and SVM, were the more suitable models with the lowest absolute errors. The mean absolute error of the best models within the assessed parameter ranges for viable cell density (0.01-8.83 × 106 cells/mL), cell viability (1.3-100.0 %), glucose (5.22-10.93 g/L), lactate (18.6-152.7 mg/L), glutamine (158-1761 mg/L), glutamate (807.6-2159.7 mg/L), and ammonium (62.8-117.8 mg/L) were 1.55 ± 1.37 × 106 cells/mL (ANN), 5.01 ± 4.93 % (ANN), 0.27 ± 0.22 g/L (SVM), 4.7 ± 2.6 mg/L (SVM), 51 ± 49 mg/L (ANN), 57 ± 39 mg/L (SVM) and 2.0 ± 1.8 mg/L (ANN), respectively. The errors achieved, and best-fitted models were like those for the same bioprocess using offline data and others, which utilized inline spectra for mammalian cell lines as a host.
Assuntos
Análise Espectral Raman , Análise Espectral Raman/métodos , Análise dos Mínimos Quadrados , Glucose/análise , Redes Neurais de Computação , Sobrevivência Celular/efeitos dos fármacos , Ácido Glutâmico/análise , Máquina de Vetores de Suporte , Análise de Componente Principal , Glutamina/análise , Ácido Láctico/análise , Compostos de Amônio/análiseRESUMO
Understanding the neural, metabolic, and psychological mechanisms underlying human altruism and decision-making is a complex and important topic both for science and society. Here, we investigated whether transcranial Direct Current Stimulation (tDCS) applied to two prefrontal cortex regions, the ventromedial prefrontal cortex (vmPFC, anode) and the right dorsolateral prefrontal cortex (DLPFC, cathode) can induce changes in self-reported emotions and to modulate local metabolite concentrations. We employed in vivo quantitative MR Spectroscopy in healthy adult participants and quantified changes in GABA and Glx (glutamate + glutamine) before and after five sessions of tDCS delivered at 2 mA for 20 min (active group) and 1 min (sham group) while participants were engaged in a charitable donation task. In the active group, we observed increased levels of GABA in vmPFC. Glx levels decreased in both prefrontal regions and self-reported happiness increased significantly over time in the active group. Self-reported guiltiness in both active and sham groups tended to decrease. The results indicate that self-reported happiness can be modulated, possibly due to changes in Glx concentrations following repeated stimulation. Therefore, local changes may induce remote changes in the reward network through interactions with other metabolites, previously thought to be unreachable with noninvasive stimulation techniques.
Assuntos
Emoções , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico , Humanos , Masculino , Feminino , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiologia , Adulto , Emoções/fisiologia , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo , Ácido Glutâmico/metabolismo , Altruísmo , Glutamina/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Córtex Pré-Frontal Dorsolateral/metabolismo , Córtex Pré-Frontal Dorsolateral/fisiologiaRESUMO
BACKGROUND: Protein interactions participate in many molecular mechanisms involved in cellular processes. The human TATA box binding protein (hTBP) interacts with Antennapedia (Antp) through its N-terminal region, specifically via its glutamine homopeptides. This PolyQ region acts as a binding site for other transcription factors under normal conditions, but when it expands, it generates spinocerebellar ataxia 17 (SCA17), whose protein aggregates in the brain prevent its correct functioning. OBJECTIVE: To determine whether the hTBP glutamine-rich region is involved in its interaction with homeoproteins and the role it plays in the formation of protein aggregates in SCA17. MATERIAL AND METHODS: We characterized hTBP interaction with other homeoproteins using BiFC, and modeled SCA17 in Drosophila melanogaster by targeting hTBPQ80 to the fly brain using UAS/GAL4. RESULTS: There was hTBP interaction with homeoproteins through its glutamine-rich region, and hTBP protein aggregates with expanded glutamines were found to affect the locomotor capacity of flies. CONCLUSIONS: The study of hTBP interactions opens the possibility for the search for new therapeutic strategies in neurodegenerative pathologies such as SCA17.
ANTECEDENTES: Las interacciones proteicas participan en una gran cantidad de mecanismos moleculares que rigen los procesos celulares. La proteína de unión a la caja TATA humana (hTBP) interacciona con Antennapedia (Antp) a través de su extremo N-terminal, específicamente a través de sus homopéptidos de glutaminas. Esta región PolyQ sirve como sitio de unión a factores de transcripción en condiciones normales, pero cuando se expande genera la ataxia espinal cerebelosa 17 (SCA17), cuyos agregados proteicos en el cerebro impiden su funcionamiento correcto. OBJETIVO: Determinar si la región rica en glutaminas de hTBP interviene en su interacción con homeoproteínas y el papel que tiene en la formación de agregados proteicos en SCA17. MATERIAL Y MÉTODOS: Se caracterizó la interacción de hTBP con otras homeoproteínas usando BiFC y se modeló SCA17 en Drosophila melanogaster dirigiendo hTBPQ80 al cerebro de las moscas usando UAS/GAL4. RESULTADOS: Existió interacción de hTBP con homeoproteínas a través de su región rica en glutaminas. Los agregados proteicos de hTBP con las glutaminas expandidas afectaron la capacidad locomotriz de las moscas. CONCLUSIONES: El estudio de las interacciones de hTBP abre la posibilidad para la búsqueda de nuevas estrategias terapéuticas en patologías neurodegenerativas como SCA17.
Assuntos
Drosophila melanogaster , Ataxias Espinocerebelares , Proteína de Ligação a TATA-Box , Animais , Humanos , Encéfalo/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Glutamina/metabolismo , Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/genética , Proteína de Ligação a TATA-Box/metabolismo , Proteína de Ligação a TATA-Box/genéticaRESUMO
Chronic wounds are characterized by prolonged non-healing, significantly affecting patients' quality of life. Oral formulas may enhance the wound healing process and contribute to cost reduction in care. This review aimed to evaluate the effects of oral nutritional supplementation on chronic wound healing and provide insights into formula characteristics. A comprehensive search across Cinahl, Embase, PubMed, and Web of Science databases yielded nine studies from the past decade involving 741 patients ages 52 to 81.7 across various care settings: hospitals, long-term care facilities, and home care. Primary wound types included pressure injuries (58%), diabetic foot ulcers (40%), and venous ulcers (2%). The intervention duration ranged from 2 to 16 wk, with sample sizes varying from 24 to 270 patients. Notably, four studies reported a reduction in wound area and an increased healing rate with a hypercaloric, hyperproteic formula enriched with zinc and vitamins A, C, and E. However, two studies found no significant differences compared with control groups. Two other studies investigated a combination of arginine, glutamine, and ß-hydroxy-ß-methylbutyrate; however, they did not yield significant results, and one study favored a hyperproteic formula instead of a hyperproteic formula with arginine. This review provides evidence supporting the potential of oral nutritional supplementation to enhance the healing process of chronic wounds. Based on our findings, a desirable formula should be characterized by a high calorie and protein content and the inclusion of antioxidant micronutrients, including, but not limited to, vitamins A, E, C, and zinc.
Assuntos
Suplementos Nutricionais , Úlcera por Pressão , Cicatrização , Humanos , Cicatrização/efeitos dos fármacos , Doença Crônica , Pé Diabético/terapia , Zinco/administração & dosagem , Úlcera Varicosa/dietoterapia , Úlcera Varicosa/terapia , Idoso , Arginina/administração & dosagem , Arginina/farmacologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Valeratos/administração & dosagem , Valeratos/farmacologia , Vitamina A/administração & dosagem , Glutamina/administração & dosagem , Vitamina E/administração & dosagem , Vitamina E/farmacologia , Ácido Ascórbico/administração & dosagem , Ácido Ascórbico/farmacologia , Feminino , Vitaminas/administração & dosagem , Masculino , Administração OralRESUMO
In this double-blind placebo-controlled randomized investigation, we assessed the tolerability of glutamine in older adults recruited from three daycare centers. The relevance of studying glutamine supplementation in elderly patients lies in its potential to provide a well-tolerated intervention. Glutamine, a crucial amino acid, plays a vital role in various physiological processes, including immune function and protein synthesis. Understanding its impact on older adults is essential, given the potential implications for their health and well-being. Participants received a daily dose of 12.4 g of oral effervescent glutamine (EGln group) or maltodextrin (placebo group) for 60 days. Fifteen patients from each group completed the study. The mean ages were 77.0±9.1 and 79.0±6.9 years for the EGln and placebo groups, respectively. We evaluated body mass index, aminogram, hemogram, plasma levels of glucose, prealbumin, albumin, urea, creatinine, uric acid, C-reactive protein, vitamin D, calcium, sodium, potassium, and the plasma activities of aspartate aminotransferase and alanine aminotransferase. Notably, we quantified a broad array of inflammatory markers and growth factors providing a holistic understanding of the potential effects of glutamine supplementation. The results demonstrated that oral glutamine did not induce significant changes in any evaluated parameters, and no adverse effects were reported. This finding suggested that the dosage of glutamine used in this study was well-tolerated and safe. This information contributes to the broader understanding of glutamine supplementation, emphasizing its safety and supporting its potential as a viable intervention for maintaining health in aging individuals.
Assuntos
Suplementos Nutricionais , Glutamina , Humanos , Glutamina/administração & dosagem , Método Duplo-Cego , Idoso , Masculino , Feminino , Idoso de 80 Anos ou mais , Biomarcadores/sangueRESUMO
Understanding the nutritional content of protein supplements is crucial for optimal nutritional planning among athletes and other people. Distribution of macronutrients and aminograms in the main products available in the national Chilean market remains unknown. A descriptive cross-sectional study was conducted to identify the main protein supplements available in the Chilean market. Information on macronutrients and aminograms from the nutritional labels of each product was extracted. The analysis considered the content per portion and per 100 g. Cluster analysis models and graphical representations were explored. Eighty protein shakes were assessed in the Santiago de Chile market. The median protein dosage was 32 g (range from 25 to 52), and the median energy value stood at 390 kcal (range from 312 to 514). The median protein content per 100 g of product was found to be 75 g (range from 42.5 to 97.2). The combined median concentration of amino acids was 4749.75 mg. Among these, the essential amino acid L-Tryptophan exhibited the lowest concentration at 1591.50 mg, while the conditional amino acid L-Glutamine had the highest median concentration at 17,336 mg. There was a significant prevalence of animal-derived products, placing specific emphasis on protein supplements that feature elevated levels of the amino acids L-Glutamine and L-Leucine.
Assuntos
Proteínas Alimentares , Suplementos Nutricionais , Valor Nutritivo , Chile , Estudos Transversais , Proteínas Alimentares/análise , Humanos , Aminoácidos/análise , Rotulagem de Alimentos , Triptofano/análise , Nutrientes/análise , Leucina/análise , Ingestão de Energia , Glutamina/análiseRESUMO
BACKGROUND: Endometrial fibrosis, a significant characteristic of intrauterine adhesion (IUA), is caused by the excessive differentiation and activation of endometrial stromal cells (ESCs). Glutaminolysis is the metabolic process of glutamine (Gln), which has been implicated in multiple types of organ fibrosis. So far, little is known about whether glutaminolysis plays a role in endometrial fibrosis. METHODS: The activation model of ESCs was constructed by TGF-ß1, followed by RNA-sequencing analysis. Changes in glutaminase1 (GLS1) expression at RNA and protein levels in activated ESCs were verified experimentally. Human IUA samples were collected to verify GLS1 expression in endometrial fibrosis. GLS1 inhibitor and glutamine deprivation were applied to ESCs models to investigate the biological functions and mechanisms of glutaminolysis in ESCs activation. The IUA mice model was established to explore the effect of glutaminolysis inhibition on endometrial fibrosis. RESULTS: We found that GLS1 expression was significantly increased in activated ESCs models and fibrotic endometrium. Glutaminolysis inhibition by GLS1 inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl) ethyl sulfide (BPTES or glutamine deprivation treatment suppressed the expression of two fibrotic markers, α-SMA and collagen I, as well as the mitochondrial function and mTORC1 signaling in ESCs. Furthermore, inhibition of the mTORC1 signaling pathway by rapamycin suppressed ESCs activation. In IUA mice models, BPTES treatment significantly ameliorated endometrial fibrosis and improved pregnancy outcomes. CONCLUSION: Glutaminolysis and glutaminolysis-associated mTOR signaling play a role in the activation of ESCs and the pathogenesis of endometrial fibrosis through regulating mitochondrial function. Glutaminolysis inhibition suppresses the activation of ESCs, which might be a novel therapeutic strategy for IUA.
Assuntos
Glutamina , Mitocôndrias , Feminino , Camundongos , Humanos , Animais , Glutamina/metabolismo , Fibrose , Mitocôndrias/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo , Endométrio/metabolismo , Endométrio/patologiaRESUMO
Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.
Assuntos
Doença de Alzheimer , Encéfalo , Ácido Glutâmico , Doença de Alzheimer/metabolismo , Humanos , Ácido Glutâmico/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Transmissão Sináptica/fisiologia , Glutamina/metabolismoRESUMO
This work aimed to assess the Sf9 cell metabolism during growth, and infection steps with recombinant baculovirus bearing rabies virus proteins, to finally obtain rabies VLP in two culture systems: Schott flask (SF) and stirred tank reactor (STR). Eight assays were performed in SF and STR (four assays in each system) using serum-free SF900 III culture medium. Two non-infection growth kinetics assays and six recombinant baculovirus infection assays. The infection runs were carried out at 0.1 pfu/cell multiplicity of infection (MOI) for single baculovirus bearing rabies glycoprotein (BVG) and matrix protein (BVM) and a coinfection with both baculoviruses at MOI of 3 and 2 pfu/cell for BVG and BVM, respectively. The SF assays were done in triplicate. The glucose, glutamine, glutamate, lactate, and ammonium uptake or release specific rates were quantified over the exponential growth phase and infection stage. The highest uptake specific rate was observed for glucose (42.5 × 10-12 mmol cell/h) in SF and for glutamine (30.8 × 10-12 mmol/cell/h) in STR, in the exponential growth phases. A wave pattern was observed for assessed analytes throughout the infection phase and the glucose had the highest wave amplitude within the 10-10 mmol cell/h order. This alternative uptake and release behavior is in harmony with the lytic cycle of baculovirus in insect cells. The virus propagation and VLP generation were not limited by glucose, glutamine, and glutamate, neither by the toxicity of lactate nor ammonium under the conditions appraised in this work. The findings from this work can be useful to set baculovirus infection processes at high cell density to improve rabies VLP yield, purity, and productivity.
Assuntos
Compostos de Amônio , Vírus da Raiva , Raiva , Animais , Células Sf9 , Vírus da Raiva/genética , Glutamina , Baculoviridae/genética , Proteínas Recombinantes/genética , Meios de Cultura Livres de Soro , Ácido Glutâmico , Lactatos , Glucose , SpodopteraRESUMO
Abstract This study was carried out to evaluate the effect of Glutamine, as a dipeptide or a free amino acid form, on the progression of burn injuries in rats. Thirty male Wistar rats were burned with a comb metal plate heated in boiling water (98 °C) for three minutes, creating four rectangular full-thickness burn areas separated by three unburned interspaces (zone of stasis) in both dorsum sides. The animals were randomized into three groups (n=10): saline solution (G1-Control) and treated groups that orally received Glutamine as dipeptide (G2-Dip) or free amino acid (G3-FreeAA). Two and seven days after burn injury, lesions were photographed for unburned interspaces necrosis evolution assessment. Seven days after injury, glutathione seric was measured and histopathological analysis was performed. By photographs, there was a significant reduction in necrosis progression in G3-Free-AA between days two and seven. Histopathological analysis at day 7 showed a significantly higher stasis zone without necrosis and a higher number of fibroblasts in G2-Dip and G3-FreeAA compared with G1-Control. Also, glutathione serum dosage was higher in G2-Dip. The plasmatic glutathione levels were higher in the G2-Dip than the G1-Control, and there was a trend to higher levels in G3-FreeAA. The reduction in histological lesions, greater production of fibroblasts, and greater amounts of glutathione may have benefited the evolution of burn necrosis, which showed greater preservation of interspaces.
Resumo Este estudo foi realizado para avaliar o efeito da Glutamina, como um dipeptídeo ou forma de aminoácido livre, na progressão de queimaduras em ratos. Trinta ratos Wistar machos foram queimados com um pente de metal aquecido em água fervente (98 °C) por três minutos, criando quatro áreas retangulares queimadas separadas por três interesespaços não queimados (zona de estase) em ambos os lados do dorso. Os animais foram randomizados em três grupos (n = 10): solução salina (G1-Controle) e grupos tratados que receberam glutamina via oral como dipeptídeo (G2-Dip) ou aminoácido livre (G3-FreeAA). Dois e sete dias após a queimadura, as lesões foram fotografadas para avaliação da evolução da necrose entre os espaços não queimados. Sete dias após a lesão, foi dosada a glutationa sérica e realizada análise histopatológica. Pelas fotografias, houve uma redução significativa na progressão da necrose no G3-Free-AA entre os dias dois e sete. A análise histopatológica no dia 7 mostrou uma zona de estase significativamente maior sem necrose e número mais elevado de fibroblastos em G2-Dip e G3-FreeAA em comparação com G1-Controle. Os níveis plasmáticos de glutationa foram maiores no G2-Dip em relação ao G1-Controle, e houve tendência a níveis mais elevados no G3-FreeAA. A redução das lesões histológicas, maior produção de fibroblastos, maior quantidade de glutationa podem ter beneficiado a evolução da necrose da queimadura, que mostrou maior preservação dos interespaços.
Assuntos
Animais , Masculino , Ratos , Queimaduras/tratamento farmacológico , Glutamina , Ratos Wistar , Dipeptídeos , Modelos Animais de Doenças , AminoácidosRESUMO
This study evaluated the effect of dietary supplementation with glutamine and glutamic acid (Gln+Glu) on performance, intestinal morphometry, and carcass characteristics of broiler quails. Eight hundred birds were used, distributed in an entirely randomized design with 20 birds per experimental unit, and given five treatments (0.0; 0.2; 0.4; 0.6; and 0.8% Gln+Glu supplementation) with eight replicates. At 1-21 days of age, lower (P < 0.05) feed intake at 0.6 and 0.8% Gln+Glu supplementation and lower weight gain at 0.8% Gln+Glu supplementation compared to the control treatment were observed. By regression analysis, excluding the control treatment, there was an increasing linear effect (P < 0.05) for feed intake at 22 to 42 days of age. For intestinal morphometry, Gln+Glu supplementation only favored the villus development of the ileum (P < 0.05), giving it greater height at 0.2, 0.6, and 0.8% supplementation. Carcass characteristics, cuts, and edible viscera of the birds at 42 days were not affected (P > 0.05) by Gln+Glu supplementation levels. Thus, the glutamine and glutamic acid supplementation affected the performance and intestinal morphology of 21-d-old quails, decreasing feed intake and weight gain associated with the improvement of ileum morphology; conversely, performance and carcass characteristics at 42 days were not affected by amino acid supplementation.
Objetivou-se avaliar o efeito da suplementação dietética de glutamina e ácido glutâmico (Gln+Glu) sobre o desempenho, a morfometria intestinal e as características de carcaça de codornas de corte. Foram utilizadas 800 aves, distribuídas em delineamento inteiramente casualizado, com cinco tratamentos (0,0; 0,2; 0,4; 0,6 e 0,8% de suplementação de Gln+Glu) e oito repetições com 20 aves por unidade experimental. Na fase de um a 21 dias, constatou-se menor (P < 0,05) consumo de ração aos níveis de 0,6 e 0,8% de Gln+Glu e menor ganho de peso ao nível 0,8% de Gln+Glu em comparação ao tratamento controle; e, pela análise de regressão, excluindo-se o tratamento controle, houve efeito linear crescente (P < 0,05) para consumo de ração na fase 22 a 42 dias de idade. Para morfometria intestinal, a suplementação de Gln+Glu apenas favoreceu o desenvolvimento vilos do íleo (P < 0,05), conferindo-lhe maior altura aos níveis de 0,2; 0,6 e 0,8% de suplementação. As características de carcaça, cortes e vísceras comestíveis das aves aos 42 dias não foram afetadas (P > 0,05) pelos níveis de suplementação de Gln+Glu. Assim, a suplementação de glutamina e ácido glutâmico influenciou o desempenho e a morfometria intestinal de codornas de corte aos 21 dias de idade, promovendo redução do consumo de ração e do ganho, associado ao aumento morfométrico do íleo; por outro lado, o desempenho das aves e as suas características de carcaça aos 42 dias não foram afetados pela suplementação dos aminoácidos.
Assuntos
Animais , Ácido Glutâmico , Suplementos Nutricionais , Coturnix/crescimento & desenvolvimento , Dieta/veterinária , GlutaminaRESUMO
Glioma cells exhibit genetic and metabolic alterations that affect the deregulation of several cellular signal transduction pathways, including those related to glucose metabolism. Moreover, oncogenic signaling pathways induce the expression of metabolic genes, increasing the metabolic enzyme activities and thus the critical biosynthetic pathways to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates that are essential to accomplish the biosynthetic needs of glioma cells. In this review, we aim to explore how dysregulated metabolic enzymes and their metabolites from primary metabolism pathways in glioblastoma (GBM) such as glycolysis and glutaminolysis modulate anabolic and catabolic metabolic pathways as well as pro-oncogenic signaling and contribute to the formation, survival, growth, and malignancy of glioma cells. Also, we discuss promising therapeutic strategies by targeting the key players in metabolic regulation. Therefore, the knowledge of metabolic reprogramming is necessary to fully understand the biology of malignant gliomas to improve patient survival significantly.
Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glutamina/metabolismo , Reprogramação Metabólica , Glicólise/fisiologia , Glioma/patologia , Transdução de Sinais , Apoptose , Proliferação de Células/fisiologiaRESUMO
AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.
Assuntos
Glutamina , Condicionamento Físico Animal , Ratos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Nutricionais , Glutamatos/farmacologia , Condicionamento Físico Animal/fisiologiaRESUMO
PURPOSE: To evaluate the effects of the experimental subcutaneous Walker-256 tumor and L-glutamine supplementation, an antioxidant, on the glomerular morphology of rats. METHODS: Twenty Wistar rats were distributed into four groups (n = 5): control (C); control treated with 2% L-glutamine (CG); rats with Walker-256 tumor (WT); and rats with Walker-256 tumor treated with 2% L-glutamine (WTG). Renal histological samples were submitted to periodic acid-Schiff and Masson's Trichrome staining to analyze glomerular density, morphometry of glomerular components and glomerulosclerosis; and to immunohistochemistry for fibroblast growth factor-2 (FGF-2). RESULTS: WT showed 50% reduction in body mass gain and cachexia index > 10%, while WTG demonstrated reduction in cachexia (p < 0.05). WT revealed reduction of glomerular density, increase in the glomerular tuft area, mesangial area, matrix in the glomerular tuft, decrease in the urinary space and synechia, and consequently higher glomerulosclerosis (p < 0.05). L-glutamine supplementation in the WTG improved glomerular density, and reduced glomerular tuft area, urinary space, mesangial area, and glomerulosclerosis compared to WT(p < 0.05). WT showed higher collagen area and FGF-2 expression compared to C (p < 0.05). WTG presented lower collagen fibers and FGF-2 expression compared to WT (p < 0.05). CONCLUSIONS: L-glutamine supplementation reduced cachexia and was beneficial for glomerular morphology of the rats, as well as it reduced kidney damage and improved the remaining glomeruli morphology.
Assuntos
Glutamina , Neoplasias , Ratos , Animais , Ratos Wistar , Glutamina/farmacologia , Caquexia/metabolismo , Caquexia/patologia , Fator 2 de Crescimento de Fibroblastos , Suplementos Nutricionais , ColágenoRESUMO
Glutaminase (GLS), which deaminates glutamine to form glutamate, is a mitochondrial tetrameric protein complex. Although inorganic phosphate (Pi) is known to promote GLS filamentation and activation, the molecular basis of this mechanism is unknown. Here we aimed to determine the molecular mechanism of Pi-induced mouse GLS filamentation and its impact on mitochondrial physiology. Single-particle cryogenic electron microscopy revealed an allosteric mechanism in which Pi binding at the tetramer interface and the activation loop is coupled to direct nucleophile activation at the active site. The active conformation is prone to enzyme filamentation. Notably, human GLS filaments form inside tubulated mitochondria following glutamine withdrawal, as shown by in situ cryo-electron tomography of cells thinned by cryo-focused ion beam milling. Mitochondria with GLS filaments exhibit increased protection from mitophagy. We reveal roles of filamentous GLS in mitochondrial morphology and recycling.
Assuntos
Glutaminase , Mitofagia , Camundongos , Humanos , Animais , Glutaminase/química , Glutaminase/metabolismo , Glutamina/metabolismo , Mitocôndrias/metabolismoRESUMO
L-glutaminase is a hydrolytic enzyme with wide biotechnological applications. Mostly, these enzymes are employed in the feed industry for flavor enhancement and acrylamide mitigation. Also, L-glutaminase may have antiviral and antineoplastic effects making it a good choice for pharmaceutical applications. In this study, the strain Monascus ruber URM 8542 was identified through classical and molecular taxonomy using partial sequencing of ß-tubulin and calmodulin genes. Subsequently, the optimal culture conditions were evaluated by submerged fermentation (L-glutamine 10 g.L- 1) for L-glutaminase excretion. The isolate was identified as M. ruber URM 8542 which showed significant extracellular enzyme production with a yield of 11.4 times in relation to the specific activity of intracellular L-glutaminase. Regarding the optimization experiments, several factors such as L-glutamine concentration, temperature, and pH were compared using a full factorial design (23). The concentrations greater than 1% proved to be significantly better for glutaminase production (R2 = 0.9077). Additionally, the L-glutaminase was optimally active at pH 7.0 and 30 ºC. The L-glutaminase was remarkably stable across an alkaline pH range (7.0-8.0) and had a thermal stability ranging from 30 ºC to 60 ºC for 1 h. Taken together, these findings suggest that the L-glutaminase produced by M. ruber is a promising candidate for pharmacological application, although further studies need to be performed. To the best of our knowledge, this is the first report of L-glutaminase production by Monascus ruber.
Assuntos
Sorvetes , Monascus , Glutaminase/genética , Glutamina , Monascus/genéticaRESUMO
PURPOSE: This study describes the first efforts to build a spectral library to identify four cell culture media in powder form with spectra obtained with a handheld Raman spectrometer. These complex mixtures contain over 30 components and are among the most widely used cell culture media. METHODS: A total of 32 spectra were collected for the four Dulbecco's Modified Eagle Medium cell culture media and pure materials (glucose and L-glutamine) in powder form. The spectra were preprocessed using standard normal variate with second derivative, and the barcode method before performing principal component analysis (PCA). RESULTS: The PCA model differentiated the pure glucose and the cell culture media according to the glucose concentration along the first principal component. The second principal component differentiated the three cell culture media with high glucose content according to the pyruvate concentration. The correlation coefficient showed that powdered cell culture media with high glucose concentration have a higher correlation with pure glucose, when compared with the cell culture media with low glucose. CONCLUSION: The Raman spectra made it possible to differentiate the four DMEM in the cell culture media from the majority of the external samples used in the method evaluation. However, sample heterogeneity affected the predictions. Additional studies are needed to improve the method's ability to differentiate the DMEM with high glucose.