Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.800
Filtrar
1.
Planta ; 254(4): 75, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34533620

RESUMO

MAIN CONCLUSION: Brassinosteroid (BR) synthesis genes in different cotton species was comprehensively identified, and the participation of GhCPD-3 in the BR synthesis signaling pathway for regulating plant development was verified. Brassinosteroid is a natural steroidal phytohormone that plays fundamental roles in plant growth and development. In cotton, detailed characterization and functional validation of BR biosynthesis genes remain rare. Here, 16, 8 and 9 BR biosynthesis genes were identified in Gossypium hirsutum, Gossypium raimondii and Gossypium arboreum, respectively, and their phylogenetic relationships, gene structures, conserved motifs of the encoded proteins, chromosomal locations were determined and a synteny analysis was performed. Gossypium hirsutum and Arabidopsis BR biosynthesis genes closely clustered in the phylogenetic tree and fragment duplication was likely the primary cause promoting gene family expansion in G. hirsutum. Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis showed their relevance as BR biosynthesis genes. GhCPD-3 was highly expressed in roots and stems and the loci of single nucleotide polymorphisms (SNPs) were significantly associated with these traits.Ectopic overexpression of GhCPD-3 in the cpd91 Arabidopsis mutant rescued the mutant phenotype by increasing plant height and leaf size in comparison to those of cpd91 and WT plants. Moreover, overexpressed GhCPD-3 in cpd91 mutants showed greater hypocotyl and root lengths than those of cpd91 and WT plants under light and dark conditions, respectively, indicating that BR actively promotes hypocotyl and root growth. Similar to CPD (CONSTITUTIVE PHOTOMORPHOGENIC DWARF), GhCPD-3 restores BR biosynthesis thereby mediating plant growth and development.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Gossypium/genética , Gossypium/metabolismo , Filogenia , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Ecotoxicol Environ Saf ; 223: 112557, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34343899

RESUMO

The impact of transgenic crops on non-target organisms is a key aspect of environmental safety assessment to transgenic crops. In the present study, we fed two snail species, Bradybaena (Acusta) ravida (B. ravida) and Bradybaena similaris (Ferussac)(B. similaris), with the leaves of transgenic Bt cotton Zhong 30 (Z30) and control cotton, its parent line zhong 16 (Z16), to assess the environmental safety of Bt cotton to common non-target organisms in the field. Survival, body weight, shell diameter, helix number, reproduction rate, superoxide dismutase (SOD) activity and Bt protein concentration in snails were monitored in 15 days and 180 days experiments. We also monitored the population dynamics of B. ravida and B. similaris in Z30 and Z16 cotton fields for two successive years. Compared to the snails fed on the control cotton Z16, there was no significant difference in survival, growth, reproduction, and SOD activity on Bt cotton Z30. Bt protein concentrations were significantly between different treatments, and Bt protein residues were only detected in the feces of the Z30 treatment. According to the field data, the number of B. ravida and B. similaris fluctuated considerably across seasons over the entire cotton-growing season; however, there were no significant differences between the Bt and control cotton fields at similar time. As the results showed, in our experiments, Bt cotton Z30 had no adverse effects on the two snail species, both in the laboratory and in the fields.


Assuntos
Produtos Agrícolas , Caramujos , Animais , Animais Geneticamente Modificados , Proteínas de Bactérias/genética , Endotoxinas/genética , Endotoxinas/toxicidade , Gossypium/genética , Proteínas Hemolisinas/genética , Plantas Geneticamente Modificadas , Reprodução , Caramujos/genética
3.
Planta ; 254(3): 62, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34459999

RESUMO

MAIN CONCLUSION: Majority of differentially expressed miRNAs with functional attributes have been recruited independently and parallelly during allopolyploidy followed by the millennia of human selection of both domesticated G. hirsutum and G. barbadense. The genus Gossypium is a marvelous evolutionary model for studying allopolyploidy and morpho-evolution of long-spinnable fibers from the ancestral wild-fuzz. Many genes, transcription factors, and notably, the regulatory miRNAs essentially govern such remarkable modern fiber phenotypes. To comprehend the impact of allopolyploidy on the evolutionary selection of transcriptional dynamicity of key miRNAs, comparative transcriptome profiling of vegetative and fiber tissues of domesticated diploid G. arboreum (A2) and allopolyploid cotton species G. hirsutum (AD1), and G. barbadense (AD2) identified > 300 differentially expressed miRNAs (DEmiRs) within or between corresponding tissues of A2, AD1 and AD2 species. Up to 49% and 32% DEmiRs were up- and down-regulated at fiber initiation stage of AD1 and AD2 species, respectively, whereas 50% and 18% DEmiRs were up- and down-regulated at fiber elongation stage of both the allopolyploid species. Interestingly, A-subgenome-specific DEmiRs exhibit expression dominance in the allopolyploid genetic backgrounds. Comparative spatio-temporal expression analyses of AD1 and AD2 species discovered that a majority of DEmiRs were recruited independently under millennia of human selection during domestication. Functional annotations of these DEmiRs revealed selection of associated molecular functions such as hormone-signaling, calcium-signaling and reactive oxygen species (ROS) signaling during fiber initiation and elongation. To validate the functional attributes of annotated DEmiRs, we demonstrated for the first time that the target-mimicry-based constitutive diminution of auxin-signaling associated miR167 directly affected the differentiation of floral and fiber tissues of transgenic cotton. These results strongly suggested that the evolutionarily favored DEmiRs including miR167 were involved in the transcriptional regulation of numerous genes during cotton evolution for enhanced fiber-associated agronomic traits.


Assuntos
Gossypium , MicroRNAs , Fibra de Algodão , Diploide , Domesticação , Regulação da Expressão Gênica de Plantas , Gossypium/genética , MicroRNAs/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-34343063

RESUMO

A Gram-negative bacterium, designated S1-65T, was isolated from soil samples collected from a cotton field located in the Xinjiang region of PR China. Results of 16S rRNA gene sequence analysis revealed that strain S1-65T was affiliated to the genus Steroidobacter with its closest phylogenetic relatives being 'Steroidobacter cummioxidans' 35Y (98.4 %), 'Steroidobacter agaridevorans' SA29-B (98.3 %) and Steroidobacter agariperforans KA5-BT (98.3 %). 16S rRNA-directed phylogenetic analysis showed that strain S1-65T formed a unique phylogenetic subclade next to 'S. agaridevorans' SA29-B and S. agariperforans KA5-BT, suggesting that strain S1-65T should be identified as a member of the genus Steroidobacter. Further, substantial differences between the genotypic properties of strain S1-65T and the members of the genus Steroidobacter, including average nucleotide identity and digital DNA-DNA hybridization, resolved the taxonomic position of strain S1-65T and suggested its positioning as representing a novel species of the genus Steroidobacter. The DNA G+C content of strain S1-65T was 62.5 mol%, based on its draft genome sequence. The predominant respiratory quinone was ubiquinone-8. The main fatty acids were identified as summed feature 3 (C16:1ω6c/C16:1ω7c), C16 : 0 and iso-C15 : 0. In addition, its polar lipid profile was composed of aminophospholipid, diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Here, we propose a novel species of the genus Steroidobacter: Steroidobacter gossypii sp. nov. with the type strain S1-65T (=JCM 34287T=CGMCC 1.18736T).


Assuntos
Gammaproteobacteria/classificação , Gossypium/microbiologia , Filogenia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
5.
BMC Plant Biol ; 21(1): 386, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416873

RESUMO

BACKGROUND: The abiotic stress such as soil salinization and heavy metal toxicity has posed a major threat to sustainable crop production worldwide. Previous studies revealed that halophytes were supposed to tolerate other stress including heavy metal toxicity. Though HMAD (heavy-metal-associated domain) was reported to play various important functions in Arabidopsis, little is known in Gossypium. RESULTS: A total of 169 G. hirsutum genes were identified belonging to the HMAD gene family with the number of amino acids ranged from 56 to 1011. Additionally, 84, 76 and 159 HMAD genes were identified in each G. arboreum, G. raimondii and G. barbadense, respectively. The phylogenetic tree analysis showed that the HMAD gene family were divided into five classes, and 87 orthologs of HMAD genes were identified in four Gossypium species, such as genes Gh_D08G1950 and Gh_A08G2387 of G. hirsutum are orthologs of the Gorai.004G210800.1 and Cotton_A_25987 gene in G. raimondii and G. arboreum, respectively. In addition, 15 genes were lost during evolution. Furthermore, conserved sequence analysis found the conserved catalytic center containing an anion binding (CXXC) box. The HMAD gene family showed a differential expression levels among different tissues and developmental stages in G. hirsutum with the different cis-elements for abiotic stress. CONCLUSIONS: Current study provided important information about HMAD family genes under salt-stress in Gossypium genome, which would be useful to understand its putative functions in different species of cotton.


Assuntos
Adaptação Fisiológica/genética , Estudo de Associação Genômica Ampla , Genótipo , Gossypium/genética , Gossypium/fisiologia , Metais Pesados/toxicidade , Filogenia , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Família Multigênica
6.
Biomolecules ; 11(8)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34439811

RESUMO

Verticillium wilt, primarily induced by the soil-borne fungus Verticillium dahliae, is a serious threat to cotton fiber production. There are a large number of really interesting new gene (RING) domain-containing E3 ubiquitin ligases in Arabidopsis, of which three (At2g39720 (AtRHC2A), At3g46620 (AtRDUF1), and At5g59550 (AtRDUF2)) have a domain of unknown function (DUF) 1117 domain in their C-terminal regions. This study aimed to detect and characterize the RDUF members in cotton, to gain an insight into their roles in cotton's adaptation to environmental stressors. In this study, a total of 6, 7, 14, and 14 RDUF (RING-DUF1117) genes were detected in Gossypium arboretum, G. raimondii, G. hirsutum, and G. barbadense, respectively. These RDUF genes were classified into three groups. The genes in each group were highly conserved based on gene structure and domain analysis. Gene duplication analysis revealed that segmental duplication occurred during cotton evolution. Expression analysis revealed that the GhRDUF genes were widely expressed during cotton growth and under abiotic stresses. Many cis-elements related to hormone response and environment stressors were identified in GhRDUF promoters. The predicted target miRNAs and transcription factors implied that GhRDUFs might be regulated by gra-miR482c, as well as by transcription factors, including MYB, C2H2, and Dof. The GhRDUF genes responded to cold, drought, and salt stress and were sensitive to jasmonic acid, salicylic acid, and ethylene signals. Meanwhile, GhRDUF4D expression levels were enhanced after V. dahliae infection. Subsequently, GhRDUF4D was verified by overexpression in Arabidopsis and virus-induced gene silencing treatment in upland cotton. We observed that V. dahliae resistance was significantly enhanced in transgenic Arabidopsis, and weakened in GhRDUF4D silenced plants. This study conducted a comprehensive analysis of the RDUF genes in Gossypium, hereby providing basic information for further functional studies.


Assuntos
Proteínas de Arabidopsis/genética , Resistência à Doença/genética , Gossypium/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Ubiquitina-Proteína Ligases/genética , Adaptação Fisiológica/genética , Adaptação Fisiológica/imunologia , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Sequência de Bases , Dedos de Zinco CYS2-HIS2/genética , Dedos de Zinco CYS2-HIS2/imunologia , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Gossypium/imunologia , Gossypium/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , MicroRNAs/genética , MicroRNAs/imunologia , Família Multigênica , Filogenia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Ubiquitina-Proteína Ligases/metabolismo
7.
Nat Genet ; 53(9): 1385-1391, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373642

RESUMO

Cotton produces natural fiber for the textile industry. The genetic effects of genomic structural variations underlying agronomic traits remain unclear. Here, we generate two high-quality genomes of Gossypium hirsutum cv. NDM8 and Gossypium barbadense acc. Pima90, and identify large-scale structural variations in the two species and 1,081 G. hirsutum accessions. The density of structural variations is higher in the D-subgenome than in the A-subgenome, indicating that the D-subgenome undergoes stronger selection during species formation and variety development. Many structural variations in genes and/or regulatory regions potentially influencing agronomic traits were discovered. Of 446 significantly associated structural variations, those for fiber quality and Verticillium wilt resistance are located mainly in the D-subgenome and those for yield mainly in the A-subgenome. Our research provides insight into the role of structural variations in genotype-to-phenotype relationships and their potential utility in crop improvement.


Assuntos
Fibra de Algodão/análise , Genoma de Planta/genética , Gossypium/genética , Gossypium/fisiologia , Agricultura/métodos , Ligação Genética , Variação Genética/genética , Genótipo , Gossypium/classificação , Fenótipo , Locos de Características Quantitativas/genética , Análise de Sequência de DNA , Indústria Têxtil/métodos
8.
Sensors (Basel) ; 21(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372418

RESUMO

Research on fusion modeling of high spatial and temporal resolution images typically uses MODIS products at 500 m and 250 m resolution with Landsat images at 30 m, but the effect on results of the date of reference images and the 'mixed pixels' nature of moderate-resolution imaging spectroradiometer (MODIS) images are not often considered. In this study, we evaluated those effects using the flexible spatiotemporal data fusion model (FSDAF) to generate fusion images with both high spatial resolution and frequent coverage over three cotton field plots in the San Joaquin Valley of California, USA. Landsat images of different dates (day-of-year (DOY) 174, 206, and 254, representing early, middle, and end stages of the growing season, respectively) were used as reference images in fusion with two MODIS products (MOD09GA and MOD13Q1) to produce new time-series fusion images with improved temporal sampling over that provided by Landsat alone. The impact on the accuracy of yield estimation of the different Landsat reference dates, as well as the degree of mixing of the two MODIS products, were evaluated. A mixed degree index (MDI) was constructed to evaluate the accuracy and time-series fusion results of the different cotton plots, after which the different yield estimation models were compared. The results show the following: (1) there is a strong correlation (above 0.6) between cotton yield and both the Normalized Difference Vegetation Index (NDVI) from Landsat (NDVIL30) and NDVI from the fusion of Landsat with MOD13Q1 (NDVIF250). (2) Use of a mid-season Landsat image as reference for the fusion of MODIS imagery provides a better yield estimation, 14.73% and 17.26% higher than reference images from early or late in the season, respectively. (3) The accuracy of the yield estimation model of the three plots is different and relates to the MDI of the plots and the types of surrounding crops. These results can be used as a reference for data fusion for vegetation monitoring using remote sensing at the field scale.


Assuntos
Produtos Agrícolas , Imagens de Satélites , Gossypium , Estações do Ano
9.
Braz J Biol ; 82: e243511, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34378680

RESUMO

Vegetable oils have their specific physicochemical properties due to which they are playing vital role in human nutritional diet for health benefits. Cottonseed oil is obtained from various species of cotton seeds that are famous to be grown mainly for their fiber quality. The most prominently used specie is Gossypium hirsutum. It is obvious that the seeds of different variety of cotton vary as grown in diverse agroclimatic conditions with respect to oil, fats and protein contents. Cottonseed oil is routinely used for cooking and food manufacturing products. Cottonseed oil obtained after proper extraction/processing steps from crude state to refined oil in a variety of ways. Cotton crop is considered for their dual-use purpose, for fiber quality and oil production to promote health benefits in the world. Keeping in view the above facts, this review clearly demonstrated an overview about physicochemical and functional properties of cottonseed oil to promote health benefits associated with the use of this oil. The overall characteristics and all concerned health benefits of CSO will further improve their usefulness is a compact way. We have summarized a brief multi-dimensional features of CSO in all aspects up to the best of our knowledge for the end researchers who can further research in the respective aspect.


Assuntos
Óleo de Sementes de Algodão , Promoção da Saúde , Gossypium , Humanos , Óleos Vegetais , Sementes
10.
Plant Physiol Biochem ; 166: 912-927, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34246106

RESUMO

Anthropogenic activities help the ozone formation at the troposphere which causes toxic effects on plants and humans. Ozone is a highly reactive gas that enters in plants through stomata and initiates the overproduction of ROS which causes oxidative stress in plants that lead to the destruction of membranal lipids, proteins, impaired the production of sugars and other metabolites and ultimately damage the cell. Presented study was conducted to assess the ozone toxicity on the biomass accumulation of cotton (Gossypium hirsutum L.) cultivars and the role of antioxidative activity in intraspecific sensitivity among the tested cultivars. Results showed that the ozone exposed plants have higher accumulation of H2O2 and MDA correspond to the EDU supplementation which increase the membrane permeability and adversely influence the protein, starch, and biomass accumulation and allocation of the experimental cotton cultivars. On the basis of biomass reduction, cotton cultivar ADC1 is the most sensitive cultivar, while cultivars G. Cot.21 > GADC-2 and G. Cot.13 is moderately sensitive and cultivar V-797 is the least sensitive to ozone stress. Activated defense mechanism such as enhanced activity of antioxidative compounds and enzymes detoxify the ROS by scavenging H2O2 and protects plants against damage. However, activation of defence is variable among the cultivars and corresponded to the biomass loss. Study concluded that the ozone sensitivity among the cotton cultivars depends on the scavenging of ROS. Further, study recommended cultivar ADC-1 as an assessment tool for ozone and cultivar V-797 for cultivation at ozone prone areas to minimize the agricultural loss.


Assuntos
Ozônio , Antioxidantes , Gossypium , Peróxido de Hidrogênio , Estresse Oxidativo , Ozônio/toxicidade
11.
Planta ; 254(2): 20, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34216275

RESUMO

MAIN CONCLUSION: The combined Agrobacterium- and biolistic-mediated methods of cotton transformation provide a straightforward and highly efficient protocol for obtaining transgenic cotton. Cotton (Gossypium spp.) is the most important crop for natural textile fiber production worldwide. Nonetheless, one of the main challenges in cotton production are the losses resulting from insect pests, pathogens, and abiotic stresses. One effective way to solve these issues is to use genetically modified (GM) varieties. Herein, we describe an improved protocol for straightforward and cost-effective genetic transformation of cotton embryo axes, merging biolistics and Agrobacterium. The experimental steps include (1) Agrobacterium preparation, (2) seed sterilization, (3) cotton embryo excision, (4) lesion of shoot-cells by tungsten bombardment, (5) Agrobacterium-mediated transformation, (6) embryo co-culture, (7) regeneration and selection of transgenic plants in vitro, and (8) molecular characterization of plants. Due to the high regenerative power of the embryonic axis and the exceptional ability of the meristem cells for plant regeneration through organogenesis in vitro, this protocol can be performed in approximately 4-10 weeks, with an average plant regeneration of about 5.5% (± 0.53) and final average transformation efficiency of 60% (± 0.55). The transgene was stably inherited, and most transgenic plants hold a single copy of the transgene, as desirable and expected in Agrobacterium-mediated transformation. Additionally, the transgene was stably expressed over generations, and transgenic proteins could be detected at high levels in the T2 generation of GM cotton plants. The T2 progeny showed no phenotypic or productivity disparity compared to wild-type plants. Collectively, the use of cotton embryo axes and the enhanced DNA-delivery system by combining particle bombardment and Agrobacterium infection enabled efficient transgenic plant recovery, overcoming usual limitations associated with the recalcitrance of several cotton genotypes subjected to somatic embryogenesis. The improved approach states this method's success for cotton genetic modification, allowing us to obtain GM cotton plants carrying traits, which are of fundamental relevance for the advancement of global agribusiness.


Assuntos
Agrobacterium , Biolística , Agrobacterium/genética , Agrobacterium tumefaciens/genética , Gossypium/genética , Plantas Geneticamente Modificadas , Têxteis , Transformação Genética
12.
Plant Biol (Stuttg) ; 23(5): 831-842, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34263979

RESUMO

Light-harvesting chlorophyll a/b binding (Lhc) family proteins play a significant role in photosynthetic processes. Our objective was systematic identification and analysis of the Lhc family in cotton, as well as the relationship between Lhc family genes and chlorophyll synthesis during photosynthetic processes. We used genome-wide identification, phylogenetic analysis, chromosomal distribution and collinearity to examine potential functions of Lhc superfamily genes in upland cotton. Subcellular localization, qRT-PCR, a yeast two hybrid (Y2H) , and Virus-induced gene silencing (VIGS) experiment were used to explore function of GhLhcb2.3. Focusing on GhLhc family, gene structural analysis of G. hirsutum Lhc family genes (GhLhc) indicated the conservation of selected Lhc family members. The expression pattern of GhLhc proteins shows that Lhc family proteins are important for photosynthetic processes in leaves. Results of subcellular localization and qRT-PCR in different cotton varieties showed that GhLhcb2.3 is closely related to chloroplast chlorophyll. Y2H found extensive heteromeric interactions between the GhLhcb2.3 and GhLhcb1.4. Subcellular localization revealed that GhLhcb1.4 is located in chloroplasts. VIGS showed that GhLhcb2.3 influenced chlorophyll a synthesis. We comprehensively identified Lhc family genes in cotton, characterized these genes and reveal the influence of GhLhcb2.3 on chlorophyll a synthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium , Clorofila A , Gossypium/genética , Gossypium/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
GM Crops Food ; 12(1): 382-395, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-34193022

RESUMO

The idea of enhanced methanol production from cell wall by pectin methyl esterase enzymes (PME) combined with expression of cry genes from Bacillus thuringiensis as a strategy to improve insect pest control in cotton is presented. We constructed a cassette containing two cry genes (cry1Fa and Cry32Aa) and two pme genes, one from Arabidopsis thaliana (AtPME), and other from Aspergillus. niger (AnPME) in pCAMBIA1301 plant expression vector using CAMV-35S promoter. This construction was transformed in Eagle-2 cotton variety by using shoot apex-cut Agrobacterium-mediated transformation. Expression of cry genes and pme genes was confirmed by qPCR. Methanol production was measured in control and in the cry and pme transformed plants showing methanol production only in transformed plants, in contrast to the non-transgenic cotton plants. Finally, insect bioassays performed with transgenic plants expressing cry and pme genes showed 100% mortality for Helicoverpa armigera (cotton bollworm) larvae, 70% mortality for Pectinophora gossypiella (pink bollworm) larvae and 95% mortality of Earias fabia, (spotted bollworm) larvae, that was higher than the transgenic plants expressing only cry genes that showed 84%, 49% and 79% mortality, respectively. These results demonstrate that Bt. cry-genes coupled with pme genes are an effective strategy to improve the control of different insect pests.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Endotoxinas/genética , Gossypium/genética , Proteínas Hemolisinas/genética , Resistência a Inseticidas , Larva , Metanol , Plantas Geneticamente Modificadas
14.
BMC Plant Biol ; 21(1): 331, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246235

RESUMO

BACKGROUND: As damage to the ecological environment continues to increase amid unreasonable amounts of irrigation, soil salinization has become a major challenge to agricultural development. Melatonin (MT) is a pleiotropic signal molecule and indole hormone, which alleviates the damage of abiotic stress to plants. MT has been confirmed to eliminate reactive oxygen species (ROS) by improving the antioxidant system and reducing oxidative damage under adversity. However, the mechanism by which exogenous MT mediates salt tolerance by regulating the photosynthetic capacity and ion balance of cotton seedlings still remains unknown. In this study, the regulatory effects of MT on the photosynthetic system, osmotic modulators, chloroplast, and anatomical structure of cotton seedlings were determined under 0-500 µM MT treatments with salt stress induced by treatment with 150 mM NaCl. RESULTS: Salt stress reduces the chlorophyll content, net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, PSII photochemical efficiency, PSII actual photochemical quantum yield, the apparent electron transfer efficiency, stomata opening, and biomass. In addition, it increases non-photochemical quenching. All of these responses were effectively alleviated by exogenous treatment with MT. Exogenous MT reduces oxidative damage and lipid peroxidation by reducing salt-induced ROS and protects the plasma membrane from oxidative toxicity. MT also reduces the osmotic pressure by reducing the salt-induced accumulation of Na+ and increasing the contents of K+ and proline. Exogenous MT can facilitate stomatal opening and protect the integrity of cotton chloroplast grana lamella structure and mitochondria under salt stress, protect the photosynthetic system of plants, and improve their biomass. An anatomical analysis of leaves and stems showed that MT can improve xylem and phloem and other properties and aides in the transportation of water, inorganic salts, and organic substances. Therefore, the application of MT attenuates salt-induced stress damage to plants. Treatment with exogenous MT positively increased the salt tolerance of cotton seedlings by improving their photosynthetic capacity, stomatal characteristics, ion balance, osmotic substance biosynthetic pathways, and chloroplast and anatomical structures (xylem vessels and phloem vessels). CONCLUSIONS: Our study attributes help to protect the structural stability of photosynthetic organs and increase the amount of material accumulation, thereby reducing salt-induced secondary stress. The mechanisms of MT-induced plant tolerance to salt stress provide a theoretical basis for the use of MT to alleviate salt stress caused by unreasonable irrigation, fertilization, and climate change.


Assuntos
Gossypium/metabolismo , Melatonina/metabolismo , Fotossíntese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/efeitos dos fármacos , Tolerância ao Sal/efeitos dos fármacos , Produtos Agrícolas/metabolismo
15.
Int J Biol Macromol ; 184: 967-980, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197850

RESUMO

Soil salinization is a vital factor that restricts the efficient and sustainable development of global agriculture. Studies enlightened that the C2H2 zinc finger proteins (C2H2-ZFP) were involved in regulating the stress response in plants. However, knowledge of the C2H2-ZFP subfamily C1 (ZAT; Zinc finger of Arabidopsis thaliana) in cotton is still a mystery. In this study, 47, 45, 94, and 88 ZAT genes were obtained from diploid A2, D5 and tetraploid AD1, AD2 cotton genomes, respectively. The function of hybridization and allopolyploidy in the evolutionary linkage of allotetraploid cotton was explained by the family of ZAT gene in 4 species. Duplication of gene activities indicates that the family of ZAT gene of cotton evolution was under strong purifying selection. The integration of previous transcriptome data related to NaCl stress, strongly suggests the GhZAT34 and GhZAT79 may interact with salt resistance in upland cotton. The expression level of certain ZAT genes, higher seed germination rate of transgenic Arabidopsis and gene- silenced cotton revealed that both genes were involved in the salt tolerance of upland cotton. This study may pave the substantial understandings into the role of ZATs genes in plants as well as suggest appropriate candidate genes for breeding of cotton varieties against salinity tolerance.


Assuntos
Arabidopsis/fisiologia , Gossypium/fisiologia , Tolerância ao Sal , Fatores de Transcrição/genética , Arabidopsis/genética , Dedos de Zinco CYS2-HIS2 , Diploide , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Seleção Genética , Tetraploidia , Fatores de Transcrição/química
16.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298948

RESUMO

Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.


Assuntos
Ascomicetos , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Gossypium , Doenças das Plantas , Fatores de Transcrição , Regulação para Cima , Fatores de Virulência , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
17.
Plant Mol Biol ; 106(6): 521-531, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34224063

RESUMO

KEY MESSAGE: We characterize a functional lincRNA, XH123 in cotton seedling in defense of cold stress. The silencing of XH123 leads to increased sensitivity to cold stress and the decay of chloroplast. Cotton, which originated from the arid mid-American region, is one of the most important cash crops worldwide. Cultivated cotton is now widely spread throughout high-altitude regions such as those in the far northwest of Asia. In such areas, spring temperatures below 12 ℃ impose cold stress on cotton seedlings, with concomitant threat of lost yield and productivity. It is documented that cold stress can induce differential expression of long noncoding RNAs (lncRNAs) in cotton; however, it is not yet clear if these cold-responsive lncRNAs are actively involved with tolerance of cold stress at the molecular level. Here, we select ten long intergenic non-coding RNAs as candidate genes and use virus-induced gene silencing and additional cold treatments to examine their roles in the response to cold stress during the cotton seedling stage. One such gene, XH123, was revealed to be involved in tolerance of cold stress. Specifically, XH123-silenced plants demonstrated sensitivity to cold stress, exhibiting chloroplast damage and increased endogenous levels of reactive oxygen species. The transcriptome profile of XH123-silenced seedlings was similar to that of cold-stressed seedlings having the known cold stress gene PIF3 silenced. These results imply that the lincRNA XH123 is actively involved with cold stress regulation in cotton during the seedling stage.


Assuntos
Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Gossypium/genética , RNA Longo não Codificante/genética , RNA de Plantas/genética , Adaptação Fisiológica/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Temperatura Baixa , Inativação Gênica , Gossypium/crescimento & desenvolvimento , Microscopia Eletrônica de Transmissão , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , RNA-Seq/métodos , Plântula/genética , Plântula/crescimento & desenvolvimento
18.
Theor Appl Genet ; 134(10): 3249-3261, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34240238

RESUMO

KEY MESSAGE: Genetic variation in a G. barbadense population was revealed using resquencing. GWAS on G.barbadense population identified several candidate genes associated with fiber strength and lint percentage. Gossypium barbadense is the second-largest cultivated cotton species planted in the world, which is characterized by high fiber quality. Here, we described the global pattern of genetic polymorphisms for 240 G. barbadense accessions based on the whole-genome resequencing. A total of 3,632,231 qualified single-nucleotide polymorphisms (SNPs) and 221,354 insertion-deletions (indels) were obtained. We conducted a genome-wide association study (GWAS) on 12 traits under four environments. Two traits with more stable associated variants, fiber strength and lint percentage, were chosen for further analysis. Three putative candidate genes, HD16 orthology (GB_D11G3437), WDL2 orthology (GB_D11G3460) and TUBA1 orthology (GB_D11G3471), on chromosome D11 were found to be associated with fiber strength, and one gene orthologous to Arabidopsis Receptor-like protein kinase HERK 1 (GB_A07G1034) was predicated to be the candidate gene for the lint percentage improvement. The identified genes may serve as promising targets for genetic engineering to accelerate the breeding process for G. barbadense and the high-density genome variation map constructed in this work may facilitate our understanding of the genetic architecture of cotton traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Sementes/genética , Cromossomos de Plantas/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Resistência à Tração
19.
Theor Appl Genet ; 134(10): 3237-3247, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34272568

RESUMO

KEY MESSAGE: Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level. Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Fenótipo , Infertilidade das Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/química , Flores/química , Perfilação da Expressão Gênica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética
20.
Plant Physiol Biochem ; 166: 328-340, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147725

RESUMO

Cytokinin (CK) is an important plant hormone that promotes plant cell division and differentiation, and participates in salt response under osmotic stress. LOGs (LONELY GUY) are CK-activating enzymes involved in CK synthesis. The LOG gene family has not been comprehensively characterized in cotton. In this study we identified 151 LOG genes from nine plant species, including 28 LOG genes in Gossypium hirsutum. Phylogenetic analysis divided LOG genes into three groups. Exon/intron structures and protein motifs of GhLOG genes were highly conserved. Synteny analysis revealed that several gene loci were highly conserved between the A and D sub-genomes of G. hirsutum with purifying selection pressure during evolution. Expression profiles showed that most LOG genes were constitutively expressed in eight different tissues. Furthermore, LOG genes can be regulated by abiotic stresses and phytohormone treatments. Moreover, subcellular localization revealed that GhLOG3_At resides inside the cell membrane. Overexpression of GhLOG3 enhanced salt tolerance in Arabidopsis. Virus-induced gene silencing (VIGS) of GhLOG3_At in cotton enhanced sensitivity of plants to salt stress with increased H2O2 contents and decreased chlorophyll and proline (PRO) activity. Our results suggested that GhLOG3_At induces salt stress tolerance in cotton, and provides a basis for the use of CK synthesis genes to regulate cotton growth and stress resistance.


Assuntos
Gossypium , Tolerância ao Sal , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Gossypium/metabolismo , Peróxido de Hidrogênio , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...