Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 834
Filtrar
1.
PLoS One ; 15(8): e0231805, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760118

RESUMO

Boron (B) is required during all growth stages of cotton crop, especially during boll formation. However, Typic Haplocambid soils of cotton growing belt in Pakistan are B-deficient, which results in low yield and economic returns. Foliar application of B improves cotton productivity; however, information is limited on the role of soil applied B in improving cotton growth and yield. The current study investigated the role of soil applied B in improving growth, yield and fiber quality of cotton crop. Five different B doses (i.e., 0.00, 2.60, 5.52, 7.78 and 10.04 mg kg-1 of soil) and two cotton cultivars (i.e., CIM-600 and CIM-616) were included in the study. Soil applied B (2.60 mg kg-1) significantly improved growth, yield, physiological parameters and fiber quality, while 10.04 mg kg-1 application improved B distribution in roots, seeds, leaves and stalks. Significant improvement was noted in plant height (12%), leaf area (3%), number of bolls (48%), boll size (59%), boll weight (52%), seed cotton yield (52%), photosynthesis (50%), transpiration rate (10%), stomatal conductance (37%) and water use efficiency (44%) of CIM-600 with 2.60 mg kg-1 compared to control treatment of CIM-616. Similarly, B accumulation in roots, seeds, leaves and stalk of CIM-600 was improved by 76, 41, 86 and 70%, respectively compared to control treatment. The application of 2.60 mg kg-1 significantly improved ginning out turn (6%), staple length (3.5%), fiber fineness (17%) and fiber strength (5%) than no B application. The results indicated that cultivar CIM-600 had higher ginning out turn (1.5%), staple length (5.4%), fiber fineness (15.5%) and fiber strength (1.8%) than CIM-616. In crux, 2.60 mg kg-1 soil B application improved growth, yield, physiological and fiber quality traits of cotton cultivar CIM-600. Therefore, cultivar CIM-600 and 2.60 mg kg-1 soil B application is recommended for higher yield and productivity.


Assuntos
Boro/metabolismo , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Biomassa , Fibra de Algodão/análise , Fertilizantes , Paquistão , Fotossíntese , Folhas de Planta/química , Raízes de Plantas/química , Sementes/química , Solo/química , Água
2.
Artigo em Inglês | MEDLINE | ID: mdl-32480238

RESUMO

The goal of this study was to investigate the impact of potassium deficiency on cotton seedling growth and development at the individual, physiological, biochemical, and molecular levels. Potassium is an important plant nutrient; our results show that potassium deficiency significantly affected cotton seedling growth and development, evidenced by reduced plant height, and total areas of the leaves and roots as well as further reduced both fresh and dry biomass of the entire plants. Potassium deficiency also significantly inhibited root and leaf respiration and leaf photosynthesis. Compared with the controls, potassium deficiency significantly inhibited root elongation and total root surface areas that further inhibited cotton seedlings to uptake nutrients from the medium. Potassium deficiency induced aberrant expression of both microRNAs (miRNAs) and their protein-coding targets. These miRNAs regulate plant root development as well as response to abiotic stresses. Potassium deficiency altered the expression of miRNAs that regulate the expression of protein-coding genes controlling root development and response to potassium deficiency. miRNAs regulate root development and further control plant development in cotton seedlings under potassium deficiency. In summary, potassium deficiency significantly affected the cotton seedling photosynthesis and respiration that resulted in inhibition of cotton seedling growth and development potentially due to the miRNA-mediated mechanism.


Assuntos
Gossypium/crescimento & desenvolvimento , MicroRNAs/genética , Potássio/fisiologia , Regulação da Expressão Gênica de Plantas , Folhas de Planta , Raízes de Plantas , Plântula/crescimento & desenvolvimento
3.
PLoS One ; 15(6): e0235317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598401

RESUMO

The Dof (DNA-binding one zinc finger) transcription factor family is a representative of plant-specific classes of transcription factors. In this study, we performed a genome-wide screening and characterization of the Dof gene family within two tetraploid species Gossypium barbadense, Gossypium hirsutum, and two diploid species Gossypium arboreum, Gossypium raimondii. 115, 116, 55 and 56 Dof genes were identified respectively and all of the genes contain a sequence encoding the Dof DNA-binding domain. Those genes were unevenly distributed across 13/26 chromosomes of the cotton. Genome comparison revealed that segmental duplication may have played crucial roles in the expansion of the cotton Dof gene family, and tandem duplication also played a minor role. Analysis of RNA-Seq data indicated that cotton Dof gene expression levels varied across different tissues and in response to different abiotic stress. Overall, our results could provide valuable information for better understanding the evolution of cotton Dof genes, and lays a foundation for future investigation in cotton.


Assuntos
Proteínas de Ligação a DNA/genética , Diploide , Genoma de Planta , Gossypium/genética , Proteínas de Plantas/genética , Tetraploidia , Dedos de Zinco/genética , Cromossomos de Plantas/genética , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Família Multigênica , Filogenia , Proteínas de Plantas/metabolismo
4.
Mol Genet Genomics ; 295(5): 1141-1153, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32462532

RESUMO

Fucosylation, one of the key posttranslational modifications, plays an important role in plants. It is involved in the development, signal transduction, reproduction, and disease resistance. α1,3-/4-Fucosyltransferase is responsible for transferring L-fucose from GDP-L-fucose to the N-glycan to exert fucosylational functions. However, the roles of the fucosyltransferase gene in cotton remain unknown. This study provided a comprehensive investigation of its possible functions. A genome-wide analysis identified four, four, eight, and eight FucT genes presented in the four sequenced cotton species, diploid Gossypium raimondii, G. arboreum, tetraploid G. hirsutum acc. TM-1, and G. barbadense cv. H7124, respectively. These FucTs were classified into two groups, with FucT4 homologs alone as a group. We isolated FucT4 in TM-1 and H7124, and named it GhFucT4 and GbFucT4, respectively. Quantitative RT-PCR and transcriptome data demonstrated that GhFucT4 had the highest expression levels in fibers among all GhFucT genes. Association studies and QTL co-localization supported the possible involvement of GhFucT4 in cotton fiber development. GhFucT4 and GbFucT4 shared high sequence identities, and FucT4 had higher expression in H7124 fiber tissues compared with TM-1. Furthermore, ectopic expression of FucT4 in transgenic Arabidopsis promoted root cell elongation, upregulated expression of genes related to cell wall loosening, and led to longer primary root. These results collectively indicate that FucT4 plays an important role in promoting cell elongation and modulating fiber development, which could be utilized to improve fiber quality traits in cotton breeding.


Assuntos
Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Gossypium/crescimento & desenvolvimento , Clonagem Molecular , Fibra de Algodão/normas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/classificação , Gossypium/enzimologia , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sequenciamento Completo do Genoma
5.
Mol Genet Genomics ; 295(3): 645-660, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32172356

RESUMO

Genetic male sterility (GMS) facilitates hybrid seed production in crops including cotton (Gossypium hirsutum). However, the genetic and molecular mechanisms specifically involved in this developmental process are poorly understood. In this study, small RNA sequencing, degradome sequencing, and transcriptome sequencing were performed to analyze miRNAs and their target genes during anther development in a GMS mutant ('Dong A') and its fertile wildtype (WT). A total of 80 known and 220 novel miRNAs were identified, 71 of which showed differential expressions during anther development. A further degradome sequencing revealed a total of 117 candidate target genes cleaved by 16 known and 36 novel miRNAs. Based on RNA-seq, 24, 11, and 21 predicted target genes showed expression correlations with the corresponding miRNAs at the meiosis, tetrad and uninucleate stages, respectively. In addition, a large number of differentially expressed genes were identified, most of which were involved in sucrose and starch metabolism, carbohydrate metabolism, and plant hormone signal transduction based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results of our study provide valuable information for further functional investigations of the important miRNAs and target genes involved in genetic male sterility and advance our understanding of miRNA regulatory functions during cotton anther development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Gossypium/crescimento & desenvolvimento , Gossypium/genética , MicroRNAs/genética , Mutação , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Transcriptoma
6.
PLoS One ; 15(1): e0228241, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32004326

RESUMO

Melatonin (MT; N-acetyI-5-methoxytryptamine) is an amine hormone involved in abiotic stress resistance. Previous studies have confirmed that melatonin can promote seed germination, mediate physiological regulation mechanisms, and stimulate crop growth under stress. However, the osmotic regulation mechanism by which exogenous melatonin mediates salt tolerance in cotton is still largely unknown. To investigate the effect of salt stress on melatonin concentration in germinating cotton seeds, we analyzed melatonin content over time during seed germination under different treatments. Melatonin content reached its minimum at day 6, while cotton germination rates peaked at day 6, indicating melatonin content and seed germination are correlated. Then we investigated the effects of 10-100 µM melatonin treatments on membrane lipid peroxides and osmotic adjustment substances during cotton seed germination under salt stress. Salt stress led to electrolyte leakage (EL) as well as accumulations of hydrogen peroxide (H2O2), malondialdehyde (MDA), organic osmotic substances (i.e., proline, soluble sugars), and inorganic osmotic substances (i.e., Na+, Cl-). Meanwhile, the contents of melatonin, soluble proteins, and K+ as well as the K+/Na+ balance decreased, indicating that salt stress inhibited melatonin synthesis and damaged cellular membranes, seriously affecting seed germination. However, melatonin pretreatment at different concentrations alleviated the adverse effects of salt stress on cotton seeds and reduced EL as well as the contents of H2O2, MDA, Na+, and Cl-. The exogenous application of melatonin also promoted melatonin, soluble sugar, soluble proteins, proline, and K+/Na+ contents under salt stress. These results demonstrate that supplemental melatonin can effectively ameliorate the repression of cotton seed germination by enhancing osmotic regulating substances and adjusting ion homeostasis under salt stress. Thus, melatonin may potentially be used to protect cotton seeds from salt stress, with the 20 µM melatonin treatment most effectively promoting cotton seed germination and improving salt stress tolerance.


Assuntos
Germinação/efeitos dos fármacos , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Melatonina/farmacologia , Osmose/efeitos dos fármacos , Estresse Salino/efeitos dos fármacos , Sementes/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Gossypium/citologia , Gossypium/metabolismo , Malondialdeído/metabolismo , Sementes/crescimento & desenvolvimento
7.
Artigo em Inglês | MEDLINE | ID: mdl-32050119

RESUMO

Crops, including cotton, are sensitive to nitrogen (N) and excessive use can lead to an increase in production costs and environmental problems. We hypothesized that the use of cotton genotypes with substantial root systems and high genetic potentials for nitrogen-use efficiency (NUE) would best address these problems. Therefore, the interspecific variations and traits contributing to NUE in six cotton genotypes having contrasting NUEs were studied in response to various nitrate concentrations. Large genotypic variations were observed in morphophysiological and biochemical traits, especially shoot dry weight, root traits, and N-assimilating enzyme levels. The roots of all the cotton genotypes were more sensitive to low-than high-nitrate concentrations, and the genotype CCRI-69 had the largest root system irrespective of the nitrate concentration. The root morphological traits were positively correlated with N-utilization efficiency and were more affected by genotype than nitrate concentration. Conversely, growth and N-assimilating enzyme levels were more affected by nitrate concentration and were positively correlated with N-uptake efficiency. Based on shoot dry weight, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting root systems, N metabolism, and NUEs. In the future, multi-omics techniques will be performed to identify key genes/pathways involved in N metabolism, which may have the potential to improve root architecture and increase NUE.


Assuntos
Gossypium , Nitrogênio , Raízes de Plantas , Genótipo , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
8.
Planta ; 251(2): 56, 2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32006110

RESUMO

MAIN CONCLUSION: The structure of the cotton uceA1.7 promoter and its modules was analyzed; the potential of their key sequences has been confirmed in different tissues, proving to be a good candidate for the development of new biotechnological tools. Transcriptional promoters are among the primary genetic engineering elements used to control genes of interest (GOIs) associated with agronomic traits. Cotton uceA1.7 was previously characterized as a constitutive promoter with activity higher than that of the constitutive promoter from the Cauliflower mosaic virus (CaMV) 35S gene in various plant tissues. In this study, we generated Arabidopsis thaliana homozygous events stably overexpressing the gfp reporter gene driven by different modules of the uceA1.7 promoter. The expression level of the reporter gene in different plant tissues and the transcriptional stability of these modules was determined compared to its full-length promoter and the 35S promoter. The full-length uceA1.7 promoter exhibited higher activity in different plant tissues compared to the 35S promoter. Two modules of the promoter produced a low and unstable transcription level compared to the other promoters. The other two modules rich in cis-regulatory elements showed similar activity levels to full-length uceA1.7 and 35S promoters but were less stable. This result suggests the location of a minimal portion of the promoter that is required to initiate transcription properly (the core promoter). Additionally, the full-length uceA1.7 promoter containing the 5'-untranslated region (UTR) is essential for higher transcriptional stability in various plant tissues. These findings confirm the potential use of the full-length uceA1.7 promoter for the development of new biotechnological tools (NBTs) to achieve higher expression levels of GOIs in, for example, the root or flower bud for the efficient control of phytonematodes and pest-insects, respectively, in important crops.


Assuntos
Gossypium/genética , Regiões 5' não Traduzidas , Arabidopsis/genética , Caulimovirus/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genes Reporter , Engenharia Genética , Gossypium/anatomia & histologia , Gossypium/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
9.
Can J Microbiol ; 66(3): 228-242, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31944857

RESUMO

Rhizosphere bacteria are key determinants of plant health and productivity. In this study, we used PCR-based next-generation sequencing to reveal the diversity and community composition of bacteria in the cotton rhizosphere from samples collected in Xinjiang Province, China. We identified 125 bacterial classes within 49 phyla from these samples. Proteobacteria (33.07% of total sequences), Acidobacteria (19.88%), and Gemmatimonadetes (11.19%) dominated the bacterial community. Marked differences were evident in the α-diversity of rhizosphere bacteria during different cotton plant growth and development stages. The operational taxonomic unit (OTU) numbers were highest in seedling and bud stages and decreased at the flowering and fruit-boll-opening stages. Forty-three OTUs from the Proteobacteria were common to all four periods of cotton development. Proteobacteria were more abundant in the rhizospheres of cotton from southern Xinjiang than from northern Xinjiang, while the opposite trend was observed for Acidobacteria. Gemmatimonadetes frequency was broadly the same in both northern and southern Xinjiang. These results suggest that there is abundant diversity in the microbiota of cotton rhizosphere soil. Proteobacteria and Actinobacteria dominated this microbial niche and bacterial communities in the seedling, bud, flowering, and boll-opening stages appear to be more similar to one another than to communities at the other growth stages.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Gossypium/microbiologia , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , China , Gossypium/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Rizosfera , Solo/química
10.
PLoS One ; 15(1): e0228335, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31978138

RESUMO

Precise choice of potassium (K) source and application method does matter for its cost-effectiveness. This study was aimed to evaluate the best source and method of K fertilizer application to improve cotton productivity and profitability under an arid climate. Three different K sources (KNO3, K2SO4 and KCl) were applied at 100 kg ha-1 by four methods, i.e. a) basal application, b) side dressing, c) fertigation and d) foliar application of 2% K2SO4. The highest productivity and profitability were recorded with K2SO4 applied as foliar application. Total boll weight per plant was similar in foliar applied K2SO4 and basal application of KNO3. Better boll opening in foliar applied K2SO4, perhaps, played decisive role for increased seed-cotton yield. For basal application and side dressing, KNO3 produced the highest seed-cotton yield, but the benefit cost ratio was better for foliar applied K2SO4. In crux, foliar application of K2SO4 might be opted to improve the seed cotton yield, fiber quality and net returns under the arid climate. However, soil K application through K2SO4 and/or KNO3 is essential to balance the K removal from soil.


Assuntos
Misturas Complexas/química , Gossypium/crescimento & desenvolvimento , Nitratos/farmacologia , Cloreto de Potássio/farmacologia , Compostos de Potássio/farmacologia , Sulfatos/farmacologia , Clima Desértico , Fertilizantes , Gossypium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Solo/química
11.
Artigo em Inglês | MEDLINE | ID: mdl-31928681

RESUMO

Assuring fiber yield stability is the primary objective for cotton breeders since the world population is on the rise, and the demand for cotton fiber is increasing every year. Thus, enhancing average cotton boll weight (BWT) could improve seed cotton production, and ultimately to increase cotton fiber yield. This study accomplished the map-based cloning of a novel boll weight regulating locus, qBWT-c12, in cotton. Bulk segregation analysis detected linked markers, aided in the detection of a stable BWT regulating locus, qBWT-c12, on Chr12 in a novel boll size mutant, BS41. Progeny evaluation confined the qBWT-c12 to a 0.89 cM interval between the AD-A12_07 and AD-FM_44 markers in recombinant derived F3 and F4 populations. Homology mapping detected a 40 bp insertion-deletion (InDel) site in the AD-FM_44 clone sequence situated +341 downstream of GhBRH1_A12, which showed complete linkage to the BWT phenotype. The suppressed expression of GhBRH1_A12 suggested its putative involvement during early boll development events in BS41. Although brassinosteroid (BR) biosynthesis and signaling pathway genes were up regulated in different tissues, but the organ growth was suppressed leading to dwarf plants, smaller leaves, and de-morphed smaller bolls in BS41. Thus, a disruption in the BR signal cascade is anticipated and could be related to lower GhBRH1_A12 expression in BS41.This study firstly reported the genetic dissection of boll size regulation of G. barbadense in G. hirsutum background using map-based cloning of a BWT regulating locus, qBWT-c12. Moreover, it also emphasized the putative role GhBRH1_A12 in regulating BR homeostasis and its potential to modulate plant growth and boll development in cotton.


Assuntos
Brassinosteroides/metabolismo , Mapeamento Cromossômico , Loci Gênicos/fisiologia , Gossypium/fisiologia , Clonagem Molecular , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Tamanho do Órgão/genética
12.
Huan Jing Ke Xue ; 41(1): 420-429, 2020 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854945

RESUMO

A five year field experiment was conducted to evaluate the effect of continually returning cotton straw or biochar on microbial metabolic function and bacterial community composition of soil in a cotton field under drip irrigation conditions. The experiment involved three treatments:control (single application of chemical fertilizer, CK), cotton straw (returning of cotton straw plus chemical fertilizer application, ST), and biochar (returning of cotton straw biochar plus chemical fertilizer application, BC). The returning of cotton straw and biochar both significantly increased soil organic matter, total nitrogen, and available nutrients, but the effect of returning biochar was more significant. The carbon source metabolic activities of the soil in the ST treatment was the highest, followed by the BC treatment, which was significantly higher than of that in the CK treatment. The returning of cotton straw promoted the metabolism of carbohydrate and amine carbon sources, while biochar significantly increased the metabolism of polymer carbon sources. Compared with the CK treatment, the ST treatment significantly increased the phylum of Proteobacteria, Actinobacteria, Bacteroides, and the family of Xanthomonadaceae, Acidobacteriaceae, Microbacteriaceae, and Cytophagaceae. The BC treatment significantly increased the phylum of Acidobacteria, Gemmatimonadetes, Nitrospirae, and the family of Blastocatellaceae (subgroup 4), Gemmatimonadaceae, and Nitrosomonadaceae. The correlation analysis showed that there were significant positive correlations between the relative abundances of Xanthomonadaceae and Acidobacteriaceae and the carbon source metabolic activities of carbohydrates, amino acids, carboxylic acids, and amines. The relative abundances of Microbacteriaceae and Cytophagaceae were positively correlated with carbohydrates and amines. There was a significant positive correlation between the relative abundance of Blastocatellaceae (subgroup 4), Gemmatimonadaceae, Nitrosomonadaceae and the carbon metabolism of polymers. These results suggest that the continual returning of biochar increased soil nutrients, change bacterial community composition, and promoted the metabolic activity of polymer carbon sources in the drip-irrigated cotton field.


Assuntos
Bactérias/metabolismo , Carvão Vegetal , Microbiologia do Solo , Irrigação Agrícola , Bactérias/classificação , Fertilizantes , Gossypium/crescimento & desenvolvimento
13.
PLoS One ; 14(12): e0226776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31869397

RESUMO

Soil salinity is a major abiotic stress factor that limits cotton production worldwide. To improve salt tolerance in cotton, an in-depth understanding of ionic balance is needed. In this study, a pot experiment using three levels of soil salinity (0%, 0.2%, and 0.4%, represented as CK, SL, and SH, respectively) and two cotton genotypes (salt-tolerant genotype: L24; salt-sensitive genotype: X45) was employed to investigate how sodium chloride (NaCl) stress effects cotton growth, ion distribution, and transport, as well as to explore the related mechanism. The results showed that SL treatment mainly inhibited shoot growth, while SH treatment caused more extensive impairment to roots and shoots. The growth inhibition ratio of NaCl stress on X45 was more marked than that of L24. Under NaCl stress, the Na concentration in the roots, stems and leaves significantly increased, whereas the K, Cu, B, and Mo concentration in roots, as well as Mg and S concentrations in the leaves, significantly decreased. Under salt stress conditions, salt-tolerant cotton plants can store Na in the leaves, and as a result, a larger amount of minerals (e.g., Cu, Mo, Si, P, and B) tend to transport to the leaves. By contrast, salt-sensitive varieties tend to accumulate certain minerals (e.g., Ca, P, Mg, S, Mn, Fe, Cu, B, Mo, and Si) in the roots. Most genes related to ion transport and homeostasis were upregulated in L24, but not in X45. The expression level of GhSOS1 in X45 was higher than L24, but GhNHX1 in L24 was higher than X45. Our findings suggest that the two varieties response to salt stress differently; for X45 (salt-sensitive), the response is predominantly governed by Na+ efflux, whereas for L24 (salt-tolerant), vacuolar sequestration of Na+ is the major mechanism. The expression changes of the genes encoding the ion transporters may partially explain the genotypic difference in leaf ion accumulation under salt stress conditions.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/genética , Plantas Tolerantes a Sal/genética , Transcriptoma , Gossypium/crescimento & desenvolvimento , Gossypium/fisiologia , Transporte de Íons , Íons/metabolismo , Proteínas de Plantas/genética , Salinidade , Estresse Salino , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Plantas Tolerantes a Sal/fisiologia , Cloreto de Sódio/metabolismo
14.
BMC Bioinformatics ; 20(Suppl 25): 688, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31874611

RESUMO

BACKGROUND: The occurrence of cotton pests and diseases has always been an important factor affecting the total cotton production. Cotton has a great dependence on environmental factors during its growth, especially climate change. In recent years, machine learning and especially deep learning methods have been widely used in many fields and have achieved good results. METHODS: First, this papaer used the common Aprioro algorithm to find the association rules between weather factors and the occurrence of cotton pests. Then, in this paper, the problem of predicting the occurrence of pests and diseases is formulated as time series prediction, and an LSTM-based method was developed to solve the problem. RESULTS: The association analysis reveals that moderate temperature, humid air, low wind spreed and rain fall in autumn and winter are more likely to occur cotton pests and diseases. The discovery was then used to predict the occurrence of pests and diseases. Experimental results showed that LSTM performs well on the prediction of occurrence of pests and diseases in cotton fields, and yields the Area Under the Curve (AUC) of 0.97. CONCLUSION: Suitable temperature, humidity, low rainfall, low wind speed, suitable sunshine time and low evaporation are more likely to cause cotton pests and diseases. Based on these associations as well as historical weather and pest records, LSTM network is a good predictor for future pest and disease occurrences. Moreover, compared to the traditional machine learning models (i.e., SVM and Random Forest), the LSTM network performs the best.


Assuntos
Clima , Gossypium/parasitologia , Redes Neurais de Computação , Doenças das Plantas/parasitologia , Área Sob a Curva , Gossypium/crescimento & desenvolvimento , Umidade , Curva ROC , Estações do Ano , Temperatura
15.
BMC Plant Biol ; 19(1): 573, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864311

RESUMO

BACKGROUND: Mepiquat chloride (MC), a plant growth regulator, enhances root growth by promoting lateral root formation in cotton. However, the underlying molecular mechanisms of this phenomenon is still unknown. METHODS: In this study, we used 10 cotton (Gossypium hirsutum Linn.) cultivars to perform a seed treatment with MC to investigate lateral root formation, and selected a MC sensitive cotton cultivar for dynamic monitor of root growth and transcriptome analysis during lateral root development upon MC seed treatment. RESULTS: The results showed that MC treated seeds promotes the lateral root formation in a dosage-depended manner and the effective promotion region is within 5 cm from the base of primary root. MC treated seeds induce endogenous auxin level by altering gene expression of both gibberellin (GA) biosynthesis and signaling and abscisic acid (ABA) signaling. Meanwhile, MC treated seeds differentially express genes involved in indole acetic acid (IAA) synthesis and transport. Furthermore, MC-induced IAA regulates the expression of genes related to cell cycle and division for lateral root development. CONCLUSIONS: Our data suggest that MC orchestrates GA and ABA metabolism and signaling, which further regulates auxin biosynthesis, transport, and signaling to promote the cell division responsible for lateral root formation.


Assuntos
Gossypium/efeitos dos fármacos , Organogênese Vegetal/efeitos dos fármacos , Piperidinas/farmacologia , Reguladores de Crescimento de Planta/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Homeostase , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética
16.
An Acad Bras Cienc ; 91(4): e20180695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31721917

RESUMO

Conventional cotton production in western Bahia, Brazil, involves intensive use of agricultural inputs and mechanization, which may affect arbuscular mycorrhizal fungi (AMF). This work aimed at studying the impact of conventional and organic cotton production in the AMF of western Bahia. Soil samples were obtained from conventional white cotton and colored cotton organic production systems as well as from native Cerrado areas, close to the white cotton fields, and from the subcaducifolia vegetation, close to the organic colored cotton farms. The most frequent species in the conventional farming areas belonged to the genera Acaulospora (10 spp.); Glomus (8 spp.); Dentiscutata (3 spp.); Ambispora, Pacispora and Scutellospora (2 spp. each), as well as Claroideoglomus etunicatum, Diversispora sp., Entrophospora infrequens, Gigaspora sp., Orbispora pernambucana, Paradentiscutata maritima, and Paraglomus occultum. Eighteen species were found in the organic farming areas, with the predominance of Glomus (5 spp.) and Acaulospora (5 spp.), and with Claroideoglomus, Dentiscutata, Gigaspora, Corymbiglomus, Orbispora, Paraglomus, Scutellospora, and Simiglomus (1 spp. each). Paraglomus bolivianum was first reported in Cerrado. In the native vegetation, nine species were found, with the predominance of Glomus and Acaulospora. The highest number of AMF species was found in the organic farming areas, which deserves further investigation.


Assuntos
Gossypium/microbiologia , Micorrizas/classificação , Microbiologia do Solo , Agricultura , Brasil , Gossypium/crescimento & desenvolvimento
17.
Genes (Basel) ; 10(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756984

RESUMO

Cotton plays an important role in the economy of many countries. Many studies have revealed that numerous genes and various metabolic pathways are involved in anther development. In this research, we studied the differently expressed mRNA and lncRNA during the anther development of cotton between the cytoplasmic male sterility (CMS) line, C2P5A, and the maintainer line, C2P5B, using RNA-seq analysis. We identified 17,897 known differentially expressed (DE) mRNAs, and 865 DE long noncoding RNAs (lncRNAs) that corresponded to 1172 cis-target genes at three stages of anther development using gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DE mRNAs; and cis-target genes of DE lncRNAs probably involved in the degradation of tapetum cells, microspore development, pollen development, and in the differentiation, proliferation, and apoptosis of the anther cell wall in cotton. Of these DE genes, LTCONS_00105434, LTCONS_00004262, LTCONS_00126105, LTCONS_00085561, and LTCONS_00085561, correspond to cis-target genes Ghir_A09G011050.1, Ghir_A01G005150.1, Ghir_D05G003710.2, Ghir_A03G016640.1, and Ghir_A12G005100.1, respectively. They participate in oxidative phosphorylation, flavonoid biosynthesis, pentose and glucuronate interconversions, fatty acid biosynthesis, and MAPK signaling pathway in plants, respectively. In summary, the transcriptomic data indicated that DE lncRNAs and DE mRNAs were related to the anther development of cotton at the pollen mother cell stage, tetrad stage, and microspore stage, and abnormal expression could lead to anther abortion, resulting in male sterility of cotton.


Assuntos
Flores/genética , Gossypium/genética , RNA Longo não Codificante , RNA Mensageiro , Transcriptoma , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Gossypium/crescimento & desenvolvimento
18.
BMC Plant Biol ; 19(1): 443, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31651240

RESUMO

BACKGROUND: Flavonoids have essential roles in flower pigmentation, fibre development and disease resistance in cotton. Previous studies show that accumulation of naringenin in developing cotton fibres significantly affects fibre growth. This study focused on determining the effects of the flavonoids naringenin, dihydrokaempferol, dihydroquerectin and eriodictyol on fibre development in an in vitro system. RESULTS: 20 µM eriodictyol treatment produced a maximum fibre growth, in terms of fibre length and total fibre units. To gain insight into the associated transcriptional regulatory networks, RNA-seq analysis was performed on eriodictyol-treated elongated fibres, and computational analysis of differentially expressed genes revealed that carbohydrate metabolism and phytohormone signaling pathways were differentially modulated. Eriodictyol treatment also promoted the biosynthesis of quercetin and dihydroquerectin in ovules and elongating fibres through enhanced expression of genes encoding chalcone isomerase, chalcone synthase and flavanone 3-hydroxylase. In addition, auxin biosynthesis and signaling pathway genes were differentially expressed in eriodictyol-driven in vitro fibre elongation. In absence of auxin, eriodictyol predominantly enhanced fibre growth when the localized auxin gradient was disrupted by the auxin transport inhibitor, triiodobenzoic acid. CONCLUSION: Eriodictyol was found to significantly enhance fibre development through accumulating and maintaining the temporal auxin gradient in developing unicellular cotton fibres.


Assuntos
Flavanonas/farmacologia , Flavonoides/biossíntese , Gossypium/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Planta/metabolismo , Transporte Biológico/efeitos dos fármacos , Fibra de Algodão , Gossypium/efeitos dos fármacos
19.
PLoS One ; 14(10): e0207903, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31626665

RESUMO

Rhizosphere fungal communities exert important influencing forces on plant growth and health. However, information on the dynamics of the rhizosphere fungal community structure of the worldwide economic crop cotton (Gossypium spp.) is limited. In the present study, next-generation sequencing of nuclear ribosomal internal transcribed spacer-1 (ITS1) was performed to characterize the rhizosphere fungal communities of G. hirsutum cv. TM-1 (upland cotton) and G. barbadense cv. Hai 7124 (island cotton). The plants were grown in field soil (FS) that had been continuously cropped with cotton and nutrient-rich soil (NS) that had not been cropped. The fungal species richness, diversity, and community composition were analyzed and compared among the soil resources, cotton genotypes, and developmental stages. We found that the fungal community structures were different between the rhizosphere and bulk soil and the difference were significantly varied between FS and NS. Our results suggested that cotton rhizosphere fungal community structure variation may have been primarily influenced by the interaction of cotton roots with different soil resources. We also found that the community composition of the cotton rhizosphere fungi varied significantly during different developmental stages. In addition, we observed fungi that was enriched or depleted at certain developmental stages and genotypes in FS and NS, and these insights can lay a foundation for deep research into the dynamics of pathogenic fungi and nutrient absorption of cotton roots. This research illustrates the characteristics of the cotton rhizosphere fungal communities and provides important information for understanding the potential influences of rhizosphere fungal communities on cotton growth and health.


Assuntos
Fungos , Gossypium , Consórcios Microbianos/fisiologia , Rizosfera , Microbiologia do Solo , Tetraploidia , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Gossypium/crescimento & desenvolvimento , Gossypium/microbiologia
20.
Acta Biochim Biophys Sin (Shanghai) ; 51(11): 1168-1177, 2019 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-31620780

RESUMO

Cotton fiber developmental transition from elongation to secondary cell wall biosynthesis is a critical growth shifting phase that affects fiber final length, strength, and other properties. Morphological dynamic analysis indicated an asynchronous fiber developmental pattern between two most important commercial cotton species, Gossypium hirsutum (Gh) and G. barbadense (Gb). Using isobaric tags for relative and absolute quantitation techniques, we examined the temporal changes of protein expression at three representative development periods (15-19, 19-23, and 23-27 dpa) in both species. Strikingly, a large proportion of differentially expressed proteins (DEPs) were identified at 19-23 dpa in Gh and at 23-27 dpa in Gb, corresponding to their fiber developmental transition timing. To better understand fiber transitional development, we comparatively analyzed those DEPs in 19-23 dpa of Gh vs. in 23-27 dpa of Gb, and noted that these cotton species indeed share fundamentally similar fiber developmental features under the biological processes. We also showed that there are limited overlaps in both specific upregulated and downregulated proteins between the two species, suggesting species-specific protein regulations in the development process. Proteomic profiling results revealed dynamic changes of several key proteins and biological processes that are potentially correlated with fiber developmental transition. During the transition, upregulated proteins are mainly involved in carbohydrate/energy metabolism, oxidation-reduction, cytoskeleton, protein turnover, Ca2+ signaling, etc., whereas important downregulated proteins are mostly involved in phenylpropanoid and flavonoid secondary metabolism pathways. The gene expressions of several changed proteins in this key stage were also examined by quantitative reverse transcription polymerase chain reaction. Overall, the present study provides accurate pictures of the regulatory networks of functional proteins during the fiber developmental transition, therefore highlighting candidate genes/proteins and related pathways for the cotton fiber improvement.


Assuntos
Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Fibra de Algodão , Regulação da Expressão Gênica de Plantas , Proteômica/métodos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA