Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.092
Filtrar
1.
BMC Plant Biol ; 19(1): 350, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409298

RESUMO

BACKGROUND: The pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants. PPR proteins function in organelles to target specific transcripts and are involved in plant development and growth. However, the function of PPR proteins in cotton is still unknown. RESULTS: In this study, we characterized a PPR gene YELLOW-GREEN LEAF (GhYGL1d) that is required for cotton plastid development. The GhYGL1d gene has a DYW domain in C-terminal and is highly express in leaves, localized to the chloroplast fractions. GhYGL1d share high amino acid-sequence homology with AtECB2. In atecb2 mutant, overexpression of GhYGL1d rescued the seedling lethal phenotype and restored the editing of accD and ndhF transcripts. Silencing of GhYGL1d led to the reduction of chlorophyll and phenotypically yellow-green leaves in cotton. Compared with wild type, GhYGL1d-silenced cotton showed significant deformations of thylakoid structures. Furthermore, the transcription levels of plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP) dependent genes were decreased in GhYGL1d-silenced cotton. CONCLUSIONS: Our data indicate that GhYGL1d not only contributes to the editing of accD and ndhF genes, but also affects the expression of NEP- and PEP-dependent genes to regulate the development of thylakoids, and therefore regulates leaf variegation in cotton.


Assuntos
Cloroplastos/genética , Gossypium/genética , Proteínas de Plantas/fisiologia , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Gossypium/anatomia & histologia , Gossypium/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
BMC Plant Biol ; 19(1): 312, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307379

RESUMO

BACKGROUND: The WOX (WUSCHEL-RELATED HOMEOBOX) gene family encodes a class of transcription factors that are unique to green plants, where they are involved in regulating the development of plant tissues and organs by determining cell fate. Although the importance of the WOX gene is well known, there are few studies describing their functions in cotton. RESULTS: In this study, 32 WOX genes were found in Gossypium hirsutum. Phylogenetic analysis showed that WOX proteins of cotton can be divided into three clades: the ancient, intermediate, and WUS clades. The number of WOX proteins in the WUS clade was greater than the sum of the proteins in the other two clades. Our analysis revealed that 20 GhWOX genes are distributed on 16 cotton chromosomes and that duplication events are likely to have contributed to the expansion of the GhWOX family. All GhWOX genes have introns, and each GhWOX protein contains multiple motifs. RNA-seq data and real-time PCR showed that GhWOX13 gene subfamily is specifically expressed at a high level in cotton fibers. We also identified putative GA, NAA, and BR response elements in the promoter regions of the GhWOX13 genes and GhWOX13 transcripts were significantly induced by GA, NAA, and BR. CONCLUSIONS: Our data provides a useful resource for future studies on the functional roles of cotton WOX genes and shows that the GhWOX13 genes may influence cotton fiber development. Our results also provide an approach for identifying and characterizing WOX protein genes in other species.


Assuntos
Fibra de Algodão , Genes de Plantas , Gossypium/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Filogenia , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética
3.
BMC Plant Biol ; 19(1): 322, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319793

RESUMO

BACKGROUND: Besides fibers, cotton plants also produce a large amount of seeds with a high oil and protein content. The use of these seeds is restricted by their high contents of the terpenoid gossypol, which is harmful to humans and livestock. Using a genetic engineering approach, "Ultra-low gossypol cottonseed" (ULGCS) plants were produced by knocking down an enzyme that catalyzes the formation of a precursor of gossypol. This was accomplished via RNAi-mediated silencing of the target gene using a seed-specific α-globulin promotor. Since gossypol is also a crucial defense mechanism against leaf-feeding herbivores, ULGCS plants might possess lower herbivore resistance than non-engineered plants. Therefore, we tested the constitutive and inducible direct insect resistance of two ULGCS cotton lines against the African cotton leafworm, Spodoptera littoralis. RESULT: The herbivore was equally affected by both ULGCS lines and the control (Coker 312) line when feeding on fully expanded true leaves from undamaged plants and plants induced by jasmonic acid. When plants were induced by caterpillar-damage, however, S. littoralis larvae performed better on the ULGCS plants. Terpenoid analyses revealed that the ULGCS lines were equally inducible as the control plants. Levels of terpenoids were always lower in one of the two lines. In the case of cotyledons, caterpillars performed better on ULGCS cotton than on conventional cotton. This was likely caused by reduced levels of gossypol in ULGCS cotyledons. CONCLUSION: Despite those effects, the insect resistance of ULGSC cotton can be considered as largely intact and the plants may, therefore, be an interesting alternative to conventional cotton varieties.


Assuntos
Gossypium/fisiologia , Gossipol/metabolismo , Animais , Cotilédone/química , Técnicas de Silenciamento de Genes , Gossypium/genética , Gossipol/análise , Herbivoria , Larva , Folhas de Planta/química , Spodoptera
4.
BMC Plant Biol ; 19(1): 329, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337346

RESUMO

BACKGROUND: Zinc finger proteins (ZFPs) containing only a single zinc finger domain play important roles in the regulation of plant growth and development, as well as in biotic and abiotic stress responses. To date, the evolutionary history and functions of the ZFP gene family have not been identified in cotton. RESULTS: In this paper, we identified 29 ZFP genes in Gossypium hirsutum. This gene family was divided into seven subfamilies, 22 of which were distributed over 17 chromosomes. Bioinformatic analysis revealed that 20 GhZFP genes originated from whole genome duplications and two originated from dispersed duplication events, indicating that whole genome duplication is the main force in the expansion of the GhZFP gene family. Most GhZFP8 subfamily genes, except for GhZFP8-3, were highly expressed during fiber cell growth, and were induced by brassinosteroids in vitro. Furthermore, we found that a large number of GhZFP genes contained gibberellic acid responsive elements, auxin responsive elements, and E-box elements in their promoter regions. Exogenous application of these hormones significantly stimulated the expression of these genes. CONCLUSIONS: Our findings reveal that GhZFP8 genes are involved in cotton fiber development and widely induced by auxin, gibberellin and BR, which provides a foundation for the identification of more downstream genes with potential roles in phytohormone stimuli, and a basis for breeding better cotton varieties in the future.


Assuntos
Gossypium/genética , Reguladores de Crescimento de Planta/fisiologia , Proteínas de Plantas/genética , Dedos de Zinco/genética , Brassinosteroides/metabolismo , Mapeamento Cromossômico , Sequência Conservada/genética , Giberelinas/fisiologia , Gossypium/fisiologia , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas de Plantas/fisiologia , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Transcriptoma , Dedos de Zinco/fisiologia
5.
Plant Sci ; 286: 108-117, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300136

RESUMO

It has been reported that drought stress (DS) reduces cotton yield by negatively affecting reproductive activities. Some studies have investigated the effects of DS on pollen physiology and biochemistry, but studies exploring the impact of drought on pistil biochemistry and its relationship with pollen tube growth rates in vivo are scarce. In order to investigate these objectives, a greenhouse study was conducted with a drought sensitive cotton cultivar, Yuzaomian 9110. Two water treatments were imposed at flowering stage, 1. control, where plants were irrigated with optimum quantity of water and 2. DS treatment, where plants were irrigated with 50% of the optimum quantity of water. Results indicated that stored starch content at the early stage of pollen tube growth (12:00 h) was 31.6% lower in drought-stressed pistils than control pistils, and it was highly correlated with pollen tube growth rate. The decline in starch accumulation of drought-stressed pistils could be attributed to the impeded transport of photosynthetic carbon assimilates. Moreover, decreased ADP-glucose pyrophosphorylase and soluble starch synthase activities also resulted in curtailing starch accumulation in drought-stressed pistils. Furthermore, pistil sucrose concentration was significantly higher in droughted plants relative to control plants at 12:00 and 18:00 h (during the rapid growth period), which was due to lower activities of sucrose synthase and acid invertase, and the down-regulated expressions of sucrose synthase genes, GhSusA, GhSusB and GhSusD, and acid invertase genes, GhINV1 and GhINV2, in drought-stressed pistils, limiting as a result the hydrolysis of sucrose into hexose. Drought-stressed pistils sampled at 18:00 h had lower α-amylase activity compared to control pistils, resulting in decreased starch decomposition, which, in conjunction with the decreased hydrolysis of sucrose, led to lower glucose and fructose contents in drought-stressed pistils at 18:00 h. Finally, lower pyruvate level in drought-stressed pistils could not produce enough acetyl-CoA in the tricarboxylic acid cycle to yield sufficient energy (ATP) for pollen tube growth. We conclude that DS disrupts the carbohydrate balance of pistil, reducing as a consequence carbon and energy supply for pollen tube elongation in the style, which will ultimately result in reproductive failure.


Assuntos
Metabolismo dos Carboidratos , Secas , Gossypium/genética , Gossypium/metabolismo , Flores/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo
6.
Plant Sci ; 286: 28-36, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300139

RESUMO

MYB family genes act as important regulators modulating the response to abiotic stress in plants. However, much less is known about MYB proteins in cotton. Here, we found that a cotton MYB gene, GhMYB73, was induced by NaCl and abscisic acid (ABA). Silencing GhMYB73 expression in cotton increased sensitivity to salt stress. The cotyledon greening rate of Arabidopsis thaliana over-expressing GhMYB73 under NaCl or mannitol treatment was significantly enhanced during the seedling germination stage. What's more, several osmotic stress-induced genes, such as AtNHX1, AtSOS3 and AtP5CS1, were more highly induced in the over-expression lines than in wild type under salt treatment, supporting the hypothesis that GhMYB73 contributes to salinity tolerance by improving osmotic stress resistance. Arabidopsis lines over-expressing GhMYB73 had superior germination and cotyledon greening under ABA treatment, and some abiotic stress-induced genes involved in ABA pathways (AtPYL8, AtABF3, AtRD29B and AtABI5), had increased transcription levels under salt-stress conditions in these lines. Furthermore, we found that GhMYB73 physically interacts with GhPYL8 and AtPYL8, suggesting that GhMYB73 regulates ABA signaling during salinity stress response. Taken together, over-expression of GhMYB73 significantly increases tolerance to salt and ABA stress, indicating that it can potentially be used in transgenic technology approaches to improve cotton salt tolerance.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Gossypium/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Inativação Gênica , Genes myb , Gossypium/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo
7.
Plant Sci ; 286: 7-16, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300144

RESUMO

Cotton fibers are developed epidermal cells of the seed coat and contain large amounts of cellulose and minor lignin-like components. Lignin in the cell walls of cotton fibers effectively provides mechanical strength and is also presumed to restrict fiber elongation and secondary cell wall synthesis. To analyze the effect of lignin and lignin-like phenolics on fiber quality and the transcriptional regulation of lignin synthesis in cotton fibers, we characterized the function of a bHLH transcription factor, GhbHLH18, during fiber elongation stage. GhbHLH18 knock-down plants have longer and stronger fibers, and accumulate less lignin-like phenolics in mature cotton fibers than control plants. By mining public transcriptomic data for developing fibers, we discovered that GhbHLH18 is coexpressed with most lignin synthesis pathway genes. Furthermore, we showed that GhbHLH18 strongly binds to the E-box in the promoter region of GhPER8 and activates its expression. Transient over expression of GhPER8 protein in tobacco leaves significantly decreased the content of coniferyl alcohol and sinapic alcohol-the substrate respectively for G-lignin and S-lignin biosynthesis. These results suggest that GhbHLH18 is negatively associated with fiber quality by activating peroxidase-mediated lignin metabolism, thus the paper represents an alternative strategy to improve fiber quality.


Assuntos
Fibra de Algodão/análise , Gossypium/genética , Lignina/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
8.
Plant Sci ; 286: 89-97, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300146

RESUMO

Cottonseed oil is one of the most important renewable resources for edible oil and biodiesel. To detect QTLs associated with cottonseed oil content (OC) and identify candidate genes that regulate oil biosynthesis, a panel of upland cotton germplasm lines was selected among those previously used to perform GWASs in China. In the present study, 13 QTLs associated with 53 common SNPs on 13 chromosomes were identified in multiple environments based on 15,369 polymorphic SNPs using the Cotton63 KSNP array. Of these, the OC QTL qOC-Dt5-1 delineated by nine SNPs occurred in a confidence interval of 4 SSRs with previously reported OC QTLs. A combined transcriptome and qRT-PCR analysis revealed that a peroxidase gene (GhPRXR1) was predominantly expressed during the middle-late stage (20-35 days post anthesis) of ovule development. The overexpression of GhPRXR1 in yeast significantly increased the OC by 20.01-37.25 %. Suppression of GhPRXR1 gene expression in the virus-induced gene-silenced cotton reduced the OC by 18.11%. Our results contribute to identifying more OC QTLs and verifying a candidate gene that influences cottonseed oil biosynthesis.


Assuntos
Estudo de Associação Genômica Ampla , Gossypium/genética , Fosfoenolpiruvato Carboxilase/genética , Óleos Vegetais/química , Proteínas de Plantas/genética , China , Gossypium/química , Gossypium/enzimologia , Gossypium/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas
9.
BMC Plant Biol ; 19(1): 272, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226952

RESUMO

BACKGROUND: Cyclophilins (CYPs), belonging to the peptidyl prolyl cis/trans isomerase (PPIase) superfamily, play important roles during plant responses to biotic and abiotic stresses. RESULTS: Here, a total of 79 CYPs were identified in the genome of Gossypium hirsutum. Of which, 65 GhCYPs only contained one cyclophilin type PPIase domain, others 14 GhCYPs contain additional domains. A number of cis-acting elements related to phytohormone signaling were predicated in the upstream of GhCYPs ORF. The expression analysis revealed that GhCYPs were induced in response to cold, hot, salt, PEG and Verticillium dahliae infection. In addition, the functional importance of GhCYP-3 in Verticillium wilt resistance was also presented in this study. GhCYP-3 showed both cytoplasmic and nuclear localization. Overexpression of GhCYP-3 in Arabidopsis significantly improved Verticillium wilt resistance of the plants. Recombinant GhCYP-3 displayed PPIase activity and evident inhibitory effects on V. dahliae in vitro. Moreover, the extracts from GhCYP-3 transgenic Arabidopsis displayed significantly inhibit activity to conidia germinating and hyphal growth of V. dahliae. CONCLUSIONS: Our study identified the family members of cotton CYP genes using bioinformatics tools. Differential expression patterns of GhCYPs under various abiotic stress and V. dahliae infection conditions provide a comprehensive understanding of the biological functions of candidate genes. Moreover, GhCYP-3 involved in the resistance of cotton to V. dahliae infection presumably through antifungal activity.


Assuntos
Ciclofilinas/genética , Resistência à Doença/genética , Gossypium/genética , Doenças das Plantas/microbiologia , Verticillium , Sequência de Aminoácidos , Arabidopsis/genética , Clonagem Molecular , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Humanos , Doenças das Plantas/genética , Reguladores de Crescimento de Planta/metabolismo , Alinhamento de Sequência , Estresse Fisiológico , Transcriptoma
10.
BMC Genomics ; 20(1): 421, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138116

RESUMO

BACKGROUND: Cotton is the most essential textile crop worldwide, and phytohormones are critical for cotton fiber development. One example is the role of auxin in fiber initiation, but we know little molecular basis. MicroRNAs (miRNAs) have a significant function in cotton development; nevertheless their role in fiber initiation remains unclear. Here, exogenous IAA was applied to cotton plant before anthesis. Utilizing small RNA sequencing, the mechanism underlying miRNA-mediated regulation of fiber initiation under exogenous IAA treatment was investigated. RESULTS: With exogenous IAA application, the endogenous IAA and GA contents of IAA treated (IT) ovules were higher than control (CK) ovules at the fiber initiation stage, while endogenous ABA content was lower in IT than CK. Using scanning electron microscopy, we found the fiber number and size were significantly promoted in IT at 0 DPA. Fiber quality analysis showed that fiber length, uniformity, strength, elongation, and micronaire of IT were higher than CK, though not statistically significant, while lint percent was significantly higher in IT. We generated six small RNA libraries using - 3, 0, and 3 DPA ovules of IT and CK, and identified 58 known miRNAs and 83 novel miRNAs together with the target genes. The differential expressed miRNAs number between IT and CK at - 3, 0, 3 DPA was 34, 16 and 24, respectively. Gene ontology and KEGG pathway enrichment analyses for the target genes of the miRNAs expressed in a differential manner showed that they were significantly enriched in 30 terms and 8 pathways. QRT-PCR for those identified miRNAs and the target genes related to phytohormones and fiber development was performed, and results suggested a potential role of these miRNAs in fiber initiation. CONCLUSIONS: The exogenous IAA application affected the relative phytohormone contents in ovule and promoted fiber initiation in cotton. Identification and profiling of miRNAs and their targets at the fiber initiation stage provided insights for miRNAs' regulation function of fiber initiation. These findings not only shed light on the regulatory network of fiber growth but also offer clues for cotton fiber amelioration strategies in cotton.


Assuntos
Gossypium/genética , Ácidos Indolacéticos/farmacologia , MicroRNAs/metabolismo , Reguladores de Crescimento de Planta/farmacologia , Perfilação da Expressão Gênica , Genes de Plantas , Gossypium/efeitos dos fármacos , Gossypium/crescimento & desenvolvimento , Gossypium/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Óvulo Vegetal/efeitos dos fármacos , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/ultraestrutura , Reguladores de Crescimento de Planta/metabolismo , Análise de Sequência de RNA
11.
Plant Physiol Biochem ; 141: 114-121, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31146093

RESUMO

The spatial and temporal expression of insecticidal gene Cry1Ac in transgenic Bacillus thuringiensis (Bt) cotton varies with plant organs, plant age, as well as environmental conditions. The research was undertaken to study the impact of nitrogen deficit on Cry1Ac endotoxin concentration in seed in Yangtze River valley region in China in 2015 and 2016. To uncover the underlying mechanism, the nitrogen metabolism process including protein synthesis and degradation was characterized. Based on the results, nitrogen deficit decreased the boll weight, boll volume, boll number per plant, seed Cry1Ac endotoxin concentration, glutamate oxaloacetate transaminase (GOT) and glutamic pyruvic transaminase (GPT) activities, soluble protein concentration, but increased peptidase and protease activities, and free amino acid content in seed. Our results suggested that the decline of seed Cry1Ac endotoxin expression associated with decreased nitrogen was due to the enhanced protein decomposition and reduced protein synthesis, especially the altered activities of GOT and peptidase. There was a significant negative correlation between seed Cry1Ac endotoxin concentration and boll shell Cry1Ac endotoxin content under nitrogen deficiency. Therefore, seed Cry1Ac endotoxin concentration and boll shell Cry1Ac endotoxin concentration should be balanced to guarantee the insecticidal efficiency.


Assuntos
Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Gossypium/genética , Proteínas Hemolisinas/metabolismo , Nitrogênio/química , Bacillus thuringiensis , Proteínas de Bactérias/química , China , Gossypium/metabolismo , Peptídeo Hidrolases , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo
12.
Int J Mol Sci ; 20(9)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035558

RESUMO

Drought is one of the most important abiotic stresses that seriously affects cotton growth, development, and production worldwide. However, the molecular mechanism, key pathway, and responsible genes for drought tolerance incotton have not been stated clearly. In this research, high-throughput next generation sequencing technique was utilized to investigate gene expression profiles of three cotton species (Gossypium hirsutum, Gossypium arboreum, and Gossypium barbadense L.) under drought stress. A total of 6968 differentially expressed genes (DEGs) were identified, where 2053, 742, and 4173 genes were tested as statistically significant; 648, 320, and 1998 genes were up-regulated, and 1405, 422, and 2175 were down-regulated in TM-1, Zhongmian-16, and Pima4-S, respectively. Total DEGs were annotated and classified into functional groups under gene ontology analysis. The biological process was present only in tolerant species(TM-1), indicating drought tolerance condition. The Kyoto encyclopedia of genes and genomes showed the involvement of plant hormone signal transduction and metabolic pathways enrichment under drought stress. Several transcription factors associated with ethylene-responsive genes (ICE1, MYB44, FAMA, etc.) were identified as playing key roles in acclimatizing to drought stress. Drought also caused significant changes in the expression of certain functional genes linked to abscisic acid (ABA) responses (NCED, PYL, PP2C, and SRK2E), reactive oxygen species (ROS) related in small heat shock protein and 18.1 kDa I heat shock protein, YLS3, and ODORANT1 genes. These results will provide deeper insights into the molecular mechanisms of drought stress adaptation in cotton.


Assuntos
Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Gossypium/genética , Estresse Fisiológico/genética , Transcriptoma , Biologia Computacional/métodos , Ontologia Genética , Genoma de Planta , Genômica/métodos , Anotação de Sequência Molecular
13.
BMC Plant Biol ; 19(1): 208, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31109298

RESUMO

BACKGROUND: Cotton fiber is a single cell that arises from the epidermis of ovule. It is not only a main economic product of cotton, but an ideal material for studying on the growth and development of plant cell. Our previous study indicated that phytosterol content and the ratio of campesterol to sitosterol fluctuated regularly in cotton fiber development. However, what effects of modified phytosterol content and composition on the growth and development of cotton fiber cell is unknown. In this study, we overexpressed the GhSMT2-1, a cotton homologue of sterol C-24 methyltransferase 2 gene in transgenic upland cotton plants to modify phytosterol content and composition in fiber cells and investigated the changes on fiber elongation and secondary cell wall deposition. RESULTS: GhSMT2-1 overexpression led to changes of phytosterol content and the ratio of campesterol to sitosterol in fiber cell. At the rapid elongation stage of fiber cell, total phytosterol and sitosterol contents were increased while campesterol content was decreased in transgenic fibers when compared to control fibers. Accordingly, the ratio of campesterol to sitosterol declined strikingly. Simultaneously, the transgenic fibers were shorter and thicker than control fibers. Exogenous application of sitosterol or campesterol separately inhibited control fiber cell elongation in cotton ovule culture system in vitro. In addition, campesterol treatment partially rescued transgenic fiber elongation. CONCLUSION: These results elucidated that modification of phytosterol content and composition influenced fiber cell elongation and secondary cell wall formation. High sitosterol or low ratio of campesterol to sitosterol suppresses fiber elongation and/or promote secondary cell wall deposition. The roles of sitosterol and campesterol were discussed in fiber cell development. There might be a specific ratio of campesterol to sitosterol in different developmental stage of cotton fibers, in which GhSMT2-1 play an important role. Our study, at a certain degree, provides novel insights into the regulatory mechanisms of fiber cell development.


Assuntos
Gossypium/química , Gossypium/fisiologia , Fitosteróis/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Crescimento Celular , Parede Celular , Fibra de Algodão , Gossypium/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia
14.
BMC Plant Biol ; 19(1): 220, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138186

RESUMO

BACKGROUND: Brassinosteroids (BRs) play crucial roles in drought tolerance, but the underlying molecular mechanisms remain unclear in the important oilseed and fiber crop, cotton (Gossypium hirsutum L.). RESULTS: To elucidate how BRs mediate drought tolerance in cotton, a cotton brassinosteroid (BR)-deficient mutant, pag1 (pagoda1), was employed for analysis. Importantly, the pag1 mutant showed increased sensitivity to drought stress, with shorter primary roots and fewer lateral roots. The number of stomata was significantly increased in the mutant, and the stomata aperture was much wider than that of the control plants. These mutant plants therefore showed an increased water loss rate. Furthermore, the abscisic acid (ABA) content, photosynthetic efficiency and starch content of the mutant were significantly lower than those of the wild type. The overall performance of the mutant plants was worse than that of the wild-type control under both normal and drought conditions. Moreover, Proteomic analysis revealed reduced levels of stress-related proteins in pag1 plants. CONCLUSIONS: These results suggest that BRs may modulate the drought tolerance of cotton by regulating much genes that related to drought stress and multiple organ responses to drought, including root growth, stomata development, the stomata aperture and photosynthesis. This study provides an important basis for understanding drought resistance regulated by BRs and cultivating drought-resistant cotton lines.


Assuntos
Brassinosteroides/metabolismo , Secas , Gossypium/fisiologia , Gossypium/genética , Gossypium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteômica
15.
Plant Sci ; 284: 127-134, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31084865

RESUMO

Avr9/Cf-9-INDUCED F-BOX1 (ACIF1) was first identified during screening of Avr9/Cf-9-elicited genes in tobacco. Further analysis revealed that ACIF1 was required for hypersensitive responses triggered by various elicitors in tobacco and tomato, indicating that it may be involved in various disease resistance. Here, we cloned its cotton (Gossypium hirsutum) homolog GhACIF1, which encodes an F-box protein. We show that GhACIF1 interacts with the putative SKP1-like protein, named GhSKP1. Disease resistance assays show that GhACIF1 enhances resistance to Verticillium dahliae in Arabidopsis plants, while silencing of GhACIF1 confers sensitivity to V. dahliae in cotton. Further analysis show that PevD1 elicitor activates hypersensitive and acquired immune response mediated by GhACIF1. Collectively, these results indicate that GhACIF1 contributes to protection against V. dahliae infection.


Assuntos
Resistência à Doença , Proteínas F-Box/fisiologia , Gossypium/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/fisiologia , Verticillium , Resistência à Doença/fisiologia , Proteínas F-Box/genética , Inativação Gênica , Gossypium/genética , Gossypium/microbiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Planta/metabolismo , Proteínas de Plantas/genética , Ácido Salicílico/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Técnicas do Sistema de Duplo-Híbrido , Verticillium/metabolismo
16.
Int J Mol Sci ; 20(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052464

RESUMO

Salinity is not only a major environmental factor which limits plant growth and productivity, but it has also become a worldwide problem. However, little is known about the genetic basis underlying salt tolerance in cotton. This study was carried out to identify marker-trait association signals of seven salt-tolerance-related traits and one salt tolerance index using association analysis for 215 accessions of Asiatic cotton. According to a comprehensive index of salt tolerance (CIST), 215 accessions were mainly categorized into four groups, and 11 accessions with high salinity tolerance were selected for breeding. Genome-wide association studies (GWAS) revealed nine SNP rich regions significantly associated with relative fresh weight (RFW), relative stem length (RSL), relative water content (RRWC) and CIST. The nine SNP rich regions analysis revealed 143 polymorphisms that distributed 40 candidate genes and significantly associated with salt tolerance. Notably, two SNP rich regions on chromosome 7 were found to be significantly associated with two salinity related traits, RFW and RSL, by the threshold of -log10P ≥ 6.0, and two candidate genes (Cotton_A_37775 and Cotton_A_35901) related to two key SNPs (Ca7_33607751 and Ca7_77004962) were possibly associated with salt tolerance in G. arboreum. These can provide fundamental information which will be useful for future molecular breeding of cotton, in order to release novel salt tolerant cultivars.


Assuntos
Gossypium/genética , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal , Genoma de Planta , Gossypium/fisiologia
17.
Int J Mol Sci ; 20(7)2019 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987365

RESUMO

The somatic embryogenesis (SE) process of plants, as one of the typical responses to abiotic stresses with hormone, occurs through the dynamic expression of different proteins that constitute a complex regulatory network in biological activities and promotes plant totipotency. Plant SE includes two critical stages: primary embryogenic calli redifferentiation and somatic embryos development initiation, which leads to totipotency. The isobaric labels tandem mass tags (TMT) large-scale and quantitative proteomics technique was used to identify the dynamic protein expression changes in nonembryogenic calli (NEC), primary embryogenic calli (PEC) and globular embryos (GEs) of cotton. A total of 9369 proteins (6730 quantified) were identified; 805, 295 and 1242 differentially accumulated proteins (DAPs) were identified in PEC versus NEC, GEs versus PEC and GEs versus NEC, respectively. Eight hundred and five differentially abundant proteins were identified, 309 of which were upregulated and 496 down regulated in PEC compared with NEC. Of the 295 DAPs identified between GEs and PEC, 174 and 121 proteins were up- and down regulated, respectively. Of 1242 differentially abundant proteins, 584 and 658 proteins were up- and down regulated, respectively, in GEs versus NEC. We have also complemented the authenticity and accuracy of the proteomic analysis. Systematic analysis indicated that peroxidase, photosynthesis, environment stresses response processes, nitrogen metabolism, phytohormone response/signal transduction, transcription/posttranscription and modification were involved in somatic embryogenesis. The results generated in this study demonstrate a proteomic molecular basis and provide a valuable foundation for further investigation of the roles of DAPs in the process of SE transdifferentiation during cotton totipotency.


Assuntos
Transdiferenciação Celular/fisiologia , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Transdiferenciação Celular/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Gossypium/embriologia , Gossypium/genética , Proteínas de Plantas/genética , Proteômica
18.
Int J Mol Sci ; 20(9)2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027387

RESUMO

Plant regeneration via somatic embryogenesis (SE) is a key step during genetic engineering. In the current study, integrated widely targeted metabolomics and RNA sequencing were performed to investigate the dynamic metabolic and transcriptional profiling of cotton SE. Our data revealed that a total of 581 metabolites were present in nonembryogenic staged calli (NEC), primary embryogenic calli (PEC), and initiation staged globular embryos (GE). Of the differentially accumulated metabolites (DAMs), nucleotides, and lipids were specifically accumulated during embryogenic differentiation, whereas flavones and hydroxycinnamoyl derivatives were accumulated during somatic embryo development. Additionally, metabolites related to purine metabolism were significantly enriched in PEC vs. NEC, whereas in GE vs. PEC, DAMs were remarkably associated with flavonoid biosynthesis. An association analysis of the metabolome and transcriptome data indicated that purine metabolism and flavonoid biosynthesis were co-mapped based on the Kyoto encyclopedia of genes and genomes (KEGG) database. Moreover, purine metabolism-related genes associated with signal recognition, transcription, stress, and lipid binding were significantly upregulated. Moreover, several classic somatic embryogenesis (SE) genes were highly correlated with their corresponding metabolites that were involved in purine metabolism and flavonoid biosynthesis. The current study identified a series of potential metabolites and corresponding genes responsible for SE transdifferentiation, which provides a valuable foundation for a deeper understanding of the regulatory mechanisms underlying cell totipotency at the molecular and biochemical levels.


Assuntos
Flavonoides/metabolismo , Gossypium/metabolismo , Purinas/metabolismo , Transdiferenciação Celular , Regulação da Expressão Gênica de Plantas/genética , Gossypium/genética , Metaboloma/genética , Metaboloma/fisiologia , Transcriptoma/genética
19.
Int J Mol Sci ; 20(7)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970629

RESUMO

Proline-rich extensin-like receptor kinases (PERKs) are an important class of receptor kinases in plants. Receptor kinases comprise large gene families in many plant species, including the 15 PERK genes in Arabidopsis. At present, there is no comprehensive published study of PERK genes in G. hirsutum. Our study identified 33 PERK genes in G. hirsutum. Phylogenetic analysis of conserved PERK protein sequences from 15 plant species grouped them into four well defined clades. The GhPERK gene family is an evolutionarily advanced gene family that lost its introns over time. Several cis-elements were identified in the promoter regions of the GhPERK genes that are important in regulating growth, development, light responses and the response to several stresses. In addition, we found evidence for gene loss or addition through segmental or whole genome duplication in cotton. Gene duplication and synteny analysis identified 149 orthologous/paralogous gene pairs. Ka/Ks values show that most GhPERK genes experienced strong purifying selection during the rapid evolution of the gene family. GhPERK genes showed high expression levels in leaves and during ovule development. Furthermore, the expression of GhPERK genes can be regulated by abiotic stresses and phytohormone treatments. Additionally, PERK genes could be involved in several molecular, biological and physiological processes that might be the result of functional divergence.


Assuntos
Duplicação Gênica , Gossypium/genética , Folhas de Planta/genética , eIF-2 Quinase/genética , Sequência de Aminoácidos , Simulação por Computador , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas/genética
20.
Int J Mol Sci ; 20(8)2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30991750

RESUMO

Reactive oxygen species (ROS) are important molecules in the plant, which are involved in many biological processes, including fiber development and adaptation to abiotic stress in cotton. We carried out transcription analysis to determine the evolution of the ROS genes and analyzed their expression levels in various tissues of cotton plant under abiotic stress conditions. There were 515, 260, and 261 genes of ROS network that were identified in Gossypium hirsutum (AD1 genome), G. arboreum (A genome), and G. raimondii (D genome), respectively. The ROS network genes were found to be distributed in all the cotton chromosomes, but with a tendency of aggregating on either the lower or upper arms of the chromosomes. Moreover, all the cotton ROS network genes were grouped into 17 families as per the phylogenetic tress analysis. A total of 243 gene pairs were orthologous in G. arboreum and G. raimondii. There were 240 gene pairs that were orthologous in G. arboreum, G. raimondii, and G. hirsutum. The synonymous substitution value (Ks) peaks of orthologous gene pairs between the At subgenome and the A progenitor genome (G. arboreum), D subgenome and D progenitor genome (G. raimondii) were 0.004 and 0.015, respectively. The Ks peaks of ROS network orthologous gene pairs between the two progenitor genomes (A and D genomes) and two subgenomes (At and Dt subgenome) were 0.045. The majority of Ka/Ks value of orthologous gene pairs between the A, D genomes and two subgenomes of TM-1 were lower than 1.0. RNA seq. analysis and RT-qPCR validation, showed that, CSD1,2,3,5,6; FSD1,2; MSD1,2; APX3,11; FRO5.6; and RBOH6 played a major role in fiber development while CSD1, APX1, APX2, MDAR1, GPX4-6-7, FER2, RBOH6, RBOH11, and FRO5 were integral for enhancing salt stress in cotton. ROS network-mediated signal pathway enhances the mechanism of fiber development and regulation of abiotic stress in Gossypium. This study will enhance the understanding of ROS network and form the basic foundation in exploring the mechanism of ROS network-involving the fiber development and regulation of abiotic stress in cotton.


Assuntos
Gossypium/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Transcriptoma , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Gossypium/fisiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA