Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.685
Filtrar
1.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203271

RESUMO

The aim of this study was to find the effect of kale and dietary fibre (DF) on the physicochemical properties, nutritional value and sensory quality of multigrain bars. A recipe of multigrain bars was prepared with the addition of fresh kale (20% and 30%) and DF preparations (apple, blackcurrant, chokeberry and hibiscus). The bars were baked at 180 °C for 20 min. These snack bars, based on pumpkin seeds, sunflower seeds, flaxseed and wholegrain oatmeal, are a high-calorie product (302-367 kcal/100 g). However, the composition of the bars encourages consumption. In addition to the ability to quickly satisfy hunger, such bars are rich in many natural ingredients that are considered pro-health (high fibre content (9.1-11.6 g/100 g), protein (11.2-14.3 g/100 g), fat (17.0-21.1 g/100 g, including unsaturated fatty acids), carbohydrates (20.5-24.0 g/100 g), as well as vitamins, minerals and a large number of substances from the antioxidant group. The addition of kale caused a significant increase of water content, but reduction in the value of all texture parameters (TPA profiles) as well as calorific values. The content of polyphenols was strongly and positively correlated with the antioxidant activity (r = 0.92). In the bars with 30% addition of kale (422 mg GA/100 g d.m.), the content of polyphenols was significantly higher than based ones (334 mg GA/100 g d.m.). Bars with the addition of the DF were characterized by a higher antioxidant activity, and the content of carotenoids, chlorophyll A and B and polyphenols. High sensory quality was demonstrated for all (from 4.8 to 7.1 on a 10-point scale). The addition of fibre preparations was also related to technological aspects and allows to create attractive bars without additional chemicals.


Assuntos
Antioxidantes/química , Brassica/química , Fibras na Dieta , Grão Comestível/química , Ingestão de Energia , Lanches , Valor Nutritivo
2.
Molecules ; 26(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073001

RESUMO

The effects of two types of biochar on corn production in the Mediterranean climate during the growing season were analyzed. The two types of biochar were obtained from pyrolysis of Pinus pinaster. B1 was fully pyrolyzed with 55.90% organic carbon, and B2 was medium pyrolyzed with 23.50% organic carbon. B1 and B2 were supplemented in the soil of 20 plots (1 m2) at a dose of 4 kg/m2. C1 and C2 (10 plots each) served as control plots. The plots were automatically irrigated and fertilizer was not applied. The B1-supplemented plots exhibited a significant 84.58% increase in dry corn production per square meter and a 93.16% increase in corn wet weight (p << 0.001). Corn production was no different between B2-supplemented, C1, and C2 plots (p > 0.01). The weight of cobs from B1-supplemented plots was 62.3%, which was significantly higher than that of cobs from C1 and C2 plots (p < 0.01). The grain weight increased significantly by 23% in B1-supplemented plots (p < 0.01) and there were no differences between B2-supplemented, C1, and C2 plots. At the end of the treatment, the soil of the B1-supplemented plots exhibited increased levels of sulfate, nitrate, magnesium, conductivity, and saturation percentage. Based on these results, the economic sustainability of this application in agriculture was studied at a standard price of €190 per ton of biochar. Amortization of this investment can be achieved in 5.52 years according to this cost. Considering the fertilizer cost savings of 50% and the water cost savings of 25%, the amortization can be achieved in 4.15 years. If the price of biochar could be reduced through the CO2 emission market at €30 per ton of non-emitted CO2, the amortization can be achieved in 2.80 years. Biochar markedly improves corn production in the Mediterranean climate. However, the amortization time must be further reduced, and enhanced production must be guaranteed over the years with long term field trials so that the product is marketable or other high value-added crops must be identified.


Assuntos
Agricultura/métodos , Carvão Vegetal/farmacologia , Zea mays/crescimento & desenvolvimento , Dióxido de Carbono/análise , Carvão Vegetal/metabolismo , Clima , Produtos Agrícolas/efeitos dos fármacos , Grão Comestível/química , Fertilizantes , Região do Mediterrâneo , Óxido Nitroso/análise , Solo , Zea mays/química
3.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066776

RESUMO

The aim of this work was to monitor the quality, antioxidant capacity and digestibility of chickpea exposed to different modified atmospheres. Chickpea quality (proximal analysis, color, texture, and water absorption) and the antioxidant capacity of free, conjugated, and bound phenol fractions obtained from raw and cooked chickpea, were determined. Cooked chickpea was exposed to N2 and CO2 atmospheres for 0, 25, and 50 days, and the antioxidant capacity was analyzed by DPPH (2,2'-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis-[3ethylbenzothiazoline-6-sulfonic acid]), and total phenols. After in vitro digestion, the antioxidant capacity was measured by DPPH, ABTS, FRAP (ferric reducing antioxidant power), and AAPH (2,2'-Azobis [2-methylpropionamidine]). Additionally, quantification of total phenols, and UPLC-MS profile were determined. The results indicated that this grain contain high quality and high protein (18.38%). Bound phenolic compounds showed the highest amount (105.6 mg GAE/100 g) and the highest antioxidant capacity in all techniques. Cooked chickpeas maintained their quality and antioxidant capacity during 50 days of storage at 4 and -20 °C under a nitrogen atmosphere. Free and conjugated phenolic compounds could be hydrolyzed by digestive enzymes, increasing their bioaccessibility and their antioxidant capacity during each step of digestion. The majority compound in all samples was enterodiol, prevailing the flavonoid type in the rest of the identified compounds. Chickpea contains biological interest compounds with antioxidant potential suggesting that this legume can be exploited for various technologies.


Assuntos
Antioxidantes/química , Atmosfera/química , Dióxido de Carbono , Cicer/química , Grão Comestível/química , Nitrogênio , Cromatografia Líquida , Digestão , Flavonoides/química , Lignanas/química , Espectrometria de Massas , Fenóis/química , Proteínas de Plantas/química
4.
Molecules ; 26(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073711

RESUMO

Digital farming is a modern agricultural concept that aims to maximize the crop yield while simultaneously minimizing the environmental impact of farming. Successful implementation of digital farming requires development of sensors to detect and identify diseases and abiotic stresses in plants, as well as to probe the nutrient content of seeds and identify plant varieties. Experimental evidence of the suitability of Raman spectroscopy (RS) for confirmatory diagnostics of plant diseases was previously provided by our team and other research groups. In this study, we investigate the potential use of RS as a label-free, non-invasive and non-destructive analytical technique for the fast and accurate identification of nutrient components in the grains from 15 different rice genotypes. We demonstrate that spectroscopic analysis of intact rice seeds provides the accurate rice variety identification in ~86% of samples. These results suggest that RS can be used for fully automated, fast and accurate identification of seeds nutrient components.


Assuntos
Grão Comestível/química , Nutrientes/química , Agricultura , Análise Espectral/métodos
5.
J Food Biochem ; 45(7): e13822, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34121203

RESUMO

Phosphorus (P) flow in agricultural land depends on the P taken off from harvested product, its losses through runoff and fertilizer applied to balance the removed P. Phytic acid (PA), the major storage form of phosphorus (P) in cereal grains is a key anti-nutrient for human and non-ruminants leads to eutrophication of waterways. As the natural non-renewable P reserves are limited, enhancing P use efficiency is needed for field crops. SULTR-like phosphorus distribution transporter (SPDT) is a novel rice transporter transfer P to the grain. Any alteration in transporter gene reduce grain P with concomitant rise in the leaves. A low PA (3.0 g/kg) rice Khira was identified where a single nucleotide mutation in LOC_Os06g05160 gene encoding SPDT showed low P transportation to grain. An amino acid change was detected as Valine-330 to Alanine at the 3' end of fifth exon. Highest expression of SPDT was observed in node I of rice as compared to low PA genotype. The mutation in SPDT could significantly affect P and PA accumulation in the grains with increased mineral bioavailability. PRACTICAL APPLICATIONS: Excessive P application in crop leads to higher production cost as well as rapid depletion of limited rock phosphate. Alteration of P transporter function in the rice lower PA and total P accumulation in the grains with increased mineral bioavailability. The re-distributed P in the straw can be applied as manure to the rice field. Thus, less P will be removed from the field, result in the decreased requirement for P fertilizer.


Assuntos
Oryza , Disponibilidade Biológica , Grão Comestível/química , Humanos , Minerais , Nucleotídeos , Oryza/genética , Fósforo , Ácido Fítico/análise
6.
Food Chem ; 362: 130066, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34098434

RESUMO

Cereal germ (CG), a by-product of grain milling, has drawn much attention in the food industry because of its nutritional and functional advantages. Nowadays, the utilization of cereal germ from animal feeds to foodstuff is a popular trend. CGs have high content of polyunsaturated fatty acids in their lipids (43.9-64.9% of total fatty acids), but they are also induced to oxidative rancidity under the catalytic reaction of enzymes. Chemical and structural properties of lipids in CGs are affected by different treatments. Thermal and non-thermal effects prevent lipid oxidation or promote lipid combination with starch/protein in CG. Thus, the functional properties and final quality of CG are directly changed. In this review, the chemical composition and application of CGs especially the endogenous lipids are summarized and the effects of various processes on CG lipids/matrices are discussed for CG future development.


Assuntos
Grão Comestível/química , Lipídeos/química , Ração Animal , Animais , Análise de Alimentos , Indústria Alimentícia , Indústria de Processamento de Alimentos , Lipídeos/análise , Oxirredução , Amido/química
7.
Food Res Int ; 145: 110398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112401

RESUMO

Nowadays there is an increasing demand for vegetable protein sources as an alternative to that of animal origin, not only for its greater environmental sustainability but also for its relationship with lower risk of suffering cardiovascular diseases. Legumes, cereals and seeds are seen as a good proteinaceous source providing as well dietetic fiber and phytochemicals with antioxidant properties. However, their digestibility and bioavailability are limited by the presence of anti-nutritional factors (ANFs) but susceptible of being improved by soaking, cooking or fermentation. The objective of this work is to review the solid-state and submerged fermentation effect on nutritional and functional properties of legumes, cereals and seeds. The microorganisms involved (bacteria, fungus and yeasts) are able to produce enzymes that degrade ANFs giving rise to more digestible flours with a more interesting nutritional, sensorial and technological profile. Solid-state fermentation is more commonly used for its higher efficiency, accepting agro-industrial residues as substrates and its lower volume of effluents. Fermented legumes had their technological properties enhanced while an increment in antioxidant properties was characteristic of cereals. The present review highlights fermentation of cereals and legumes mainly as a key process that at industrial scale could generate new products with enhanced nutritional and technological properties.


Assuntos
Fabaceae , Farinha , Animais , Fibras na Dieta/análise , Grão Comestível/química , Fermentação , Farinha/análise
8.
Food Res Int ; 145: 110400, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112403

RESUMO

Shanxi aged vinegar (SAV), a traditional Chinese cereal vinegar, is produced using solid-state fermentation (SSF) technology. Organic acids are the key flavor compounds of vinegar. However, the metabolic mechanism of organic acids during SSF process is still unclear. In this study, metatranscriptomics was used to explore the metabolic profile of main organic acids in SSF. The results show that carbon metabolism is the dominant pathway during fermentation, among which pyruvate metabolism, glycolysis and starch and sucrose metabolism associated with organic acids were the most abundant. The metabolic pathways of acetic acid and lactic acid shift from acetyl-P and pyruvate pathways at early and middle-early stages of fermentation to acetaldehyde and L-lactaldehyde pathways at later stages, respectively, and Lactobacillus and Acetobacter are the predominant microorganisms contributed to them. Temperature and acetic acid are proven to be the environmental factors that regulate the metabolic activity during SSF. This study sheds new lights on metabolism of flavor substances in the spontaneous ecosystems of traditional fermented food.


Assuntos
Ácido Acético , Grão Comestível , Ácido Acético/análise , China , Ecossistema , Grão Comestível/química , Fermentação , Metaboloma
9.
Food Res Int ; 145: 110426, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34112428

RESUMO

Whole grain polyphenols are associated with structure-specific bioactive properties. However, the phenolic profile of grain ingredients can be significantly altered by processes like fermentation. This study investigated how polyphenol profiles in different cereal grains respond to microbial metabolism during sourdough fermentation. Whole grain wheat (white and red), sorghum (white and lemon-yellow), and teff (white and brown) flours were subjected to natural sourdough fermentation for 48-96 h, and phenolic profiles and their metabolites monitored using UPLC-tandem quadrupole MS. Flavonoid O-glycosides (dominant in sorghum) were rapidly metabolized (66% reduction in 48 h) to release aglycones (2.5 fold increase). O-Glycoside groups in mixed O/C-glycosides (dominant in teff) were selectively hydrolyzed, but more slowly (11-32% reduction in 48 h) than homo-O-glycosides, suggesting steric hindrance from the C-glycoside groups. Flavonoid C-glycosides (dominant in wheat) and aglycones (white sorghum) were generally stable to microbial degradation. Extractable phenolic acids and their esters (most abundant in white sorghum) were extensively degraded (80% reduction in 48 h) with few metabolites detected at the end of fermentation. Thus, extractable phenolics in sorghum were generally most extensively metabolized, whereas those in wheat were the least impacted by sourdough fermentation. New microbial metabolites, putatively identified as O-methylcatechol-vinyl-isoflavans, were detected in all fermented samples, with levels increasing with fermentation time. Based on structure, these compounds were likely derived from cell wall C-C linked diferulic acid metabolism. As expected, Folin reactive phenols and antioxidant capacity increased in fermented samples, but the extent was distinctly smaller in sorghums (1.3-1.9 fold) vs teff (2.4-3.2 fold) and wheat (2.0-6.1 fold), likely due to higher presence of easily metabolizable phenolics in sorghum. The phenolic profile of a cereal grain affects the products of microbial metabolism during fermentation, and may thus alter phenolic-dependent bioactive properties associated with a specific grain.


Assuntos
Eragrostis , Sorghum , Grão Comestível/química , Fermentação , Fenóis/análise , Triticum
10.
BMC Plant Biol ; 21(1): 212, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33975563

RESUMO

BACKGROUND: Anemia is thought to affect up to 1.6 billion people worldwide. One of the major contributors to low iron (Fe) absorption is a higher proportion of cereals compared to meats and pulse crops in people's diets. This has now become a problem in both the developed and developing world, as a result of both modern food choice and food availability. Bread wheat accounts for 20 % of the calories consumed by humans and is an important source of protein, vitamins and minerals meaning it could be a major vehicle for bringing more bioavailable Fe into the diet. RESULTS: To investigate whether breeding for higher concentrations of Fe in wheat grains could help increase Fe absorption, a multiparent advanced generation intercross (MAGIC) population, encompassing more than 80 % of UK wheat polymorphism, was grown over two seasons in the UK. The population was phenotyped for both Fe concentration and Fe bioavailability using an established Caco-2 cell bioassay. It was found that increasing Fe concentrations in the grains was not correlated with higher Fe bioavailability and that the underlying genetic regions controlling grain Fe concentrations do not co-localise with increased Fe absorption. Furthermore, we show that phytate concentrations do not correlate with Fe bioavailability in our wheat population and thus phytate-binding is insufficient to explain the lack of correlation between Fe bioavailability and Fe concentrations in the wheat grain. Finally, we observed no (Fe bioavailability) or low (Fe concentration) correlation between years for these traits, confirming that both are under strong environmental influence. CONCLUSIONS: This suggests that breeders will have to select not only for Fe concentrations directly in grains, but also increased bioavailability. However the use of numerous controls and replicated trials limits the practicality of adoption of screening by Caco-2 cells by many breeders.


Assuntos
Disponibilidade Biológica , Grão Comestível/química , Ferro na Dieta/análise , Ferro na Dieta/metabolismo , Triticum/química , Triticum/genética , Triticum/metabolismo , Produtos Agrícolas/química , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Melhoramento Vegetal , Reino Unido
11.
Food Chem ; 359: 129874, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951610

RESUMO

A green methodology based on pressurized liquids (PLE) to extract proteins and obtain highly active extracts from brewer's spent grain (BSG) is proposed. Box-Behnken experimental design was employed to study the effect of extraction parameters on the protein content (PC), the total phenolic content (TPC), and the antioxidant activity of extracts. Results were compared with those obtained by conventional alkaline extraction assisted with ultrasounds (UAE). The selection of PLE conditions enabled to tailor the PC and TPC of extracts. PLE extracted 36 % more proteins than UAE. PLE extracts showed higher antioxidant, cholesterol esterase inhibition, and ACE inhibitory activities than UAE extract. HPLC-MS/MS enabled to observe that the extraction technique and experimental conditions significantly affected to the kind and amount of extracted proteins, and released peptides, and phenolic compounds. A higher ratio of hydrophobic peptides was observed in PLE extracts, which justified their higher bioactivity.


Assuntos
Antioxidantes/análise , Grão Comestível/química , Extração Líquido-Líquido/métodos , Fenóis/análise , Proteínas de Plantas/isolamento & purificação , Cerveja , Cromatografia Líquida de Alta Pressão , Manipulação de Alimentos , Extração Líquido-Líquido/normas , Extratos Vegetais/química , Espectrometria de Massas em Tandem
12.
Nature ; 594(7861): 71-76, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34012114

RESUMO

Micronutrient deficiencies (MNDs) remain widespread among people in sub-Saharan Africa1-5, where access to sufficient food from plant and animal sources that is rich in micronutrients (vitamins and minerals) is limited due to socioeconomic and geographical reasons4-6. Here we report the micronutrient composition (calcium, iron, selenium and zinc) of staple cereal grains for most of the cereal production areas in Ethiopia and Malawi. We show that there is geospatial variation in the composition of micronutrients that is nutritionally important at subnational scales. Soil and environmental covariates of grain micronutrient concentrations included soil pH, soil organic matter, temperature, rainfall and topography, which were specific to micronutrient and crop type. For rural households consuming locally sourced food-including many smallholder farming communities-the location of residence can be the largest influencing factor in determining the dietary intake of micronutrients from cereals. Positive relationships between the concentration of selenium in grain and biomarkers of selenium dietary status occur in both countries. Surveillance of MNDs on the basis of biomarkers of status and dietary intakes from national- and regional-scale food-composition data1-7 could be improved using subnational data on the composition of grain micronutrients. Beyond dietary diversification, interventions to alleviate MNDs, such as food fortification8,9 and biofortification to increase the micronutrient concentrations in crops10,11, should account for geographical effects that can be larger in magnitude than intervention outcomes.


Assuntos
Grão Comestível/química , Nutrientes/análise , Valor Nutritivo , Agricultura , Cálcio/análise , Dieta/estatística & dados numéricos , Etiópia , Humanos , Ferro/análise , Malaui , Micronutrientes/análise , Selênio/análise , Inquéritos e Questionários , Triticum/química , Zinco/análise
13.
J Food Biochem ; 45(7): e13768, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34021610

RESUMO

Bran is a nutritious outermost layer of the cereal grain that is removed during milling to curtail the technical problems in end-products. Modification techniques such as enzyme treatments might be an effective way to alter bran morphology and end-use quality. In this study, bran from six cereals (wheat, barley, oat, maize, millet, and sorghum) were enzymatically modified (cellulase and xylanase), and evaluated for morphological properties through scanning electron microscopy, crystallinity through x-ray diffraction and molecular structures through FTIR spectroscopy. Scanning electron microscopy revealed that enzyme modifications caused breakage in bran fibers by hydrolyzing non-starch polysaccharides. X-ray diffraction exhibited that crystallinity of the structures was increased after modifications as enzymes hydrolyzed amorphous regions of cellulose and hemicellulose in bran matrix. Molecular structures studied by FTIR spectroscopy demonstrated absorption in wavelength ranges of 900-3400cm-1 associated to carbohydrates, oligosaccharides, proteins, and non-starch polysaccharides. PRACTICAL APPLICATIONS: Cereal bran creates technical problems for food processors and bakers in terms of grittiness leading to the unacceptability of the product. The bran can be modified using different approaches, such as enzyme modifications. This research will be helpful for the food scientists & researchers and bakers for making choices for preferred method of bran modification. This will also be helpful for cereal scientists for the understanding of structural properties of bran layers.


Assuntos
Grão Comestível , Hordeum , Fibras na Dieta/análise , Grão Comestível/química , Estrutura Molecular , Triticum
14.
Food Res Int ; 143: 110241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992353

RESUMO

Ogi is a fermented cereal beverage, made primarily from maize (Zea mays) and rarely from millets. Unlike maize-based ogi, little is known about the bacterial community and mycotoxin profile during the production of millet-based ogi. Therefore, the bacterial community dynamics and mycotoxin reduction during ogi processing from three millet varieties were investigated using next-generation sequencing of the 16S rRNA gene and liquid chromatography-tandem mass spectrometry, respectively. A total of 1163 amplicon sequence variants (ASVs) were obtained, with ASV diversity across time intervals influenced by processing stage and millet variety. ASV distribution among samples suggested that the souring stage was more influenced by millet variety than the steeping stage, and that souring may be crucial for the quality attributes of the ogi. Furthermore, bacterial community structure during steeping and souring was significantly differentiated (PERMANOVA, P < 0.05) between varieties, with close associations observed for closely-related millet varieties. Taxonomically, Firmicutes, followed by Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria phyla were relatively abundant (>1%). Lactic acid bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Lactobacillus, Lactococcus and Pediococcus, dominated most fermentation stages, suggesting their roles as key fermentative and functional bacteria in relation to mycotoxin reduction. About 52-100%, 58-100% and 100% reductions in mycotoxin (aflatoxins, beauvericin, citrinin, moniliformin, sterigmatocystin and zearalenone) concentrations were recorded after processing of white fonio, brown fonio and finger millet, respectively, into ogi. This study provides new knowledge of the dominant bacterial genera vital for the improvement of millet-based ogi through starter culture development and as well, elucidates the role of processing in reducing mycotoxins in millet ogi.


Assuntos
Micotoxinas , Bactérias/genética , Bebidas , Grão Comestível/química , Milhetes , Micotoxinas/análise , RNA Ribossômico 16S
15.
Food Res Int ; 143: 110284, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33992384

RESUMO

Phytic acid (PA) is the primary phosphorus reserve in cereals and legumes which serves the biosynthesis needs of growing tissues during germination. It is generally considered to be an anti-nutritional factor found in grains because it can bind to minerals, proteins, and starch, limiting their bioavailability. However, this same mineral binding property can also confer a number of health benefits such as reducing the risk of certain cancers, supporting heart health, and managing renal stones. In addition, the ability of PA to bind minerals allows it to be used in certain food quality applications such as stabilizing the green color of vegetables, preventing lipid peroxidation, and reducing enzymatic browning in fruits/vegetables. These beneficial properties create a potential for added-value applications in the utilization of PA in many new areas. Many possible processing techniques for the preparation of raw materials in the food industry can be used to reduce the concentration of PA in foods to mitigate its anti-nutritional effects. In turn, the recovered PA by-products could be available for novel uses. In this review, a general overview of the beneficial and anti-nutritional effects of PA will be discussed and then dephytinization methods will be explained.


Assuntos
Manipulação de Alimentos , Ácido Fítico , Grão Comestível/química , Minerais/análise , Valor Nutritivo , Ácido Fítico/análise
16.
J Food Sci ; 86(5): 1979-1996, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33822378

RESUMO

We report on production of novel quaternary nanocomposite films based on thermoplastic starch (TPS, 8% w/v) derived from cassava, cocoa butter, (CB, 30% wt.%), and lemongrass essential oil (LEO, 1:1) nanoemulsions reinforced with different concentrations of brewery spent grain (BSG, 5 or 10 wt.%) fibers, by continuous casting. The chemical composition, the morphological, thermal, mechanical properties, film barrier, biodegradability in the vegetable compound, in addition to the application in chocolates, have been widely studied. The addition of CB, LEO, and BSG caused relevant changes in the starch-based films, such as increased extensibility (from 2.4-BSG5 to 9.4%-BSG10) and improved barrier to moisture (2.9 and 2.4 g.mm.kPa-1 .h-1 .m-2 ). Contrastingly, the thermal stability of the starch film was slightly decreased. The biodegradability of the herein developed quaternary nanocomposite films was the same as that of TPS films, eliminating concerns on the supplementation with active ingredients that are expected to have some biocidal effect. Despite checking antimicrobial activity only by contact under the biocomposites, chocolates packed with the films were well accepted by consumers, especially the samples of white chocolate stored in the BSG5 biocomposite. Overall, this new approach towards quaternary active, biodegradable films produced in a pilot-scale lamination unit was successful in either improving or at least maintaining the essential properties of TPS-based films for food packaging applications, while providing them with unique features and functionalities. PRACTICAL APPLICATION: This contribution relates to new approach toward quaternary films produced in a pilot-scale lamination unit. It relates to sustainability as it is both biodegradable and based on plant biomass, as well as produced via a clean, through high-yield process. The four components of the edible films we developed provide it with good in properties performance, as both a passive barrier (i.e. purely physical), and active, related to the sensory attributes of food, essential to be applied in food packaging. The valorization of a BSG also adds to the relevance of our contribution within the circular bioeconomy framework.


Assuntos
Cymbopogon/química , Gorduras na Dieta/análise , Grão Comestível/química , Manihot/química , Nanocompostos/química , Óleos Voláteis/química , Amido/química , Fibras na Dieta/análise , Embalagem de Alimentos
17.
Artigo em Inglês | MEDLINE | ID: mdl-33916634

RESUMO

We developed and validated a screening method for mycotoxin analysis in cereal products and spices. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) was used for the analysis. Dispersive solid-phase extractions (d-SPEs) were used for the extraction of samples. Ochratoxin A (OTA), zearalenone (ZEA), aflatoxins (AFLA; AFB1, AFB2, AFG1, AFG2), deoxynivalenol (DON), fumonisin (FUMO; FB1, FB2, FB3), T2, and HT2 were validated in maize. AFLA and DON were validated in black pepper. The method satisfies the requirements of Commission Regulation (EC) no. 401/2006 and (EC) no. 1881/2006. The screening target concentration (STC) was under maximum permitted levels (MLs) for all mycotoxins validated. The method's performance was assessed by two different proficiencies and tested with 100 real samples.


Assuntos
Micotoxinas , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Grão Comestível/química , Contaminação de Alimentos/análise , Micotoxinas/análise , Especiarias , Espectrometria de Massas em Tandem
18.
Artigo em Inglês | MEDLINE | ID: mdl-33917540

RESUMO

Consumption of cereals and cereal-based products represents 47% of the total food energy intake in Cape Verde. However, cereals also contribute to dietary exposure to metals that may pose a risk. Strengthening food security and providing nutritional information is a high-priority challenge for the Cape Verde government. In this study, toxic metal content (Cr, Ni, Sr, Al, Cd, and Pb) is determined in 126 samples of cereals and derivatives (rice, corn, wheat, corn flour, wheat flour, corn gofio) consumed in Cape Verde. Wheat flour samples stand out, with the highest Sr (1.60 mg/kg), Ni (0.25 mg/kg) and Cr (0.13 mg/kg) levels. While the consumption of 100 g/day of wheat would contribute to 13.2% of the tolerable daily intake (TDI) of Ni, a consumption of 100 g/day of wheat flour would contribute to 8.18% of the tolerable weekly intake (TWI) of Cd. Results show relevant Al levels (1.17-13.4 mg/kg), with the highest level observed in corn gofio. The mean Pb average content in cereals is 0.03-0.08 mg/kg, with the highest level observed in corn gofio. Al and Pb levels are lower in cereals without husks. Without being a health risk, the consumption of 100 g/day of wheat contributes to 17.5% of the European benchmark doses lower confidence limit (BMDL) of Pb for nephrotoxic effects; the consumption of 100 g/day of corn gofio provides an intake of 1.34 mg Al/day (13.7% of the TWI) and 8 µg Pb/day (20% of the BMDL for nephrotoxic effects). A strategy to minimize the dietary exposure of the Cape Verdean population to toxic metals from cereals should consider the continuous monitoring of imported cereals on arrival in Cape Verde, the assessment of the population's total diet exposure to toxic metals and educational campaigns.


Assuntos
Grão Comestível , Metais Pesados , Cabo Verde , Grão Comestível/química , Farinha , Contaminação de Alimentos/análise , Metais Pesados/análise , Medição de Risco , Triticum
19.
Food Chem ; 356: 129603, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33812195

RESUMO

This work investigated the effect of sprouting and drying post-sprouting on technological functionalities of sorghum flour as probed by Low-resolution Proton Nuclear Magnetic Resonance (1H NMR) and Dynamic Mechanical Analysis (DMA). Multivariate statistics were used to assess the effect of flour (from sprouted and unsprouted sorghum, and wholewheat) and hydration level on flour-water systems molecular and viscoelastic properties. Overall, sorghum-based systems showed greater molecular mobility explaining poorer viscoelastic properties than those obtained from wheat. Sprouting affected the molecular properties of sorghum flour-water systems, while no differences were observed in the two sprouted samples dried in different conditions. However, sprouting did not affect the viscoelastic properties of sorghum-water systems. These results bolster the use of sprouted sorghum in composite flours for the development of sustainable finished products with high nutritional value and satisfactory technological and organoleptic properties.


Assuntos
Grão Comestível/química , Farinha/análise , Sorghum/química , Valor Nutritivo , Reologia , Viscosidade , Água/química
20.
Molecules ; 26(5)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804452

RESUMO

Fungal contamination in stored food grains is a global concern and affects food economics and human and animal health. It is clear that there is a need to develop new technologies with improved performances that are also eco-friendly in nature. Due to the bioactivity of essential oils (EOs) in the vapor phase, their low toxicity for humans, and their biodegradability and antifungal properties, EOs could be a suitable solution. In this study, we explored the potential of thyme, oregano, lemongrass, clove, and cajeput EOs in the vapor phase. For 17 days, inhibitory activity was assessed against five strains of postharvest pathogens-Aspergillus spp., Fusarium s. l. spp., and Penicilliumochrochloron-isolated from cereal grains. A modified disc volatilization method was used, which is more effective in comparison to traditional screening methods. Three concentrations were tested (250, 125, and 62.5 µL/L). The two highest concentrations resulted in complete inhibition of fungal growth; however, even 62.5 µL/L showed a significant antifungal effect. The efficiency of EOs followed this order: thyme > oregano > lemongrass > clove > cajeput. From our findings, it appears that the use of EOs vapors is a better option not only for laboratory experiments, but for subsequent practice.


Assuntos
Antifúngicos/farmacologia , Grão Comestível/química , Fungos/crescimento & desenvolvimento , Óleos Voláteis/farmacologia , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...