Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.825
Filtrar
1.
Pharm Res ; 37(10): 196, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32944844

RESUMO

PURPOSE: Hypoxia-inducible factor (HIF) is one of the critical components of the tumor microenvironment that is involved in tumor development. HIF-1α functionally and physically interacts with CDK1, 2, and 5 and stimulates the cell cycle progression and Cyclin-Dependent Kinase (CDK) expression. Therefore, hypoxic tumor microenvironment and CDK overexpression lead to increased cell cycle progression and tumor expansion. Therefore, we decided to suppress cancer cell expansion by blocking HIF-1α and CDK molecules. METHODS: In the present study, we used the carboxylated graphene oxide (CGO) conjugated with trimethyl chitosan (TMC) and hyaluronate (HA) nanoparticles (NPs) loaded with HIF-1α-siRNA and Dinaciclib, the CDK inhibitor, for silencing HIF-1α and blockade of CDKs in CD44-expressing cancer cells and evaluated the impact of combination therapy on proliferation, metastasis, apoptosis, and tumor growth. RESULTS: The results indicated that the manufactured NPs had conceivable physicochemical properties, high cellular uptake, and low toxicity. Moreover, combination therapy of cancer cells using CGO-TMC-HA NPs loaded with HIF-1α siRNA and Dinaciclib (SCH 727965) significantly suppressed the CDKs/HIF-1α and consequently, decreased the proliferation, migration, angiogenesis, and colony formation in tumor cells. CONCLUSIONS: These results indicate the ability of CGO-TMC-HA NPs for dual drug/gene delivery in cancer treatment. Furthermore, the simultaneous inhibition of CDKs/HIF-1α can be considered as a novel anti-cancer treatment strategy; however, further research is needed to confirm this treatment in vivo. Graphical Abstract The suppression of HIF-1α and CDKs inhibits cancer growth. HIF-1α is overexpressed by the cells present in the tumor microenvironment. The hypoxic environment elevates mitochondrial ROS production and increases p38 MAP kinase, JAK/STAT, ERK, JNK, and Akt/PI3K signaling, resulting in cyclin accumulation and aberrant cell cycle progression. Furthermore, the overexpression of HIF-1α/CDK results in increased expression of genes such as BCL2, Bcl-xl, Ki-67, TGFß, VEGF, FGF, MMP2, MMP9, and, HIF-1α and consequently raise the survival, proliferation, angiogenesis, metastasis, and invasion of tumor cells. In conclusion, HIF-1α-siRNA/Dinaciclib-loaded CGO-TMC-HA NPs can inhibit the tumor expansion by blockage of CDKs and HIF-1α (JAK: Janus kinase, STAT: Signal transducer and activator of transcription, MAPK: mitogen-activated protein kinase, ERK: extracellular signal-regulated kinase, JNK: c-Jun N-terminal kinase, PI3K: phosphatidylinositol 3-kinase).


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Experimentais/terapia , Compostos de Piridínio/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Quitosana/química , Grafite/química , Ácido Hialurônico/química , Camundongos , Nanopartículas/química , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Compostos de Piridínio/química , Compostos de Piridínio/farmacocinética , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacocinética
2.
Chemosphere ; 258: 127343, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947672

RESUMO

Hydroxyl radicals (OH) have robust non-selective oxidizing properties to effectively degrade organic pollutants. However, graphitic carbon nitride (g-C3N4) is restricted to directly generate OH due to its intrinsic valence band. In this study, we report a facile environmental-friendly self-modification strategy to synthesize reduced graphitic carbon nitride (RCN), with nitrogen vacancies and CN functional groups. The incorporation of CN enabled to downshift the valence band level, which endowed RCN with the capacity to directly generate OH via h+. Experimental and instrumental analyses revealed the critical roles of nitrogen vacancies and CN groups in the modification of the RCN band structure to improve its visible light absorption and oxidizing capacity. With these superior properties, the RCN was significantly enhanced for the photocatalytic degradation of DCF under visible light irradiation. The self-modification strategy articulated in this study has strong potential for the creation of customized g-C3N4 band structures with enhanced oxidation performance.


Assuntos
Diclofenaco/química , Grafite/química , Compostos de Nitrogênio/química , Catálise , Luz , Oxirredução , Processos Fotoquímicos
3.
Biosens Bioelectron ; 166: 112436, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32750677

RESUMO

Our recent experience of the COVID-19 pandemic has highlighted the importance of easy-to-use, quick, cheap, sensitive and selective detection of virus pathogens for the efficient monitoring and treatment of virus diseases. Early detection of viruses provides essential information about possible efficient and targeted treatments, prolongs the therapeutic window and hence reduces morbidity. Graphene is a lightweight, chemically stable and conductive material that can be successfully utilized for the detection of various virus strains. The sensitivity and selectivity of graphene can be enhanced by its functionalization or combination with other materials. Introducing suitable functional groups and/or counterparts in the hybrid structure enables tuning of the optical and electrical properties, which is particularly attractive for rapid and easy-to-use virus detection. In this review, we cover all the different types of graphene-based sensors available for virus detection, including, e.g., photoluminescence and colorimetric sensors, and surface plasmon resonance biosensors. Various strategies of electrochemical detection of viruses based on, e.g., DNA hybridization or antigen-antibody interactions, are also discussed. We summarize the current state-of-the-art applications of graphene-based systems for sensing a variety of viruses, e.g., SARS-CoV-2, influenza, dengue fever, hepatitis C virus, HIV, rotavirus and Zika virus. General principles, mechanisms of action, advantages and drawbacks are presented to provide useful information for the further development and construction of advanced virus biosensors. We highlight that the unique and tunable physicochemical properties of graphene-based nanomaterials make them ideal candidates for engineering and miniaturization of biosensors.


Assuntos
Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Grafite , Pneumonia Viral/diagnóstico , Vírus/isolamento & purificação , Reações Antígeno-Anticorpo , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/tendências , Técnicas de Laboratório Clínico/instrumentação , Técnicas de Laboratório Clínico/métodos , Técnicas de Laboratório Clínico/estatística & dados numéricos , Colorimetria , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , DNA Viral/análise , DNA Viral/genética , Técnicas Eletroquímicas , Desenho de Equipamento , Grafite/química , Humanos , Luminescência , Nanoestruturas/química , Hibridização de Ácido Nucleico , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Pontos Quânticos/química , Análise Espectral Raman , Ressonância de Plasmônio de Superfície , Virologia/métodos , Vírus/genética , Vírus/patogenicidade
4.
Biosens Bioelectron ; 166: 112471, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32777726

RESUMO

The infection and spread of pathogens (e.g., COVID-19) pose an enormous threat to the safety of human beings and animals all over the world. The rapid and accurate monitoring and determination of pathogens are of great significance to clinical diagnosis, food safety and environmental evaluation. In recent years, with the evolution of nanotechnology, nano-sized graphene and graphene derivatives have been frequently introduced into the construction of biosensors due to their unique physicochemical properties and biocompatibility. The combination of biomolecules with specific recognition capabilities and graphene materials provides a promising strategy to construct more stable and sensitive biosensors for the detection of pathogens. This review tracks the development of graphene biosensors for the detection of bacterial and viral pathogens, mainly including the preparation of graphene biosensors and their working mechanism. The challenges involved in this field have been discussed, and the perspective for further development has been put forward, aiming to promote the development of pathogens sensing and the contribution to epidemic prevention.


Assuntos
Bactérias/isolamento & purificação , Betacoronavirus/isolamento & purificação , Técnicas Biossensoriais/métodos , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Grafite , Pandemias , Pneumonia Viral/diagnóstico , Vírus/isolamento & purificação , Animais , Bactérias/genética , Bactérias/patogenicidade , Betacoronavirus/genética , Betacoronavirus/patogenicidade , Grafite/química , Humanos , Técnicas de Diagnóstico Molecular , Nanotecnologia , Vírus/genética , Vírus/patogenicidade
5.
Int J Nanomedicine ; 15: 5813-5824, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821103

RESUMO

Introduction: This paper presents a novel technique for the synthesis of graphene oxide (GO) with various surface features using high-density atmospheric plasma deposition. Furthermore, to investigate the use of hydrophobic, super-hydrophobic, and hydrophilic graphene in biological applications, we synthesized hydrophobic, super-hydrophobic, and hydrophilic graphene oxides by additional heat treatment and argon plasma treatment, respectively. In contrast to conventional fabrication procedures, reduced graphene oxide (rGO) formed under low pressure and high-temperature environment using a new synthesis method-developed and described in this study-offers a convenient deposition method on any kind surface with controlled wettability. Methods: High density at atmospheric plasma is used for the synthesis of rGO and GO and its biocompatibility based on various wetting properties was evaluated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the viability of cells in response to rGO and GO with various surface features was investigated. Structural integrity was characterized by Raman spectroscopy, FESEM and FE-TEM. Wettability was measured via contact angle method and confirmed with XPS analysis. Results: We found that GO coating with a hydrophilic feature is more biocompatible than other surfaces as observed in case of fibroblast cells. We have shown that wettability-controlled by GO deposition-influences biocompatibilities and antibacterial effect of biomaterial surfaces. Discussion: Measuring the contact angle, it is found that contact angle for hydrophobic is increased to 150.590 and reduced to 11.580 by heat and argon plasma treatment, respectively, from 75.880 that was initially in the case of hydrophobic surface. XPS analysis confirmed various oxygen-containing functional groups transforming as deposited hydrophobic surface into superhydrophobic and hydrophilic surface. Thus, we have proposed a new, direct, cost-effective, and highly productive method for the synthesis of rGO and GO-with various surface properties-for biological applications. Similarly, for the dental implant application, the Streptococcus mutans was used as an antibacterial effect and found that S. mutans grows slowly on hydrophilic surface. Thus, antibacterial effect was prominent on GO with hydrophilic surface.


Assuntos
Atmosfera/química , Grafite/síntese química , Gases em Plasma/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular , Grafite/química , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Oxirredução , Streptococcus mutans/efeitos dos fármacos , Água , Molhabilidade
6.
Int J Nanomedicine ; 15: 5027-5042, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764934

RESUMO

Background: Bactericidal capacity, durable inhibition of biofilm formation, and a three-dimensional (3D) porous structure are the emphases of infected bone defect (IBD) treatment via local scaffold implantation strategy. Purpose: In this study, silver nanoparticle (AgNP)-loaded nano-hydroxyapatite (nHA)@ reduced graphene oxide (RGO) 3D scaffolds (AHRG scaffolds) were designed to alleviate bone infection, inhibit biofilm formation, and promote bone repair through the synergistic effects of AgNPs, RGO, and nHA. Materials and Methods: AHRGs were prepared using a one-step preparation method, to create a 3D porous scaffold to facilitate a uniform distribution of AgNPs and nHA. Methicillin-resistant Staphylococcus aureus (MRSA) was used as a model-resistant bacterium, and the effects of different silver loadings on the antimicrobial activity and cytocompatibility of materials were evaluated. Finally, a rabbit IBD model was used to evaluate the therapeutic effect of the AHRG scaffold in vivo. Results: The results showed successful synthesis of the AHRG scaffold. The ideal 3D porous structure was verified using scanning electron microscopy and transmission electron microscopy, and X-ray photoelectron spectroscopy and selected area electron diffraction measurements revealed uniform distributions of AgNP and nHA. In vitro antibacterial and cytocompatibility indicated that the 4% AHRG scaffolds possessed the most favorable balance of bactericidal properties and cytocompatibility. In vivo evaluation of the IBD model showed promising treatment efficacy of AHRG scaffolds. Conclusion: The as-fabricated AHRG scaffolds effectively eliminated infection and inhibited biofilm formation. IBD repair was facilitated by the bactericidal properties and 3D porous structure of the AHRG scaffold, suggesting its potential in the treatment of IBDs.


Assuntos
Antibacterianos/farmacologia , Doenças Ósseas Infecciosas/terapia , Grafite/química , Nanopartículas Metálicas/química , Engenharia Tecidual/métodos , Tecidos Suporte/química , Animais , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos , Osso e Ossos/efeitos dos fármacos , Modelos Animais de Doenças , Durapatita/química , Feminino , Masculino , Teste de Materiais , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Porosidade , Coelhos , Ratos , Prata/química , Prata/farmacologia , Infecções Estafilocócicas/terapia
7.
Int J Nanomedicine ; 15: 5131-5146, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764941

RESUMO

Background: Gene therapy is considered a novel way to treat osteosarcoma, and microRNAs are potential therapeutic targets for osteosarcoma. miR-214 has been found to promote osteosarcoma aggression and metastasis. Graphene oxide (GO) is widely used for gene delivery for the distinct physiochemical properties and minimal cytotoxicity. Methods: Polyethyleneimine (PEI)-functionalized GO complex was well-prepared and loaded with miR-214 inhibitor at different concentrations. The load efficacy was tested by gel retardation assay and the cy3-labeled fluorescence of cellular uptake. The experiments of wound healing, immunofluorescence staining, Western blot, qRT-PCR and immunohistochemical staining were performed to measure the inhibitory effect of the miR-214 inhibitor systematically released from the complexes against MG63, U2OS cells and xenograft tumors. Results: The systematic mechanistic elucidation of the efficient delivery of the miR-214 inhibitor by GO-PEI indicated that the inhibition of cellular miR-214 caused a decrease in osteosarcoma cell invasion and migration and an increase in apoptosis by targeting phosphatase and tensin homolog (PTEN). The synergistic combination of the GO-PEI-miR-214 inhibitor and CDDP chemotherapy showed significant cell death. In a xenograft mouse model, the GO-PEI-miR-214 inhibitor significantly inhibited tumor volume growth. Conclusion: This study indicates the potential of functionalized GO-PEI as a vehicle for miRNA inhibitor delivery to treat osteosarcoma with low toxicity and miR-214 can be a good target for osteosarcoma therapy.


Assuntos
Grafite/química , MicroRNAs/antagonistas & inibidores , Terapia de Alvo Molecular , Osteossarcoma/tratamento farmacológico , PTEN Fosfo-Hidrolase/metabolismo , Polietilenoimina/química , Polietilenoimina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Ósseas/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/genética , Terapia Combinada , Humanos , Camundongos , MicroRNAs/genética , Osteossarcoma/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia
8.
Int J Nanomedicine ; 15: 5147-5163, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764942

RESUMO

Background: In the last decades, nosocomial infections caused by drug-resistant Pseudomonas aeruginosa became a common problem in healthcare facilities. Antibiotics are becoming less effective as new resistant strains appear. Therefore, the development of novel enhanced activity antibacterial agents becomes very significant. A combination of nanomaterials with different physical and chemical properties enables us to generate novel multi-functional derivatives. In this study, graphene oxide and polyvinylpyrrolidone-stabilized silver nanoparticles hybrid nanocomposite (GO-Ag HN) were synthesized. The relation between antibiotic resistance and GO-Ag HN potential toxicity to clinical P. aeruginosa strains, their antibiotic resistance, and molecular mechanisms were assessed. Methods: Chemical state, particle size distribution, and morphology of synthesized GO-Ag NH were investigated using spectroscopy and microscopy techniques (UV-Vis, FTIR, XPS, TEM, SEM, AFM). Broad-spectrum antibiotic resistance of P. aeruginosa strains was determined using E-test. Antibiotic resistance genes were identified using polymerase chain reaction (PCR). Results: In this study, the toxicity of the GO-Ag NH to the isolated clinical P. aeruginosa strains has been investigated. A high antibiotic resistance level (92%) was found among P. aeruginosa strains. The most prevalent antibiotic resistance gene among tested strains was the AMPC beta-lactamase gene (65.6%). UV-vis, FTIR, and XPS studies confirmed the formation of the silver nanoparticles on the GO nanosheets. The functionalization process occurred through the interaction between Ag nanoparticles, GO, and polyvinylpyrrolidone used for nanoparticle stabilization. SEM analysis revealed that GO nanosheets undergo partial fragmentation during hybrid nanocomposite preparation, which remarkably increases the number of sharp edges and their mediated cutting effect. TEM analysis showed that GO-Ag HN spherical Ag nanoparticles mainly 9-12 nm in size were irregularly precipitated on the GO nanosheet surface. A higher density of Ag NPs was observed in the sheets' wrinkles, corrugations, and sharp edges. This hybrid nanocomposite poses enhanced antibacterial activity against carbapenem-resistant P. aeruginosa strains through a possible synergy between toxicity mechanisms of GO nanosheets and Ag nanoparticles. With incubation time increasing up to 10 minutes, the survival of P. aeruginosa decreased significantly. Conclusion: A graphene oxide and silver nanoparticles hybrid composite has been shown to be a promising material to control nosocomial infections caused by bacteria strains resistant to most antibiotics.


Assuntos
Farmacorresistência Bacteriana/genética , Grafite/química , Grafite/farmacologia , Nanopartículas Metálicas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Prata/química , Antibacterianos/química , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos
9.
PLoS One ; 15(8): e0237389, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32797116

RESUMO

In the present work, a series of magnetically separable Fe3O4/g-C3N4/MoO3 nanocomposite catalysts were prepared. The as-prepared catalysts were characterized by XRD, EDX, TEM, FT-IR, UV-Vis DRS, TGA, PL, BET and VSM. The photocatalytic activity of photocatalytic materials was evaluated by catalytic degradation of tetracycline solution under visible light irradiation. Furthermore, the influences of weight percent of MoO3 and scavengers of the reactive species on the degradation activity were investigated. The results showed that the Fe3O4/g-C3N4/MoO3 (30%) nanocomposites exhibited highest removal ability for TC, 94% TC was removed during the treatment. Photocatalytic activity of Fe3O4/g-C3N4/MoO3 (30%) was about 6.9, 5, and 19.9-fold higher than those of the MoO3, g-C3N4, and Fe3O4/g-C3N4 samples, respectively. The excellent photocatalytic performance was mainly attributed to the Z-scheme structure formed between MoO3 and g-C3N4, which enhanced the efficient separation of the electron-hole and sufficient utilization charge carriers for generating active radials. The highly improved activity was also partially beneficial from the increase in adsorption of the photocatalysts in visible range due to the combinaion of Fe3O4. Superoxide ions (·O2-) was the primary reactive species for the photocatalytic degradation of TC, as degradation rate were decreased to 6% in solution containing benzoquinone (BQ). Data indicate that the novel Fe3O4/g-C3N4/MoO3 was favorable for the degradation of high concentrations of tetracycline in water.


Assuntos
Óxido Ferroso-Férrico/química , Grafite/química , Molibdênio/química , Nanocompostos/química , Compostos de Nitrogênio/química , Óxidos/química , Processos Fotoquímicos , Tetraciclina/química , Água/química , Catálise , Luz , Imãs/química , Tetraciclina/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
10.
PLoS One ; 15(8): e0237583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32804936

RESUMO

Identification and quantification of plant flavonoids are critical to pharmacokinetic study and pharmaceutical quality control due to their distinct pharmacological functions. Here we report on a novel plant flavonoid electrochemical sensor for sensitive and selective detection of dihydromyricetin (DMY) based on double- layered membranes consisting of gold nanoparticles (Au) anchored on reduced graphene oxide (rGO) and molecularly imprinted polymers (MIPs) modified glassy carbon electrode (GCE). Both rGO-Au and MIPs membranes were directly formed on GCE via in-situ electrochemical reduction and polymerization processes step by step. The compositions, morphologies, and electrochemical properties of membranes were investigated with X-ray powder diffractometry (XRD), Fourier transform infrared spectrum (FTIR), Field emission scanning electron microscopy (FESEM) combined with various electrochemical methods. The fabricated electrochemical sensor labeled as GCE│rGO-Au/MIPs exhibited excellent performance in determining of DMY under optimal experimental conditions. A wide linear detection range (LDR) ranges from 2.0×10-8 to 1.0×10-4 M together with a low limit of detection (LOD) of 1.2×10-8 M (S/N = 3) were achieved. Moreover, the electrochemical sensor was employed to determine DMY in real samples with satisfactory results.


Assuntos
Carbono/química , Técnicas Eletroquímicas/instrumentação , Flavonoides/análise , Flavonóis/análise , Grafite/química , Técnicas Biossensoriais/métodos , Eletrodos , Ouro , Limite de Detecção , Nanopartículas Metálicas , Impressão Molecular , Extratos Vegetais/análise , Polímeros/síntese química , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Int J Nanomedicine ; 15: 4659-4676, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636624

RESUMO

Background: Titanium implants are widely used in dental and orthopedic medicine. Nevertheless, there is limited osteoinductive capability of titanium leading to a poor or delayed osseointegration, which might cause the failure of the implant therapy. Therefore, appropriate modification on the titanium surface for promoting osseointegration of existing implants is still pursued. Purpose: Graphene oxide (GO) is a promising candidate to perform implant surface biofunctionalization for modulating the interactions between implant surface and cells. So the objective of this study was to fabricate a bioactive GO-modified titanium implant surface with excellent osteoinductive potential and further investigate the underlying biological mechanisms. Materials and Methods: The large particle sandblasting and acid etching (SLA, commonly used in clinical practice) surface as a control group was first developed and then the nano-GO was deposited on the SLA surface via an ultrasonic atomization spraying technique to create the SLA/GO group. Their effects on rat bone marrow mesenchymal stem cells (BMSCs) responsive behaviors were assessed in vitro, and the underlying biological mechanisms were further systematically investigated. Moreover, the osteogenesis performance in vivo was also evaluated. Results: The results showed that GO coating was fabricated on the titanium substrates successfully, which endowed SLA surface with the improved hydrophilicity and protein adsorption capacity. Compared with the SLA surface, the GO-modified surface favored cell adhesion and spreading, and significantly improved cell proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, the FAK/P38 signaling pathways were proven to be involved in the enhanced osteogenic differentiation of BMSCs, accompanied by the upregulated expression of focal adhesion (vinculin) on the GO coated surface. The enhanced bone regeneration ability of GO-modified implants when inserted into rat femurs was also observed and confirmed that the GO coating induced accelerated osseointegration and osteogenesis in vivo. Conclusion: GO modification on titanium implant surface has potential applications for achieving rapid bone-implant integration through the mediation of FAK/P38 signaling pathways.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Grafite/farmacologia , Osteogênese/efeitos dos fármacos , Próteses e Implantes , Titânio , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Adesão Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osseointegração/efeitos dos fármacos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Propriedades de Superfície
13.
Nat Commun ; 11(1): 3450, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651424

RESUMO

Recent advances in nanomaterials and nano-microfabrication have enabled the development of flexible wearable electronics. However, existing manufacturing methods still rely on a multi-step, error-prone complex process that requires a costly cleanroom facility. Here, we report a new class of additive nanomanufacturing of functional materials that enables a wireless, multilayered, seamlessly interconnected, and flexible hybrid electronic system. All-printed electronics, incorporating machine learning, offers multi-class and versatile human-machine interfaces. One of the key technological advancements is the use of a functionalized conductive graphene with enhanced biocompatibility, anti-oxidation, and solderability, which allows a wireless flexible circuit. The high-aspect ratio graphene offers gel-free, high-fidelity recording of muscle activities. The performance of the printed electronics is demonstrated by using real-time control of external systems via electromyograms. Anatomical study with deep learning-embedded electrophysiology mapping allows for an optimal selection of three channels to capture all finger motions with an accuracy of about 99% for seven classes.


Assuntos
Técnicas Biossensoriais/métodos , Eletrônica/métodos , Grafite/química , Condutividade Elétrica , Humanos , Nanoestruturas/química , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio
14.
Int J Nanomedicine ; 15: 3903-3920, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32606657

RESUMO

Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue accessibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was encapsulated within chitosan nanoparticles and chitosan-loaded T3 was incorporated within PCL nanofibers. Polyaniline graphene (PAG) nanocomposite was incorporated within gelatin nanofibers to endow the scaffold with conductive properties, which resemble the conductive behavior of axons. Biodegradation, water contact angle measurements, and scanning electron microscopy (SEM) observations as well as conductivity tests were used to evaluate the properties of the prepared scaffold. The concentration of PAG and T3-loaded chitosan NPs in nanofibers were optimized by examining the proliferation of cultured bone marrow-derived mesenchymal stem cells (BMSCs) on the scaffolds. The differentiation of BMSCs-derived NSCs cultured on the fabricated scaffolds into OLCs was analyzed by evaluating the expression of oligodendrocyte markers using immunofluorescence (ICC), RT-PCR and flowcytometric assays. Results: Incorporating 2% PAG proved to have superior cell support and proliferation while guaranteeing electrical conductivity of 10.8 × 10-5 S/cm. Moreover, the scaffold containing 2% of T3-loaded chitosan NPs was considered to be the most biocompatible samples. Result of ICC, RT-PCR and flow cytometry showed high expression of O4, Olig2, platelet-derived growth factor receptor-alpha (PDGFR-α), O1, myelin/oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) high expressed but low expression of glial fibrillary acidic protein (GFAP). Conclusion: Considering surface topography, biocompatibility, electrical conductivity and gene expression, the hybrid PCL/gelatin scaffold with the controlled release of T3 may be considered as a promising candidate to be used as an in vitro model to study patient-derived oligodendrocytes by isolating patient's BMSCs in pathological conditions such as diseases or injuries. Moreover, the resulted oligodendrocytes can be used as a desirable source for transplanting in patients.


Assuntos
Materiais Biomiméticos/farmacologia , Células da Medula Óssea/citologia , Diferenciação Celular , Nanofibras/química , Células-Tronco Neurais/citologia , Oligodendroglia/citologia , Tecidos Suporte/química , Compostos de Anilina/química , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Condutividade Elétrica , Gelatina/química , Grafite/química , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/ultraestrutura , Células-Tronco Neurais/metabolismo , Oligodendroglia/efeitos dos fármacos , Poliésteres/química , Ratos , Suínos , Tri-Iodotironina/farmacologia
15.
J Chromatogr A ; 1625: 461302, 2020 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-32709345

RESUMO

Additives are added to polymers in small concentration to achieve desired application properties widely used to tailor the properties. The rapid diversification of their molecular structures, with often only minute differences, necessitates the development of adequate chromatographic techniques. While modified silica so far is the workhorse as stationary phase we have probed the potential of porous graphitic carbon (HypercarbTM) for this purpose. The results show that the multitude of physicochemical interactions between analyte molecules and the graphitic surface enables separations of polyolefin stabilizers with unprecedented selectivity. To support the chromatographic results the adsorption capability of HypercarbTM for selected antioxidants and UV absorbers has been determined by Raman spectroscopy and argon physisorption measurements. The shift of the Graphite-band in the Raman spectra of HypercarbTM upon infusion with additives correlates with the changes in the Adsorption Potential Distributions. The results of argon physisorption measurements go hand in hand with the chronology of desorption of the additives in liquid chromatography experiments. The elution sequence can be explained by van der Waals or London forces, π-π-interactions and electron lone pair donor-acceptor interactions between the graphite surface and analyte functional groups.


Assuntos
Grafite/química , Polímeros/química , Análise Espectral Raman , Adsorção , Antioxidantes/isolamento & purificação , Argônio/química , Clorofórmio/química , Éteres Metílicos/química , Polienos/química , Porosidade , Fatores de Tempo
16.
Food Chem ; 332: 127346, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619938

RESUMO

Fiber optic surface plasmon resonance (SPR) sensor utilizing silver (Ag) and Ag-graphene oxide (GO) is designed and developed for the detection of adulteration of glucose and fructose in pure honey. The concentration range of the two adulterants in pure honey is varied from 4% to 20% with a step change of 4%. The experiments were performed with two different fiber optic probes viz. Probe 1 and Probe 2. Probe 1 is fabricated by coating 50 nm Ag film on unclad optical fiber portion and Probe 2 is fabricated by modifying Ag film with GO for sensitivity improvement. The study confirms that using GO modified fiber optic probe, the sensitivity is enhanced to 24% and 37% for glucose and fructose adulterated honey samples respectively. The technique presented in this study is easy, rapid, label free and shows high prospective for the detection of adulterants in pure honey.


Assuntos
Grafite/química , Mel/análise , Fibras Ópticas , Prata/química , Ressonância de Plasmônio de Superfície/instrumentação
17.
Chemosphere ; 259: 127395, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623200

RESUMO

In this work, iron (oxyhydr)oxide nanoparticle-doped expanded graphite (IO/EG-1 and IO/EG-2) was prepared via a hydrothermal reaction and applied for the phosphorus adsorption in the aqueous solutions. The analysis of scanning electron microscopy (SEM) and X-ray diffraction (XRD) verified the successful fabrication of IO/EGs, and iron (oxyhydr)oxide nanoparticles became more crystalized according to the calcination at high temperature (IO/EG-2). The maximum adsorption capacity of IO/EG-1 was considerably higher (7.30 mg/g) than that of IO/EG-2 (0.70 mg/g) mainly due to the electrostatic interaction between the negatively charged phosphate ions with iron (oxyhydr)oxides. At the neutral pH, IO/EG-1 exhibited more positively charged than IO/EG-2, which the iso-electric points (IEP) were pH of 9.1 and 6.0, respectively. The thermodynamic study also suggested that the phosphorus adsorption energy of IO/EG-1was considerably favorable (-12.13 kJ/mol) than that of IO/EG-2 (-7.43 kJ/mol). The regeneration of IO/EG-1 were efficiently achieved by a simple extraction using an alkaline solution such as NaOH. Overall, our study suggested that the prepared IO/EGs could be used as good adsorbents for the phosphorus recovery from aqueous solutions.


Assuntos
Grafite/química , Fósforo/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Ferro/química , Nanopartículas , Óxidos , Fosfatos , Termodinâmica , Difração de Raios X
18.
Food Chem ; 333: 127495, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32663747

RESUMO

Various pesticides employed in modern agriculture result in large amounts of pesticide residues in agricultural production, greatly threatening human health. Herein, we report a facile approach to fabricate a reduced graphene oxide/cyclodextrin modified glassy carbon electrode (rGO/CD/GCE) for the sensitive electrochemical sensing of imidacloprid (IDP). Three different modified electrodes using CDs (α-, ß-, γ-CD) were fabricated, and their electrochemical performance was further studied. The results demonstrate that α-CD possesses the best signal amplification for IDP. Compared with wet-chemical synthesis of rGO/CDs (W-rGO/CDs), the electrochemical synthesis of rGO/CDs (E-rGO/CDs) produced sensors that showed better performance for IDP sensing. Taking advantage of prepared E-rGO/α-CD nanocomposite, the fabricated sensor offered a low detection limit (0.02 µM) with a wider linear range (0.5-40 µM) and long-term stability. The new sensor was successfully applied for the detection of IDP in brown rice, providing a new technique for efficient and convenient monitoring of pesticide residues in food.


Assuntos
Ciclodextrinas/química , Técnicas Eletroquímicas/métodos , Grafite/química , Inseticidas/análise , Neonicotinoides/análise , Nitrocompostos/análise , Oryza/química , Carbono/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Contaminação de Alimentos/análise , Nanocompostos/química , Oxirredução , Sementes/química , Sensibilidade e Especificidade
19.
Chemosphere ; 260: 127587, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32663673

RESUMO

In this work, a three-dimension grapnene-PbO2 (3DG-PbO2) composite anode was prepared using coelectrodeposition technology for electrocatalytic oxidation of perfluorooctane sulfonate (PFOS). The effect of 3DG on the surface morphology, structure and electrocatalytic activity of PbO2 electrode was investigated. The results indicated that the 3DG-PbO2-0.08 anode (3DG concentration in electrodeposition solution was 0.08 g L-1) possessed the best electrocatalytic activity due to its stronger ·OH radicals generation capacity, more active sites and smaller charge-transfer resistance. The degradation rate constant of PFOS on 3DG-PbO2-0.08 anode was 2.33 times than that of pure PbO2 anode. Additionally, the by-products formed in electrocatalytic degradation of PFOS were identified and a PFOS degradation pathway was proposed accordingly, which was dominated by the dissociation of -CF2- groups via the attack of ·OH radicals. Finally, the toxicity evolution of degradation solution was examined to evaluate the ecological risk of electrocatalytic oxidation of PFOS by acute toxicity assays to zebrafish embryos.


Assuntos
Ácidos Alcanossulfônicos/análise , Técnicas Eletroquímicas/métodos , Fluorcarbonetos/análise , Grafite/química , Chumbo/química , Nanocompostos/química , Óxidos/química , Titânio/química , Poluentes Químicos da Água/análise , Ácidos Alcanossulfônicos/toxicidade , Animais , Eletrodos , Galvanoplastia , Embrião não Mamífero/efeitos dos fármacos , Fluorcarbonetos/toxicidade , Oxirredução , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
20.
J Vis Exp ; (160)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658181

RESUMO

This protocol demonstrates a method for graphene-assisted quick growth and coalescence of AlN on nano-pattened sapphire substrate (NPSS). Graphene layers are directly grown on NPSS using catalyst-free atmospheric-pressure chemical vapor deposition (APCVD). By applying nitrogen reactive ion etching (RIE) plasma treatment, defects are introduced into the graphene film to enhance chemical reactivity. During metal-organic chemical vapor deposition (MOCVD) growth of AlN, this N-plasma treated graphene buffer enables AlN quick growth, and coalescence on NPSS is confirmed by cross-sectional scanning electron microscopy (SEM). The high quality of AlN on graphene-NPSS is then evaluated by X-ray rocking curves (XRCs) with narrow (0002) and (10-12) full width at half-maximum (FWHM) as 267.2 arcsec and 503.4 arcsec, respectively. Compared to bare NPSS, AlN growth on graphene-NPSS shows significant reduction of residual stress from 0.87 GPa to 0.25 Gpa, based on Raman measurements. Followed by AlGaN multiple quantum wells (MQWS) growth on graphene-NPSS, AlGaN-based deep ultraviolet light-emitting-diodes (DUV LEDs) are fabricated. The fabricated DUV-LEDs also demonstrate obvious, enhanced luminescence performance. This work provides a new solution for the growth of high quality AlN and fabrication of high performance DUV-LEDs using a shorter process and less costs.


Assuntos
Óxido de Alumínio/química , Grafite/química , Nanoestruturas/química , Semicondutores , Raios Ultravioleta , Compostos de Alumínio/química , Catálise , Gálio/química , Gases/química , Luminescência , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA