Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.094
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445650

RESUMO

Cryo-electron microscopy (Cryo-EM) has become a routine technology for resolving the structure of biological macromolecules due to the resolution revolution in recent years. The specimens are typically prepared in a very thin layer of vitrified ice suspending in the holes of the perforated amorphous carbon film. However, the samples prepared by directly applying to the conventional support membranes may suffer from partial or complete denaturation caused by sticking to the air-water interface (AWI). With the application in materials, graphene has also been used recently to improve frozen sample preparation instead of a suspended conventional amorphous thin carbon. It has been proven that graphene or graphene oxide and various chemical modifications on its surface can effectively prevent particles from adsorbing to the AWI, which improves the dispersion, adsorbed number, and orientation preference of frozen particles in the ice layer. Their excellent properties and thinner thickness can significantly reduce the background noise, allowing high-resolution three-dimensional reconstructions using a minimum data set.


Assuntos
Microscopia Crioeletrônica/métodos , Grafite/química , Substâncias Macromoleculares/química , Manejo de Espécimes/métodos , Água/química
2.
Nat Commun ; 12(1): 4880, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385444

RESUMO

Accurate and imperceptible monitoring of electrophysiological signals is of primary importance for wearable healthcare. Stiff and bulky pregelled electrodes are now commonly used in clinical diagnosis, causing severe discomfort to users for long-time using as well as artifact signals in motion. Here, we report a ~100 nm ultra-thin dry epidermal electrode that is able to conformably adhere to skin and accurately measure electrophysiological signals. It showed low sheet resistance (~24 Ω/sq, 4142 S/cm), high transparency, and mechano-electrical stability. The enhanced optoelectronic performance was due to the synergistic effect between graphene and poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), which induced a high degree of molecular ordering on PEDOT and charge transfer on graphene by strong π-π interaction. Together with ultra-thin nature, this dry epidermal electrode is able to accurately monitor electrophysiological signals such as facial skin and brain activity with low-motion artifact, enabling human-machine interfacing and long-time mental/physical health monitoring.


Assuntos
Eletrodos , Eletrofisiologia/métodos , Epiderme/fisiologia , Desenho de Equipamento/métodos , Monitorização Fisiológica/métodos , Dispositivos Eletrônicos Vestíveis , Artefatos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Eletrofisiologia/instrumentação , Eletrofisiologia/normas , Desenho de Equipamento/normas , Grafite/química , Humanos , Estrutura Molecular , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/normas , Movimento (Física) , Polímeros/química , Poliestirenos/química , Pele
3.
Molecules ; 26(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34443582

RESUMO

Biological imaging is an essential means of disease diagnosis. However, semiconductor quantum dots that are used in bioimaging applications comprise toxic metal elements that are nonbiodegradable, causing serious environmental problems. Herein, we developed a novel ecofriendly solvothermal method that uses ethanol as a solvent and doping with chlorine atoms to prepare highly fluorescent graphene quantum dots (GQDs) from seaweed. The GQDs doped with chlorine atoms exhibit high-intensity white fluorescence. Thus, their preliminary application in bioimaging has been confirmed. In addition, clear cell imaging could be performed at an excitation wavelength of 633 nm.


Assuntos
Cloro/química , Grafite/química , Imagem Molecular/métodos , Pontos Quânticos/química , Alga Marinha/química , Linhagem Celular , Fluorescência
4.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361058

RESUMO

Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a liquid environment. Starting from a bilayer graphene configuration, we decouple the Van der Waals interactions of a graphene monolayer in the presence of saline water. Then, we introduce the monolayer back into water by coupling its interactions with water molecules and ions. A different approach to compute the graphene exfoliation free energy is to use umbrella sampling. We apply umbrella sampling after pulling the graphene monolayer on the shear direction up to a distance from a bilayer. We show that the decoupling and umbrella methods give highly consistent free energy results for three bilayer graphene samples with different size. This strongly suggests that the systems in both methods remain closely in equilibrium as we move between the states before and after the exfoliation. Therefore, the amount of nonequilibrium work needed to peel the two layers apart is minimized efficiently.


Assuntos
Grafite/química , Simulação de Dinâmica Molecular , Transição de Fase , Solventes/química , Termodinâmica , Entropia
5.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34244421

RESUMO

COVID-19 has led to over 3.47 million deaths worldwide and continues to devastate primarily middle- and low-income countries. High-frequency testing has been proposed as a potential solution to prevent outbreaks. However, current tests are not sufficiently low-cost, rapid, or scalable to enable broad COVID-19 testing. Here, we describe LEAD (Low-cost Electrochemical Advanced Diagnostic), a diagnostic test that detects severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 6.5 min and costs $1.50 per unit to produce using easily accessible and commercially available materials. LEAD is highly sensitive toward SARS-CoV-2 spike protein (limit of detection = 229 fg⋅mL-1) and displays an excellent performance profile using clinical saliva (100.0% sensitivity, 100.0% specificity, and 100.0% accuracy) and nasopharyngeal/oropharyngeal (88.7% sensitivity, 86.0% specificity, and 87.4% accuracy) samples. No cross-reactivity was detected with other coronavirus or influenza strains. Importantly, LEAD also successfully diagnosed the highly contagious SARS-CoV-2 B.1.1.7 UK variant. The device presents high reproducibility under all conditions tested and preserves its original sensitivity for 5 d when stored at 4 °C in phosphate-buffered saline. Our low-cost and do-it-yourself technology opens new avenues to facilitate high-frequency testing and access to much-needed diagnostic tests in resource-limited settings and low-income communities.


Assuntos
Técnicas Biossensoriais , Teste para COVID-19 , COVID-19 , Grafite/química , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/diagnóstico , COVID-19/metabolismo , Eletrodos , Humanos , Sensibilidade e Especificidade
6.
Chem Commun (Camb) ; 57(59): 7284-7287, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34212953

RESUMO

Natural DNA was employed for the first time as a phosphorization agent and carbon source to controllably synthesize a RuP2/N,P-codoped carbon composite by a simple "mix-and-pyrolyze" strategy, which displays higher activity for alkaline and acidic HER and neutral activity compared to Pt/C together with outstanding durability.


Assuntos
DNA de Cadeia Simples/química , Grafite/química , Hidrogênio/química , Rutênio/química , Animais , Catálise , Concentração de Íons de Hidrogênio , Nitrogênio/química , Fósforo/química , Espectroscopia Fotoeletrônica , Salmão/genética
7.
Biosensors (Basel) ; 11(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205540

RESUMO

In this paper, a bimetallic sensor based on graphene-hexagonal boron nitride (hBN) heterostructure is theoretically studied. The sensitivity of the sensor can be improved by enhancing the Goos-Hänchen (GH) shift in the infrared band. The theoretical results show that adjusting the Fermi level, the number of graphene layers and the thickness of hBN, a GH shift of 182.09 λ can be obtained. Moreover, sensitivity of 2.02 × 105 λ/RIU can be achieved with monolayer graphene, the thickness of gold layer is 20 nm, silver layer is 15 nm, and the hBN thickness of 492 nm. This heterogeneous infrared sensor has the advantages of high sensitivity and strong stability. The research results will provide a theoretical basis for the design of a new high-sensitivity infrared band sensor.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Compostos de Boro , Ouro , Grafite/química , Prata
8.
Biosensors (Basel) ; 11(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205927

RESUMO

The use of deoxyribonucleic acid (DNA) hybridization to detect disease-related gene expression is a valuable diagnostic tool. An ion-sensitive field-effect transistor (ISFET) with a graphene layer has been utilized for detecting DNA hybridization. Silicene is a two-dimensional silicon allotrope with structural properties similar to graphene. Thus, it has recently experienced intensive scientific research interest due to its unique electrical, mechanical, and sensing characteristics. In this paper, we proposed an ISFET structure with silicene and electrolyte layers for the label-free detection of DNA hybridization. When DNA hybridization occurs, it changes the ion concentration in the surface layer of the silicene and the pH level of the electrolyte solution. The process also changes the quantum capacitance of the silicene layer and the electrical properties of the ISFET device. The quantum capacitance and the corresponding resonant frequency readout of the silicene and graphene are compared. The performance evaluation found that the changes in quantum capacitance, resonant frequency, and tuning ratio indicate that the sensitivity of silicene is much more effective than graphene.


Assuntos
Sondas de DNA , Técnicas Biossensoriais , Simulação por Computador , DNA/química , Capacitância Elétrica , Grafite/química , Silício/química , Transistores Eletrônicos
9.
Int J Biol Macromol ; 185: 644-653, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34217741

RESUMO

Highly specific graphene-DNA interactions have been at the forefront of graphene-based sensor design for various analytes, including DNA itself. However, in addition to its detection, DNA also needs to be characterized according to its size and concentration in a sample, which is an additional analytical step. Designing a highly sensitive and selective DNA sensing and characterization platform is, thus, of great interest. The present study demonstrates that a bio-derived, naturally fluorescent protein C-phycoerythrin (CPE) - graphene oxide (GO) bio-composite can be used to detect dsDNA in nanomolar quantities efficiently via fluorescent "turn off/on" mechanism. Interaction with GO temporarily quenches CPE fluorescence in a dose-dependent manner. Analytical characterization indicates an indirect charge transfer with a corresponding loss of crystalline GO structure. The fluorescence is regained with the addition of DNA, while other biomolecules do not pose any hinderance in the detection process. The extent of regain is DNA length dependent, and the corresponding calibration curve successfully quantifies the size of an unknown DNA. The incubation time for detection is ~3-5 min. The bio-composite platform also works successfully in a complex biomolecule matrix and cell lysate. However, the presence of serum albumin poses a hinderance in the serum sample. Particle size analysis proves that CPE displacement from GO surface by the incoming DNA is the reason for the 'turn on' response, and that the sensing process is exclusive to dsDNA. This new platform could be an exciting and rapid DNA sensing and characterization tool.


Assuntos
DNA/análise , Grafite/química , Ficoeritrina/química , Proteína C/química , Técnicas Biossensoriais , Difusão Dinâmica da Luz , Fluorescência , Tamanho da Partícula , Difração de Raios X
10.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206699

RESUMO

Graphene and its derivatives are very promising nanomaterials for biomedical applications and are proving to be very useful for the preparation of scaffolds for tissue repair. The response of immune cells to these graphene-based materials (GBM) appears to be critical in promoting regeneration, thus, the study of this response is essential before they are used to prepare any type of scaffold. Another relevant factor is the variability of the GBM surface chemistry, namely the type and quantity of oxygen functional groups, which may have an important effect on cell behavior. The response of RAW-264.7 macrophages to graphene oxide (GO) and two types of reduced GO, rGO15 and rGO30, obtained after vacuum-assisted thermal treatment of 15 and 30 min, respectively, was evaluated by analyzing the uptake of these nanostructures, the intracellular content of reactive oxygen species, and specific markers of the proinflammatory M1 phenotype, such as CD80 expression and secretion of inflammatory cytokines TNF-α and IL-6. Our results demonstrate that GO reduction resulted in a decrease of both oxidative stress and proinflammatory cytokine secretion, significantly improving its biocompatibility and potential for the preparation of 3D scaffolds able of triggering the appropriate immune response for tissue regeneration.


Assuntos
Grafite/metabolismo , Macrófagos/fisiologia , Oxirredução , Estresse Oxidativo , Temperatura , Animais , Biomarcadores , Células Cultivadas , Citocinas/metabolismo , Expressão Gênica , Grafite/química , Mediadores da Inflamação/metabolismo , Camundongos , Microscopia de Força Atômica , Nanoestruturas/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral
11.
Chem Commun (Camb) ; 57(62): 7669-7672, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34254065

RESUMO

A novel nanozyme comprised of graphene encapsuled Ru nanocrystals (Ru@G) with effective and stable peroxidase-like activity prepared using a chemical vapor deposition (CVD) method was used for the detection of glutathione at near-physiological pH.


Assuntos
Materiais Biomiméticos/química , Glutationa/análise , Grafite/química , Nanopartículas Metálicas/química , Peroxidase/metabolismo , Rutênio/química , Concentração de Íons de Hidrogênio
12.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202099

RESUMO

We performed ab initio numerical simulations with the density functional theory to investigate the variations in the band structure, optical absorption, and the reflectivity of vacancy-graphene doped with nitrogen, oxygen, and fluorine for different densities. We considered the density values 0.78%, 1.02%, 1.39%, 2.00%, 3.12%, 5.55%, and 12.5% for the vacancies and doping. In the infrared and visible ranges for all cases, vacancies included, there is a substantial increment in the absorption and reflectivity concerning graphene. The most significant changes are for fluorine and oxygen at a concentration of 12.5%.


Assuntos
Flúor/química , Grafite/química , Nitrogênio/química , Oxigênio/química , Análise Espectral , Elétrons , Estrutura Molecular , Nanopartículas/química
13.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299346

RESUMO

Research on carbon-based nanomaterials, such as carbon nanotubes, graphene and its derivatives, nanodiamonds, fullerenes, and other nanosized carbon allotropes, has experienced sharp exponential growth over recent years [...].


Assuntos
Nanoestruturas/química , Nanotubos de Carbono/química , Animais , Fulerenos/química , Grafite/química , Humanos , Nanodiamantes/química , Pontos Quânticos/química
14.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299005

RESUMO

Nanoparticles can interact with the complement system and modulate the inflammatory response. The effect of these interactions on the complement activity strongly depends on physicochemical properties of nanoparticles. The interactions of silver nanoparticles with serum proteins (particularly with the complement system components) have the potential to significantly affect the antibacterial activity of serum, with serious implications for human health. The aim of the study was to assess the influence of graphite oxide (GO) nanocomposites (GO, GO-PcZr(Lys)2-Ag, GO-Ag, GO-PcZr(Lys)2) on the antibacterial activity of normal human serum (NHS), serum activity against bacteria isolated from alveoli treated with nanocomposites, and nanocomposite sensitivity of bacteria exposed to serum in vitro (using normal human serum). Additionally, the in vivo cytotoxic effect of the GO compounds was determined with application of a Galleria mellonella larvae model. GO-PcZr(Lys)2, without IR irradiation enhance the antimicrobial efficacy of the human serum. IR irradiation enhances bactericidal activity of serum in the case of the GO-PcZr(Lys)2-Ag sample. Bacteria exposed to nanocomposites become more sensitive to the action of serum. Bacteria exposed to serum become more sensitive to the GO-Ag sample. None of the tested GO nanocomposites displayed a cytotoxicity towards larvae.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Grafite/química , Nanopartículas Metálicas/química , Nanocompostos/química , Óxidos/química , Soro/efeitos dos fármacos , Animais , Antibacterianos/química , Anti-Infecciosos/química , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Humanos , Raios Infravermelhos , Larva/efeitos dos fármacos , Larva/efeitos da radiação , Lepidópteros/efeitos dos fármacos , Lepidópteros/efeitos da radiação , Nanopartículas Metálicas/administração & dosagem , Nanocompostos/administração & dosagem , Soro/microbiologia , Prata/química
15.
Int J Mol Sci ; 22(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206350

RESUMO

The monolayer character of two-dimensional materials predestines them for application as active layers of sensors. However, their inherent high sensitivity is always accompanied by a low selectivity. Chemical functionalization of two-dimensional materials has emerged as a promising way to overcome the selectivity issues. Here, we demonstrate efficient graphene functionalization with carbohydrate ligands-chitooligomers, which bind proteins of the lectin family with high selectivity. Successful grafting of a chitooligomer library was thoroughly characterized, and glycan binding to wheat germ agglutinin was studied by a series of methods. The results demonstrate that the protein quaternary structure remains intact after binding to the functionalized graphene, and that the lectin can be liberated from the surface by the addition of a binding competitor. The chemoenzymatic assay with a horseradish peroxidase conjugate also confirmed the intact catalytic properties of the enzyme. The present approach thus paves the way towards graphene-based sensors for carbohydrate-lectin binding.


Assuntos
Grafite/química , Lectinas/metabolismo , Polissacarídeos/química , Peroxidase do Rábano Silvestre , Lectinas/análise , Polissacarídeos/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína
16.
Chem Asian J ; 16(15): 2035-2040, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34096177

RESUMO

Insertion of sheet-type platinum particles (platinum nanosheets) between graphite layers was achieved by a thermal treatment of a mixture of platinum chloride (IV) and graphite powder (natural graphite or artificial graphite) under 0.3 MPa of chlorine at 723 K, followed by the treatment under 40 kPa of hydrogen pressure. Similar platinum nanosheets, which were 1-3 nm in thickness and 100-500 nm in width and had a number of hexagonal holes and edges with 120° angle, were formed between the layers of both natural graphite or artificial graphite; however, their location in the graphite layers depended on the type of graphite used. A number of platinum nanosheets were observed in the edge region of natural graphite particles which have flat surface. On the other hand, a number of platinum nanosheets were found inside and away from the edge of the artificial graphite particles especially in the vicinity of the cracks. Both the platinum nanosheet-containing artificial and natural graphite samples showed high selectivity to cinnamyl alcohol in cinnamaldehyde hydrogenation under supercritical carbon dioxide conditions, while spherical platinum particles, which were located on the surface of natural and artificial graphite, showed lower selectivity.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Platina/química , Pós/química , Tamanho da Partícula
17.
Chem Asian J ; 16(15): 2003-2013, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34121348

RESUMO

With the progress of science and technology and the improvement of people's living standards, the performance of traditional materials can no longer fully meet the needs of social development. Graphitic phase carbon nitride (g-C3 N4 ), as a new type of nanomaterial, has good properties. Its unique graphite like structure and stable thermodynamic characteristics have led an increasing number of researchers to explore its diverse functions and use this as a basis to develop related energy and products for applications in various fields. Among them, applications in the field of medicine health have become popular in recent years. Therefore, this review summarizes the synthesis methods of g-C3 N4 and its composites, as well as their applications in food, medicine, environmental monitoring and disease treatment, in the hope of providing references and basis for further expanding the applications of g-C3 N4 in large health areas.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Grafite/química , Neoplasias/tratamento farmacológico , Compostos de Nitrogênio/química , Preparações Farmacêuticas/química , Humanos
18.
Ecotoxicol Environ Saf ; 221: 112444, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34174734

RESUMO

Phosphate is considered to be an important biogenic element and responsible for eutrophication in aquatic ecosystems, existing in both dissolved and absorbed forms. Due to the complex matrix of coastal seawater, a high sensitivity and anti-interference method for phosphate detection is required for environmental protection. In this study, a novel electrochemical method was proposed based on reduced graphene oxide-ordered mesoporous carbon screen-printed electrode (rGO-OMC/SPE) analysis, allowing sensitivity and reliable determination of phosphate in turbid coastal waters. Combining the good absorption capacity of OMC with the excellent electroconductivity of rGO, the fabricated electrode exhibits improved signal responses, enhanced by up to 43-fold. The platform was evaluated using turbidity interference test with good recovery percentages comprised between 96% and 105% in different phosphate concentration, and salinity interference test between 92% and 105%, respectively. A linear range from 0.2 to 150 µM phosphate was achieved, with a detection limit of 0.05 µM (s/n = 3). The fabricated platform was successfully used for on-site analysis of phosphate in turbid coastal waters. This reliable and effective method for the analysis of phosphate in turbid coastal waters allows for sensitivity and anti-interference determination, while also representing a significant step towards comprehensive and convenient analysis of phosphorus species.


Assuntos
Técnicas Eletroquímicas , Monitoramento Ambiental/métodos , Fosfatos/análise , Carbono/química , Eletrodos , Eutrofização , Grafite/química , Poluentes Químicos da Água/análise
19.
ACS Appl Mater Interfaces ; 13(26): 31066-31076, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34137247

RESUMO

The serious problem of pharmaceutical and personal care product pollution places great pressure on aquatic environments and human health. Herein, a novel coating photocatalyst was synthesized by adhering Ag-AgCl/WO3/g-C3N4 (AWC) nanoparticles on a polydopamine (PDA)-modified melamine sponge (MS) through a facile layer-by-layer assembly method to degrade trimethoprim (TMP). The formed PDA coating was used for the anchoring of nanoparticles, photothermal conversion, and hydrophilic modification. TMP (99.9%; 4 mg/L) was removed in 90 min by the photocatalyst coating (AWC/PDA/MS) under visible light via a synergistic photocatalytic-photothermal performance route. The stability and reusability of the AWC/PDA/MS have been proved by cyclic experiments, in which the removal efficiency of TMP was still more than 90% after five consecutive cycles with a very little mass loss. Quantitative structure-activity relationship analysis revealed that the ecotoxicities of the generated intermediates were lower than those of TMP. Furthermore, the solution matrix effects on the photocatalytic removal efficiency were investigated, and the results revealed that the AWC/PDA/MS still maintained excellent photocatalytic degradation efficiency in several actual water and simulated water matrices. This work develops recyclable photocatalysts for the potential application in the field of water remediation.


Assuntos
Nanopartículas/química , Trimetoprima/química , Catálise/efeitos dos fármacos , Grafite/química , Grafite/efeitos da radiação , Indóis/química , Indóis/efeitos da radiação , Luz , Nanopartículas/efeitos da radiação , Compostos de Nitrogênio/química , Compostos de Nitrogênio/efeitos da radiação , Óxidos/química , Óxidos/efeitos da radiação , Polímeros/química , Polímeros/efeitos da radiação , Prata/química , Prata/efeitos da radiação , Compostos de Prata/química , Compostos de Prata/efeitos da radiação , Temperatura , Triazinas/química , Triazinas/efeitos da radiação , Tungstênio/química , Tungstênio/efeitos da radiação , Purificação da Água/métodos
20.
ACS Appl Mater Interfaces ; 13(26): 30295-30305, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34165969

RESUMO

As viruses have been threatening global public health, fast diagnosis has been critical to effective disease management and control. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) is now widely used as the gold standard for detecting viruses. Although a multiplex assay is essential for identifying virus types and subtypes, the poor multiplicity of RT-qPCR makes it laborious and time-consuming. In this paper, we describe the development of a multiplex RT-qPCR platform with hydrogel microparticles acting as independent reactors in a single reaction. To build target-specific particles, target-specific primers and probes are integrated into the particles in the form of noncovalent composites with boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs). The thermal release characteristics of DNA, primer, and probe from the composites of primer-BNNT and probe-CNT allow primer and probe to be stored in particles during particle production and to be delivered into the reaction. In addition, BNNT did not absorb but preserved the fluorescent signal, while CNT protected the fluorophore of the probe from the free radicals present during particle production. Bicompartmental primer-incorporated network (bcPIN) particles were designed to harness the distinctive properties of two nanomaterials. The bcPIN particles showed a high RT-qPCR efficiency of over 90% and effective suppression of non-specific reactions. 16-plex RT-qPCR has been achieved simply by recruiting differently coded bcPIN particles for each target. As a proof of concept, multiplex one-step RT-qPCR was successfully demonstrated with a simple reaction protocol.


Assuntos
Hidrogéis/química , Reação em Cadeia da Polimerase Multiplex/métodos , Nanotubos de Carbono/química , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Compostos de Boro/química , Coronavirus/química , Primers do DNA/química , DNA de Cadeia Simples/química , Corantes Fluorescentes/química , Grafite/química , Vírus da Influenza A/química , Vírus da Doença de Newcastle/química , Estudo de Prova de Conceito , RNA Viral/química , Viroses/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...