RESUMO
We evaluated antitumor efficacy of photodynamic therapy of murine Ehrlich carcinoma and rat sarcoma M-1 with new photosensitizers 131-N-(4-aminobutyl)amydo chlorine e6 (1), 132-(5-guanidylbutanamido)-chlorine e6 (2), and 132-(5-biguanidylbutanamido)-chlorine e6 (3). The inhibiting effect of the photodynamic therapy was evaluated by the following parameters: tumor growth inhibition, complete regression of the tumors, and absolute growth rate of the tumor nodes in animals with the continued neoplasia growth. The criterion of cure was the absence of tumors up to 90 days after the therapy. It is shown that the studied photosensitizers have high antitumor activity in the photodynamic therapy of the Ehrlich carcinoma and sarcoma M-1.
Assuntos
Carcinoma , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Guanidina , Guanidinas , Carcinoma/tratamento farmacológico , Animais de Laboratório , Porfirinas/farmacologiaRESUMO
The untypical course of reaction between chalcones and benzenesulfonylaminoguanidines led to the new 3-(2-alkylthio-4-chloro-5-methylbenzenesulfonyl)-2-(1-phenyl-3-arylprop-2-enylideneamino)guanidine derivatives 8-33. The new compounds were tested in vitro for their impact on the growth of breast cancer cells MCF-7, cervical cancer cells HeLa and colon cancer cells HCT-116 by MTT assay. The results revealed that the activity of derivatives is strongly related to the presence of hydroxy group in the benzene ring at the 3-arylpropylidene fragment. The most cytotoxic compounds 20 and 24 displayed mean IC50 values of 12.8 and 12.7 µM, respectively, against three tested cell lines and were almost 3- and 4-fold more active toward MCF-7 and HCT-116 when compared with non-malignant HaCaT cells. Furthermore, compound 24 induced apoptosis in cancer cells and caused a decrease of mitochondrial membrane potential as well as an increase of cells in sub-G1 phase in contrast to its inactive analog 31. The strongest activity against the most sensitive HCT-116 cell line was found for compound 30 (IC50 = 8 µM), which was 11-fold more effective in the growth inhibition of HCT-116 cells than those of HaCaT cells. Based on this fact, the new derivatives may be promising leading structures for the search for agents for the treatment of colon cancer.
Assuntos
Antineoplásicos , Neoplasias do Colo , Humanos , Relação Estrutura-Atividade , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Células HeLa , Apoptose , Guanidinas/farmacologia , Estrutura Molecular , Linhagem Celular TumoralRESUMO
OBJECTIVES: To perform a differential analysis of the dentin soluble proteomic and assess the effects of tissue health state and protocol for protein extraction. We hypothesized the dentin soluble proteomic varies according to the tissue physiopathological state (intact vs. caries-affected) and protocol used to extract its proteins. METHODS: Dentin from freshly extracted non-carious and carious teeth were randomly assigned for protein extraction using either guanidine-HCl/ethylenediaminetetraacetic acid (EDTA) or acetic acid. Protein extracts from intact and caries-affected dentin were processed and digested with trypsin for shotgun label-free proteomic analysis (nLC-ESI-MS/MS). Peptides identification was performed on a nanoACQUITY UPLC-Xevo Q-Tof MS system. Peptides identified with scores of confidence greater than 95% were included in the quantitative statistical analysis embedded in the PLGS software. Differences between experimental conditions were calculated using Student test-t with significance pre-set at α=0.05. RESULTS: A total of 158 human proteins were identified. Approximately one-sixth of proteins (24/158) were present in at least two different extracts. Conversely, the greatest number of proteins (134/158) was identified uniquely in only one of the extracts. Overall, a larger number of soluble proteins was retrieved from caries-affected than intact dentin (86/158). Likewise, a greater number of proteins was extracted by the guanidine-HCl/EDTA (106/158) in comparison to acetic acid protocol. Several proteins detected in dentin extracts, mainly those from caries-affected teeth, are biological and/or metabolically involved with tissue turnover/remodeling. CONCLUSION: The identity/abundance of soluble proteins retrieved from and remained in dentin noticeably depend on this tissue physiopathological state and protocol used to remove its minerals. CLINICAL SIGNIFICANCE: The present findings brought new insight into the proteomic phenotype of human dentin and may provide targets for the development of novel caries disease-prevention therapies.
Assuntos
Cárie Dentária , Dentina , Humanos , Ácido Edético/farmacologia , Proteômica , Espectrometria de Massas em Tandem , Cárie Dentária/metabolismo , Proteínas/metabolismo , Proteínas/farmacologia , Guanidinas/metabolismo , Guanidinas/farmacologiaRESUMO
Polyhexamethylene guanidine phosphate (PHMG-p), used as a humidifier disinfectant, causes interstitial lung disease, obliterative bronchiolitis, and lung fibrosis; however, little is known about its effect on intercellular interactions. Extracellular vesicles (EVs), which carry diverse compounds including proteins, RNA, and DNA to mediate cell-to-cell communication through their paracrine effects, have been highlighted as novel factors in lung fibrogenesis. This study aimed to identify the effect of proteins on small EVs (sEVs) from bronchoalveolar lavage fluid (BALF) of the recipient cells after PHMG-p exposure. A week after intratracheal administration of PHMG-p, sEVs were isolated from BALF of tissue showing overexpressed inflammatory and fibrosis markers. To investigate the role of sEVs in inflammation, naïve macrophages were cultured with sEVs, which induced their activation. To identify sEV proteins that are associated with these responses, proteomics analysis was performed. In the gene ontology analysis, coagulation, fibrinolysis, and hemostasis were associated with the upregulated proteins in sEVs. The highest increase was observed in fibrinogen levels, which was also related to those gene ontologies. We validated role of exosomal fibrinogen in inflammation using recombinant fibrinogen and an inhibitor of the integrin, which is the binding receptor for fibrinogen. Overall, we elucidated that increased fibrinogen levels in the early sEVs-PHMG activated inflammatory response during early fibrosis. These results suggest that sEVs from the BALF of PHMG-p-exposed mice could aggravate fibrogenesis by activating naïve macrophages via various proteins in the sEVs, Furthermore, this finding will be broadening the spectrum of communicating mediators.
Assuntos
Vesículas Extracelulares , Fibrose Pulmonar , Camundongos , Animais , Fibrinogênio , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Guanidinas/toxicidade , Inflamação/induzido quimicamente , Vesículas Extracelulares/metabolismoRESUMO
Runoff and drainage from fields planted with neonicotinoid-coated seeds often contain insecticides that adversely affect aquatic life and other non-target organisms. Management practices such as in-field cover cropping and edge-of-field buffer strips may reduce insecticide mobility, making it important to understand the ability of different plants used in these interventions to absorb neonicotinoids. In this greenhouse study we evaluated uptake of thiamethoxam, a commonly used neonicotinoid, in six plant species - crimson clover, fescue, oxeye sunflower, Maximillian sunflower, common milkweed, and butterfly milkweed - along with a native forb mixture and a native grass plus native forb mixture. All plants were irrigated with water containing 100 or 500 µg/L of thiamethoxam for 60 days, then plant tissues and soils were analyzed for thiamethoxam and its metabolite clothianidin. Crimson clover accumulated up to 50% of the applied thiamethoxam, which was significantly more than other plants and indicates this species may be a hyper-accumulator that can sequester thiamethoxam. In contrast, milkweed plants had relatively low neonicotinoid uptake (<0.5%), meaning that those species may not pose excessive risk to beneficial insects that feed on them. In all plants, accumulated masses of thiamethoxam and clothianidin were greater in above-ground tissues (leaves and stems) than in below-ground roots, with more accrual in leaves than stems. Plants treated with the higher thiamethoxam concentration retained proportionally more of the insecticides. Because thiamethoxam primarily accumulates in above-ground tissues, management strategies that include biomass removal may reduce the input of such insecticides into the environment.
Assuntos
Inseticidas , Inseticidas/análise , Tiametoxam , Nitrocompostos , Neonicotinoides , Guanidinas/metabolismo , Produtos Agrícolas/metabolismoRESUMO
BackgroundTimely treatment with neuraminidase inhibitors (NAI) can reduce severe outcomes in influenza patients.AimWe assessed the impact of antiviral treatment on in-hospital deaths of laboratory-confirmed influenza patients in 11 European Union countries from 2010/11 to 2019/20.MethodsCase-based surveillance data from hospitalised patients with known age, sex, outcome, ward, vaccination status, timing of antiviral treatment, and hospitalisation were obtained. A mixed effect logistic regression model using country as random intercept was applied to estimate the adjusted odds ratio (aOR) for in-hospital death in patients treated with NAIs vs not treated.ResultsOf 19,937 patients, 31% received NAIs within 48 hours of hospital admission. Older age (60-79 years aOR 3.0, 95% CI: 2.4-3.8; 80 years 8.3 (6.6-10.5)) and intensive care unit admission (3.8, 95% CI: 3.4-4.2) increased risk of dying, while early hospital admission after symptom onset decreased risk (aOR 0.91, 95% CI: 0.90-0.93). NAI treatment initiation within 48 hours and up to 7 days reduced risk of dying (0-48 hours aOR 0.51, 95% CI: 0.45-0.59; 3-4 days 0.59 (0.51-0.67); 5-7 days 0.64 (0.56-0.74)), in particular in patients 40 years and older (e.g. treatment within 48 hours: 40-59 years aOR 0.43, 95% CI: 0.28-0.66; 60-79 years 0.50 (0.39-0.63); ≥80 years 0.51 (0.42-0.63)).ConclusionNAI treatment given within 48 hours and possibly up to 7 days after symptom onset reduced risk of in-hospital death. NAI treatment should be considered in older patients to prevent severe outcomes.
Assuntos
Influenza Humana , Oseltamivir , Humanos , Idoso , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Neuraminidase , Mortalidade Hospitalar , Antivirais/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Guanidinas/uso terapêutico , Zanamivir/uso terapêutico , Resultado do TratamentoRESUMO
Influenza infection causes substantial morbidity and mortality during seasonal epidemics and pandemics. Antivirals, including neuraminidase inhibitors, play an important role in the treatment of severely ill patients infected with influenza. Resistance is a key factor that can affect the efficacy of neuraminidase inhibitors (NAIs). It is a recommendation by regulatory authorities to monitor for resistance during the development of anti-influenza medications. An additional requirement by regulators is to examine amino acid sequences for minority species harbouring resistance substitutions. In a Phase III study of intravenous (IV) zanamivir respiratory samples were analysed for the presence of resistant quasi species using Next Generation Sequencing (NGS). In this study ten resistance substitutions, two of which were treatment emergent, were detected by NGS that otherwise would not have been detectable by Sanger sequencing. None of the substitutions were present at any other timepoints analysed. The effect these mutations have on clinical response is difficult to characterize; in fact, all patients from which these variants were isolated had a successful clinical outcome and the effect on clinical response was therefore likely minimal. Although NGS is becoming a routine method for nucleic acid sequencing and will detect substitutions previously undetected by Sanger sequencing, the value of this technique in identifying minority species with resistance substitutions that are clinically meaningful remains to be demonstrated, particularly with acute infections such as influenza.
Assuntos
Influenza Humana , Zanamivir , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Influenza Humana/tratamento farmacológico , Neuraminidase/genética , Oseltamivir/farmacologia , Zanamivir/farmacologia , Zanamivir/uso terapêuticoRESUMO
Bird feathers are commonly used to assess environmental contamination by chemical pollutants. However, although neonicotinoid insecticides are widely applied worldwide, feathers have rarely been used to survey the contamination by neonicotinoids in birds. To investigate whether clothianidin, one compound of the neonicotinoid class, is deposited into birds' feathers, we conducted an experiment with 56 wild male and female house sparrows dispatched in 7 aviaries. During this experiment, house sparrows were fed with certified organic seeds treated with clothianidin at an estimated concentration of 0.25 µg/g BW per day and per individual. We collected blood samples and plucked four tail feathers at the onset of the experiment to confirm that no birds were previously exposed to clothianidin. 35 days later, we collected blood samples and the newly grown feathers. Before exposure, a small number of birds showed very low clothianidin concentrations in plasma and feathers. After exposure, the plasma and the newly grown feathers of all birds contained clothianidin. Clothianidin concentrations in feathers were similar in both sexes, but the plasma of males contained clothianidin at higher concentrations than that of females. Our results confirm that ingested clothianidin transits in the plasma and is deposited in feathers during their growth. They also suggest substantial individual variation in the amounts of clothianidin transiting in the plasma and being deposited in feathers that may reflect variation in metabolism and/or access to food in relation to sex, social hierarchy and group dynamics. Whether increasing levels of exposure translate linearly or non-linearly (e.g. saturation process) into increasing clothianidin concentrations in bird plasma and feathers remains to be investigated. To conclude, these results confirm the relevance of using feathers to biomonitor the presence of neonicotinoids, but the relationship between the level of exposure and the concentrations found in feathers remains to be established.
Assuntos
Inseticidas , Pardais , Masculino , Feminino , Animais , Plumas/química , Neonicotinoides/toxicidade , Neonicotinoides/análise , Inseticidas/toxicidade , Inseticidas/análise , Guanidinas/toxicidade , Guanidinas/análise , Sementes/química , Ingestão de AlimentosRESUMO
Although several antiviral agents have become available for coronavirus disease 2019 (COVID-19) treatment, oral drugs are still limited. Camostat mesylate, an orally bioavailable serine protease inhibitor, has been used to treat chronic pancreatitis in South Korea, and it has an in vitro inhibitory potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study was a double-blind, randomized, placebo-controlled, multicenter, phase 2 clinical trial in mild to moderate COVID-19 patients. We randomly assigned patients to receive either camostat mesylate (DWJ1248) or placebo orally for 14 days. The primary endpoint was time to clinical improvement of subject symptoms within 14 days, measured using a subjective 4-point Likert scale. Three hundred forty-two patients were randomized. The primary endpoint was nonsignificant, where the median times to clinical improvement were 7 and 8 days in the camostat mesylate group and the placebo group, respectively (hazard ratio [HR] = 1.09; 95% confidence interval [CI], 0.84 to 1.43; P = 0.50). A post hoc analysis showed that the difference was greatest at day 7, without reaching significance. In the high-risk group, the proportions of patients with clinical improvement up to 7 days were 45.8% (50/109) in the camostat group and 38.4% (40/104) in the placebo group (odds ratio [OR] = 1.33; 95% CI, 0.77 to 2.31; P = 0.31); the ordinal scale score at day 7 improved in 20.0% (18/90) of the camostat group and 13.3% (12/90) of the placebo group (OR = 1.68; 95% CI, 0.75 to 3.78; P = 0.21). Adverse events were similar in the two groups. Camostat mesylate was safe in the treatment of COVID-19. Although this study did not show clinical benefit in patients with mild to moderate COVID-19, further clinical studies for high-risk patients are needed. (This trial was registered with ClinicalTrials.gov under registration no. NCT04521296).
Assuntos
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Guanidinas , Ésteres , Método Duplo-Cego , Resultado do TratamentoRESUMO
In this study, an advanced at-line nanofractionation based screening platform was developed to screen potential neuraminidase inhibitors (NAIs) from Lonicera japonica Thunb by involving two parallel bioassays, for determining both oseltamivir-sensitive neuraminidase (NAS) and oseltamivir-resistant neuraminidase (NAR) inhibitory activities. 20 potential NAIs with both NAS and NAR inhibitory effects were screened from Lonicera japonica Thunb and identified by mass spectrometer, including 11 phenolic acids, 8 flavonoids and one iridoid glycoside. The proposed at-line nanofractionation based screening platform for NAIs was also used to rapidly screen nine batches of water extracts of Lonicera japonica Thunb or its similar species. Clear differences in the number and content of active components were easily observed, demonstrating that the proposed method possesses great potential for the quality control of herb medicines.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Lonicera , Oseltamivir/farmacologia , Neuraminidase , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologiaRESUMO
Although several antiviral agents have become available for coronavirus disease 2019 (COVID-19) treatment, oral drugs are still limited. Camostat mesylate, an orally bioavailable serine protease inhibitor, has been used to treat chronic pancreatitis in South Korea, and it has an in vitro inhibitory potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This study was a double-blind, randomized, placebo-controlled, multicenter, phase 2 clinical trial in mild to moderate COVID-19 patients. We randomly assigned patients to receive either camostat mesylate (DWJ1248) or placebo orally for 14 days. The primary endpoint was time to clinical improvement of subject symptoms within 14 days, measured using a subjective 4-point Likert scale. Three hundred forty-two patients were randomized. The primary endpoint was nonsignificant, where the median times to clinical improvement were 7 and 8 days in the camostat mesylate group and the placebo group, respectively (hazard ratio [HR] = 1.09; 95% confidence interval [CI], 0.84 to 1.43; P = 0.50). A post hoc analysis showed that the difference was greatest at day 7, without reaching significance. In the high-risk group, the proportions of patients with clinical improvement up to 7 days were 45.8% (50/109) in the camostat group and 38.4% (40/104) in the placebo group (odds ratio [OR] = 1.33; 95% CI, 0.77 to 2.31; P = 0.31); the ordinal scale score at day 7 improved in 20.0% (18/90) of the camostat group and 13.3% (12/90) of the placebo group (OR = 1.68; 95% CI, 0.75 to 3.78; P = 0.21). Adverse events were similar in the two groups. Camostat mesylate was safe in the treatment of COVID-19. Although this study did not show clinical benefit in patients with mild to moderate COVID-19, further clinical studies for high-risk patients are needed. (This trial was registered with ClinicalTrials.gov under registration no. NCT04521296).
Assuntos
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Guanidinas , Ésteres , Método Duplo-Cego , Resultado do TratamentoRESUMO
Riboswitches are regulatory RNAs that specifically bind a small molecule or ion. Like metabolite-binding proteins, riboswitches can evolve new ligand specificities, and some examples of this phenomenon have been validated. As part of work based on comparative genomics to discover novel riboswitches, we encountered a candidate riboswitch with striking similarities to the recently identified guanidine-IV riboswitch. This candidate riboswitch, the Gd4v motif, is predicted in four distinct bacterial phyla, thus almost as widespread as the guanidine-IV riboswitch. Bioinformatic and experimental analysis suggest that the Gd4v motif is a riboswitch that binds a ligand other than guanidine. It is found associated with gene classes that differ from genes regulated by confirmed guanidine riboswitches. In inline-probing assays, we showed that free guanidine binds only weakly to one of the tested sequences of the variant. Further tested compounds did not show binding, attenuation of transcription termination, or activation of a genetic reporter construct. We characterized an N-acetyltransferase frequently associated with the Gd4v motif and compared its substrate preference to an N-acetyltransferase that occurs under control of guanidine-IV riboswitches. The substrates of this Gd4v-motif-associated enzyme did not show activity for Gd4v RNA binding or transcription termination. Hence, the ligand of the candidate riboswitch motif remains unidentified. The variant RNA motif is predominantly found in gut metagenome sequences, hinting at a ligand that is highly relevant in this environment. This finding is a first step to determining the identity of this unknown ligand, and understanding how guanidine-IV-riboswitch-like structures can evolve to bind different ligands.
Assuntos
Riboswitch , Guanidina/química , Guanidina/metabolismo , Conformação de Ácido Nucleico , Ligantes , Guanidinas/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismoRESUMO
The increasing emergence of antibiotic resistance is an urgent threat to global health care; thus, there is a need for new therapeutics. Guanidine is the preferred functional group for antimicrobial design and development. Herein, the potential antibacterial activity of the guanidine derivative isopropoxy benzene guanidine (IBG) against multidrug-resistant (MDR) bacteria was discovered. The synergistic antibacterial activity of IBG and colistin was determined by checkerboard assay, time-killing curve, and mouse experiments. The antibacterial mechanism of IBG was verified in fluorescent probe experiments, intracellular oxidative phosphorylation assays, and transcriptome analysis. The results showed that IBG displays efficient antibacterial activity against Gram-positive pathogens and Gram-negative pathogens with permeabilized outer membranes. Further mechanistic studies showed that IBG triggers cytoplasmic membrane damage by binding to phosphatidylglycerol and cardiolipin, leading to the dissipation of proton motive force and accumulation of intracellular ATP. IBG combined with low levels of colistin enhances bacterial outer membrane permeability and increases the accumulation of reactive oxygen species, as further evidenced by transcriptome analysis. Furthermore, the efficacy of IBG with colistin against MDR Escherichia coli in three infection models was demonstrated. Together, these results suggest that IBG is a promising adjuvant of colistin, providing an alternative approach to address the prevalent infections caused by MDR Gram-negative pathogens. IMPORTANCE As antibiotic discovery stagnates, the world is facing a growing menace from the emergence of bacteria that are resistant to almost all available antibiotics. The key to winning this race is to explore distinctive mechanisms of antibiotics. Thus, novel efficient antibacterial agents and alternative strategies are urgently required to fill the void in antibiotic development. Compared with the large amount of money and time required to develop new agents, the antibiotic adjuvant strategy is a promising approach to inhibit bacterial resistance and increase killing of bacteria. In this study, we found that the guanidine derivatives IBG not only displayed efficient antibacterial activities against Gram-positive bacteria but also restored colistin susceptibility of Gram-negative pathogens as an antibiotic adjuvant. More in-depth study showed that IBG is a potential lead to overcome antibiotic resistance, providing new insight into future antibiotic discovery and development.
Assuntos
Benzeno , Colistina , Animais , Camundongos , Colistina/farmacologia , Benzeno/metabolismo , Benzeno/farmacologia , Bactérias Gram-Negativas/metabolismo , Guanidina/metabolismo , Guanidina/farmacologia , Antibacterianos/química , Bactérias/metabolismo , Escherichia coli/metabolismo , Farmacorresistência Bacteriana Múltipla , Guanidinas/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
BACE1 enzyme has been known a potential target involved in Alzheimer's disease (AD). Present research was focused on the principles of virtually screening, chemical synthesis and protease inhibitory effect of BACE1 enzyme via biaryl guanidine derivatives. In-silico based paradigm (ligand binding interaction within active domain of BACE 1 enzyme i.e., aspartate Asp32 and Asp228) a novel compound was synthesized and subsequently subjected to in-vitro and in-vivo evaluation. 1,3-di(isoquinolin-6-yl) guanidine was synthesized and found potent (IC50 6±0.56 µM) and active to arrest (99 %) ß-secretase enzyme (FRET assay). Furthermore, it was found to improve novel object recognition test (RTI =56.55%) and Morris water maze test (32.26±3.45s) significantly (p<0.05). Enhanced pharmacokinetics and related properties (high iLOGP and Log S =-3.98) along with improved permeation to the blood brain barrier (BBB) (zero Lipinski violation) made it feasible to inhibit BACE1 as a novel therapeutic source to treat AD in future.
Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Guanidina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Ácido Aspártico Endopeptidases , GuanidinasRESUMO
Synthesis of N,N'-Di-Boc-2H-isoindole-2-carboxamidine, the first representative of isoindoles containing guanidine functionality, was carried out. The cycloaddition reactivity of this new Diels-Alder heterodiene was studied and the title compound was employed as a cycloaddition delivery reagent for guanidine functionality. Higher reactivity was found in comparison with the corresponding pyrrole derivative. Substitution with fluorine or guanidine functionality does not change the reactivities of isoindoles, and these findings are in good accord with computational results.
Assuntos
Guanidinas , Isoindóis , Guanidina , Indicadores e Reagentes , Reação de CicloadiçãoRESUMO
Two new guanidine alkaloids, batzelladines O (1) and P (2), were isolated from the deep-water marine sponge Monanchora pulchra. The structures of these metabolites were determined by NMR spectroscopy, mass spectrometry, and ECD. The isolated compounds exhibited cytotoxic activity in human prostate cancer cells PC3, PC3-DR, and 22Rv1 at low micromolar concentrations and inhibited colony formation and survival of the cancer cells. Batzelladines O (1) and P (2) induced apoptosis, which was detected by Western blotting as caspase-3 and PARP cleavage. Additionally, induction of pro-survival autophagy indicated as upregulation of LC3B-II and suppression of mTOR was observed in the treated cells. In line with this, the combination with autophagy inhibitor 3-methyladenine synergistically increased the cytotoxic activity of batzelladines O (1) and P (2). Both compounds were equally active in docetaxel-sensitive and docetaxel-resistant prostate cancer cells, despite exhibiting a slight p-glycoprotein substrate-like activity. In combination with docetaxel, an additive effect was observed. In conclusion, the isolated new guanidine alkaloids are promising drug candidates for the treatment of taxane-resistant prostate cancer.
Assuntos
Alcaloides , Antineoplásicos , Poríferos , Neoplasias da Próstata , Animais , Masculino , Humanos , Guanidina/farmacologia , Guanidina/química , Docetaxel/farmacologia , Guanidinas/farmacologia , Guanidinas/química , Poríferos/química , Apoptose , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Neoplasias da Próstata/tratamento farmacológico , Autofagia , Alcaloides/farmacologia , Alcaloides/químicaRESUMO
The cycloaddition of simple alkyl-substituted guanidine derivatives is an interesting approach toward polycyclic superbases and guanidine-based organocatalysts. Due to the high nucleophilicity of guanidines, an aza-Michael reaction with dienophiles is more common and presents a huge obstacle in achieving the desired synthetic goal. Our preliminary investigations indicated that the proton could act as a suitable protecting group to regulate the directionality of the reaction. To investigate the role of the protonation state and type of anion, the reactivity of furfuryl guanidines with dimethyl acetylenedicarboxylate was explored. Furfuryl guanidines showed a strong reaction dependence on the nucleophilicity of the counterion and the structure of guanidine. While the reaction of DMAD with the guanidinium halides provided products of an aza-Michael addition, Diels-Alder cycloaddition occurred if non-nucleophilic hexafluorophosphate salts were used. Depending on the structure and the reaction conditions, oxanorbornadiene products underwent subsequent intramolecular cyclization. A tendency toward intramolecular cyclization was interpreted in terms of the pKa of different positions of the guanidine functionality in oxanorbornadienes. New polycyclic guanidines had a slightly decreased pKa in acetonitrile and well-defined geometry suitable for the buildup of selective sensors.
Assuntos
Guanidinas , Guanidina/química , Guanidinas/química , Ciclização , ÂnionsRESUMO
Guanidino acids such as taurocyamine, guanidinobutyrate, guanidinopropionate, and guanidinoacetate have been detected in humans. However, except for guanidionacetate, which is a precursor of creatine, their metabolism and potential functions remain poorly understood. Agmatine has received considerable attention as a potential neurotransmitter and the human enzyme so far annotated as agmatinase (AGMAT) has been proposed as an important modulator of agmatine levels. However, conclusive evidence for the assigned enzymatic activity is lacking. Here we show that AGMAT hydrolyzed a range of linear guanidino acids but was virtually inactive with agmatine. Structural modelling and direct biochemical assays indicated that two naturally occurring variants differ in their substrate preferences. A negatively charged group in the substrate at the end opposing the guanidine moiety was essential for efficient catalysis, explaining why agmatine was not hydrolyzed. We suggest to rename AGMAT as guanidino acid hydrolase (GDAH). Additionally, we demonstrate that the GDAH substrates taurocyamine, guanidinobutyrate and guanidinopropionate were produced by human glycine amidinotransferase (GATM). The presented findings show for the first time an enzymatic activity for GDAH/AGMAT. Since agmatine has frequently been proposed as an endogenous neurotransmitter, the current findings clarify important aspects of the metabolism of agmatine and guanidino acid derivatives in humans.
Assuntos
Guanidinas , Ureo-Hidrolases , Humanos , Agmatina/metabolismo , Guanidinas/metabolismo , Hidrólise , Ureo-Hidrolases/metabolismoRESUMO
Oxygen balance and heat of formation are closely related to the nitrogen and oxygen content in a molecule and have a significant effect on the detonation performance of energetic materials. Here a new family of 1,2,4-triazolo [4,3-b][1,2,4,5]-tetrazine containing gem-dinitromethyl and nitroamine with high nitrogen-oxygen content was synthesized and characterized. Moreover, the structure of the guanidine salt (3) and TATOT salt (4) were confirmed by single-crystal X-ray diffraction. The nitrogen and oxygen content of ammonium salt 2 reached 82.5%, with a high density (1.805 g cm-3) and high detonation properties (D = 8900 m s-1; P = 32.4 GPa), which were similar to those of RDX.
Assuntos
Nitrogênio , Oxigênio , Oxigênio/química , Cristalografia por Raios X , Gasometria , GuanidinasRESUMO
Although neonicotinoids are among the major classes of pesticides that affect mammalian nervous systems, little is known about sex differences in their effects. This study aimed to examine whether the neurobehavioral effects of a neonicotinoid, clothianidin (CLO), differed between sexes. Male and female C57BL/6N mice were orally administered CLO (5 or 50 mg/kg) at or below the chronic no-observed-adverse-effect-level (NOAEL) and subjected to behavioral tests of emotional and learning functions. Changes in neuroactivity in several brain regions and the concentrations of CLO and its metabolites in blood and urine were measured. Acute CLO exposure caused sex-related behavioral effects; decreases in locomotor activities and elevation of anxiety-like behaviors were more apparent in males than in females. In addition, male-specific impairment of short- and long-term learning memory by CLO exposure was observed in both the novel recognition test and the Barnes maze test. Male-dominant increases in the number of c-fos positive cells were observed in the paraventricular thalamic nucleus in the thalamus and in the dentate gyrus in the hippocampus, which are related to the stress response and learning function, respectively. The concentrations of CLO and most metabolites in blood and urine were higher in males. These results support the notion that male mice are more vulnerable than females to the neurobehavioral effects of CLO and provide novel insights into the risk assessment of neonicotinoids in mammalian neuronal function.