Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 280
Filtrar
1.
J Zoo Wildl Med ; 51(4): 799-813, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33480560

RESUMO

Although parrot species are infrequently infected by hemoparasites in the wild, some fatal infections have been reported in captive individuals. Conversely birds of prey are frequently infected by hemoparasites. In this study, 193 captive birds from Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) centers in Madrid, Spain, belonging to orders Psittaciformes, Accipitriformes, Strigiformes, and Falconiformes, were blood-sampled in search of parasite infections. Molecular and microscopic analyses were conducted to detect parasites of the following genera: Haemoproteus, Plasmodium, Leucocytozoon, Trypanosoma, Babesia, and Lankesterella. Infections by microfilariae and Coccidia were also searched in blood samples. Surprisingly, infections by Haemoproteus syrnii, a common parasite from owls, were detected in the cadavers of two species of parrots, Trichoglossus haematodus and Psittacula cyanocephala. The same haplotype was also detected in the cadavers of two owl species, Tyto alba and Strix rufipes. All these birds were housed and died in the same center. Infections by species of Plasmodium, Leucocytozoon, and Trypanosoma were also found in different species of raptors. Nocturnal raptors (Strigiformes) show significantly higher prevalence of infection by blood parasites than diurnal raptors (Falconiformes and Accipitriformes). In conclusion, a potential fatal transmission of Haemoproteus syrnii, from Strigiformes to Psittaciformes species, is reported and several infections by different blood parasites were detected in birds of prey. These results emphasize the importance of increasing prevention measures to avoid or reduce the transmission of blood parasites among birds from different species housed in these types of centers.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Psittaciformes/parasitologia , Estrigiformes/parasitologia , Animais , Doenças das Aves/transmissão , Haplótipos , Filogenia
2.
Oecologia ; 195(2): 435-451, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33484348

RESUMO

Turnover in species composition between sites, or beta diversity, is a critical component of species diversity that is typically influenced by geography, environment, and biotic interactions. Quantifying turnover is particularly challenging, however, in multi-host, multi-parasite assemblages where undersampling is unavoidable, resulting in inflated estimates of turnover and uncertainty about its spatial scale. We developed and implemented a framework using null models to test for community turnover in avian haemosporidian communities of three sky islands in the southwestern United States. We screened 776 birds for haemosporidian parasites from three genera (Parahaemoproteus, Plasmodium, and Leucocytozoon) by amplifying and sequencing a mitochondrial DNA barcode. We detected infections in 280 birds (36.1%), sequenced 357 infections, and found a total of 99 parasite haplotypes. When compared to communities simulated from a regional pool, we observed more unique, single-mountain haplotypes and fewer haplotypes shared among three mountain ranges than expected, indicating that haemosporidian communities differ to some degree among adjacent mountain ranges. These results were robust even after pruning datasets to include only identical sets of host species, and they were consistent for two of the three haemosporidian genera. The two more distant mountain ranges were more similar to each other than the one located centrally, suggesting that the differences we detected were due to stochastic colonization-extirpation dynamics. These results demonstrate that avian haemosporidian communities of temperate-zone forests differ on relatively fine spatial scales between adjacent sky islands. Null models are essential tools for testing the spatial scale of turnover in complex, undersampled, and poorly known systems.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Animais , Haemosporida/genética , Ilhas , Filogenia , Sudoeste dos Estados Unidos
3.
Parasitol Res ; 119(9): 2975-2981, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32683557

RESUMO

Haemosporidia infections may cause major damage to avian populations and represent a concern for veterinarians working in zoological parks or wildlife rescue centres. Following the fatal infection of 9 Great grey owls (Strix nebulosa) at Mulhouse zoological park, between summer 2013 and 2015, a prospective epidemiological investigation was performed in captive strigiform birds in France in 2016. The purpose was to evaluate the prevalence of haemosporidian parasites in captive Strigiformes and to estimate the infection dynamics around the nesting period. Blood samples were taken from 122 strigiform birds representing 14 species from 15 French zoological parks. Parasites were detected by direct examination of blood smears and by PCR targeting the mitochondrial cytochrome b gene. Haemosporidian parasites were detected in 59 birds from 11 zoos. Three distinct Haemoproteus mitochondrial cytochrome b sequences (haplotypes A and C for H. syrnii and haplotype B for Haemoproteus sp.) as well as two species of Plasmodium were detected. The overall prevalence of Haemoproteus infection was 12.8%. The percentage of birds infected by Haemoproteus varied according to the period of sampling. Nesting season seemed to be at greater risk with an average prevalence of 53.9% compared with winter season with an average prevalence of 14.8%, related to the abundance of the vectors. The prevalence of Plasmodium infection in Strigiformes did not exceed 8% throughout the year. This study confirmed how significant Haemosporidia infection could be in Strigiformes from zoological parks in France. The nesting season was identified as a period of higher risk of infection and consequently the appropriate period to apply prophylactic measures.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Estrigiformes/parasitologia , Animais , Doenças das Aves/sangue , Doenças das Aves/epidemiologia , Citocromos b/genética , França/epidemiologia , Haemosporida/classificação , Haemosporida/genética , Haplótipos , Filogenia , Estudos Prospectivos , Infecções Protozoárias em Animais/sangue , Infecções Protozoárias em Animais/epidemiologia , Proteínas de Protozoários/genética
4.
Sci Rep ; 10(1): 8480, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439889

RESUMO

The use of a sensitive and accurate parasite detection methodology is crucial in studies exploring prevalence of parasites in host populations or communities, and uncertainty in identifying parasite genera and/or lineages may limit the understanding of host-parasite interactions. Here, we used a multistate occupancy approach that accounts for imperfect detection to assess whether sex and breeding season influenced the prevalence of a specific Haemoproteus lineage (TARUF02) in a white-lined tanager population. Likewise, we explored whether the probability of detecting the target parasite in an infected bird using PCR and sequencing analyses may be influenced by season and host sex. We found little evidence that sex influenced the probability of an individual host being infected by a haemosporidian parasite. Conversely, we found that the probability of infection by Haemoproteus TARUF02 was ~30% higher during the breeding season, reflecting a higher prevalence of this parasite in this season. The probability that PCR detects DNA of haemosporidian parasite was higher for female birds, suggesting that they are more prone to be parasitized with parasitemia levels that are more successfully detected by molecular analysis. Sequencing successfully determined the Haemoproteus TARUF02 lineage in 60% of samples collected during the breeding season and 84% of samples collected during the non-breeding season. Understanding the ecology of hosts and aspects of their physiology that may influence the parasite infection is essential to better understanding of hemoparasite infections and how parasites influence their native hosts, through decreasing reproductive success, lifespan, and/or survival.


Assuntos
Doenças das Aves/diagnóstico , Aves/parasitologia , Variação Genética , Haemosporida/isolamento & purificação , Interações Hospedeiro-Parasita , Infecções Protozoárias em Animais/diagnóstico , Animais , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Aves/crescimento & desenvolvimento , Feminino , Haemosporida/genética , Masculino , Prevalência , Infecções Protozoárias em Animais/parasitologia , Estações do Ano
5.
Acta Trop ; 207: 105486, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32330450

RESUMO

Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan bird blood parasites, which often cause relatively benign infections in adapted avian hosts, but severe and even lethal haemoproteosis might develop due to internal organ damage if these pathogens inhabit non-adapted (wrong) hosts. Haemoproteids of swallows (Hirundinidae) remain fragmentarily investigated, with only two haemoproteid species reported in this bird family, which members are cosmopolitan, diverse and inhabit various terrestrial ecosystems, particularly in tropical countries. This study describes and provides molecular characterization of Haemoproteus parahirundinis n. sp. (cytochrome b lineage hHIRUS05), parasite of the most broadly distributed swallow, the Barn swallow Hirundo rustica. Gametocytes, gametes and ookinetes of the new species were examined and compared with other haemoproteids described in swallows. The phylogenetic analysis indicated the existence of a largely undescribed Haemoproteus species diversity in birds of the Hirundinidae and also suggests that all lineages of haemoproteids reported in swallows are transmitted by Culicoides biting midges, but not louse flies of the Hippoboscidae, which often inhabit their nests. The biting midges should be the first targets in vectors research of swallow haemoproteids. This study indicates existence of Haemoproteus species, which are readily distinct based on morphological characters of their blood and sporogonic stages, but differ only negligently in partial cytochrome b sequences, the main markers broadly used in molecular characterization of haemoproteids. That calls for further taxonomic research on haemoproteid in swallows, many species of which are endangered or even threatened with extinction because of habitat degradation.


Assuntos
Haemosporida/genética , Andorinhas/parasitologia , Animais , Doenças das Aves/transmissão , Citocromos b/genética , Haemosporida/classificação , Filogenia , Infecções Protozoárias em Animais/transmissão
6.
Parasitol Res ; 119(5): 1563-1572, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32246260

RESUMO

In temperate regions, some avian haemosporidian parasites have evolved seasonal transmission strategies, with chronic infections relapsing during spring and transmission peaking during the hosts' breeding season. Because lineages with seasonal transmission strategies are unlikely to produce gametocytes in winter, we predicted that (1) resident birds living within wintering areas of Neotropical migrants would unlikely be infected with North American parasite lineages; and (2) if infected, wintering migratory birds would be more likely to harbor Plasmodium spp. rather than Parahaemoproteus spp. or Haemoproteus spp. parasites in their bloodstreams, as only Plasmodium produces life stages, other than gametocytes, that infect red blood cells. To test these predictions, we used molecular detection and microscopy to compare the diversity and prevalence of haemosporidian parasites among year-round residents and wintering migratory birds during February 2016, on three islands of The Bahamas archipelago, i.e., Andros, Grand Bahama, and Great Abaco. Infection prevalence was low and comparable between migratory (15/111) and resident (15/129) individuals, and it did not differ significantly among islands. Out of the 12 lineages detected infecting migratory birds, five were transmitted in North America; four lineages could have been transmitted during breeding, wintering, or migration; and three lineages were likely transmitted in The Bahamas. Resident birds mostly carried lineages endemic to the Caribbean region. All North American-transmitted parasite lineages detected among migratory birds were Plasmodium spp. Our findings suggest that haemosporidian parasites of migrants shift resource allocation seasonally, minimizing the production of gametocytes during winter, with low risk of infection spillover to resident birds.


Assuntos
Doenças das Aves/parasitologia , Aves/parasitologia , Haemosporida/isolamento & purificação , Plasmodium/isolamento & purificação , Infecções Protozoárias em Animais/epidemiologia , Migração Animal/fisiologia , Animais , Bahamas/epidemiologia , Doenças das Aves/epidemiologia , Haemosporida/classificação , Haemosporida/genética , Plasmodium/genética , Prevalência , Infecções Protozoárias em Animais/parasitologia , Estações do Ano
7.
J Parasitol ; 106(2): 211-220, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32164026

RESUMO

Biogeography is known to have shaped the diversity and evolutionary history of avian haemosporidian parasites across the Neotropics. However, a paucity of information exists for the temperate Neotropics and especially from nonpasserine hosts. To understand the effect of biogeography in the temperate Neotropics on haemosporidians of nonpasserine hosts we screened ducks (Anseriformes) from central Chile for the presence of these parasites. Forty-two individuals of 4 duck species (Anas flavirostris, Anas georgica, Mareca sibilatrix, Spatula cyanoptera cyanoptera) were collected and assessed for haemosporidian parasite infections by real-time polymerase chain reaction screening and subsequent sequencing of the mitochondrial cytochrome b gene. Haemoproteus (subgenus Haemoproteus) and Plasmodium were detected in 2 host species, A. georgica and S. c. cyanoptera, with no Leucocytozoon found. Overall haemosporidian prevalence was low (14.2%), with the prevalence of Plasmodium (11.9%) being substantially greater than that of Haemoproteus (4.8%). Six haemosporidian cytochrome b lineages were recovered, 2 Haemoproteus and 4 Plasmodium, with all 6 lineages identified for the first time. In phylogenetic reconstruction, the Chilean Plasmodium lineages were more closely related to South American lineages from passerine birds than to known lineages from anseriforms. The subgenus Haemoproteus known from nonpasseriformes has never been identified from any anseriform host; however, we recovered 2 lineages from this subgenus, one from each A. georgica and S. c. cyanoptera. Further work is needed to determine if this presents true parasitism in ducks or only a spillover infection. The results of phylogenetic reconstruction demonstrate a unique evolutionary history of these Chilean parasites, differing from what is known for this host group. The unique geography of Chile, with a large part of the country being relatively isolated by the Atacama Desert in the north and the Andes in the east and south, would present opportunities for parasite diversification. Further work is needed to investigate how strongly the biogeographical isolation has shaped the haemosporidian parasites of this area. Our results add to the growing body of evidence that nonpasserine hosts support unique lineages of haemosporidian parasites, while also demonstrating the role of biogeography in haemosporidian parasite diversity in the temperate Neotropics.


Assuntos
Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Patos/parasitologia , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/epidemiologia , Animais , Teorema de Bayes , Evolução Biológica , Distribuição de Qui-Quadrado , Chile/epidemiologia , DNA de Protozoário/análise , DNA de Protozoário/sangue , DNA de Protozoário/isolamento & purificação , Haemosporida/classificação , Haemosporida/genética , Funções Verossimilhança , Fígado/parasitologia , Filogenia , Filogeografia , Reação em Cadeia da Polimerase/veterinária , Infecções Protozoárias em Animais/parasitologia
8.
Acta Trop ; 205: 105383, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32007447

RESUMO

Identification of the host blood meal of hematophagous insects can provide significant information regarding host preferences and the possibility of the transmission of disease agents. Currently, this knowledge is limited for black flies in the Oriental region. In this study, we used cytochrome b gene sequences for identification of blood meal sources of two black fly taxa, the Simulium asakoae complex and S. chumpornense Takaoka & Kuvangkadilok in Thailand. A total of 4,260 wild adult females were visually screened revealing 24 blood-engorged females from which cytochrome b was successfully amplified in 19 individuals. Comparisons in GenBank database revealed that all are closest to chicken (Gallus gallus) with sequence similarity of >98%. Therefore, these black fly species are feeding on chickens. We also molecularly investigated the hemosporidian blood protozoa genus Leucocytozoon in black flies and found 13 of 19 blood-engorged females positive for this protozoon. Sequence analysis revealed that this Leucocytozoon DNA could be assigned into two previously recognized groups, one with a Leucocytozoon reported from domestic chickens and black flies in Thailand, and another close to the L. schoutedeni. Our results indicate a high possibility that the S. asakoae complex and S. chumpornense are natural vectors of Leucocytozoon.


Assuntos
Haemosporida/genética , Insetos Vetores/parasitologia , Simuliidae/parasitologia , Animais , Galinhas/parasitologia , Citocromos b/genética , Feminino
9.
Malar J ; 19(1): 69, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050970

RESUMO

BACKGROUND: Passerine birds are frequently infected with diverse haemosporidian parasites. While infections are traditionally considered benign in wild birds, recent studies demonstrated mortalities of passerine species due to exo-erythrocytic development of the parasites, which can damage organs in affected hosts. However, exo-erythrocytic development remains insufficiently investigated for most haemosporidian species and thus little is known about the virulence of tissue stages in wild passerine birds. The aim of the present study was to investigate natural haemosporidian infections in deceased Eurasian blackbirds (Turdus merula) and song thrushes (Turdus philomelos) and to determine parasite burden and associated histological effects. METHODS: For molecular analysis, blood and tissue samples from 306 thrushes were screened for Plasmodium, Haemoproteus and Leucocytozoon parasites by nested PCR. For the detection of parasite stages in organ samples, tissue sections were subjected to chromogenic in situ hybridization (CISH) using genus- and species-specific probes targeting the rRNAs of parasites. Exo-erythrocytic parasite burden was semi-quantitatively assessed and histological lesions were evaluated in haematoxylin-eosin-stained sections. RESULTS: By PCR, 179 of 277 Eurasian blackbirds and 15 of 29 song thrushes were positive for haemosporidians. Parasites of all three genera were detected, with Plasmodium matutinum LINN1 and Plasmodium vaughani SYAT05 showing the highest prevalence. CISH revealed significant differences in exo-erythrocytic parasite burden between lineages in Eurasian blackbirds, with P. matutinum LINN1 frequently causing high exo-erythrocytic parasite burdens in various organs that were associated with histological alterations. Song thrushes infected with P. matutinum LINN1 and birds infected with other haemosporidian lineages showed mostly low exo-erythrocytic parasite burdens. Two Eurasian blackbirds infected with Leucocytozoon sp. TUMER01 showed megalomeronts in various organs that were associated with inflammatory reactions and necroses. CONCLUSION: This study suggests that P. matutinum LINN1, a common lineage among native thrushes, regularly causes high exo-erythrocytic parasite burdens in Eurasian blackbirds, which may result in disease and mortalities, indicating its high pathogenic potential. The findings further illustrate that the same parasite lineage may show different levels of virulence in related bird species which should be considered when assessing the pathogenicity of haemosporidian parasite species. Finally, the study provides evidence of virulent Leucocytozoon sp. TUMER01 infections in two Eurasian blackbirds caused by megalomeront formation.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/fisiologia , Infecções Protozoárias em Animais/parasitologia , Aves Canoras/parasitologia , Animais , Animais Selvagens , Áustria , Bolsa de Fabricius/parasitologia , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , Haemosporida/genética , Haemosporida/isolamento & purificação , Haemosporida/patogenicidade , Coração/parasitologia , Hibridização In Situ/métodos , Hibridização In Situ/veterinária , Rim/parasitologia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase/veterinária , Especificidade da Espécie , Virulência
10.
Mol Ecol Resour ; 20(1): 14-28, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31507097

RESUMO

Metatranscriptomics is a powerful method for studying the composition and function of complex microbial communities. The application of metatranscriptomics to multispecies parasite infections is of particular interest, as research on parasite evolution and diversification has been hampered by technical challenges to genome-scale DNA sequencing. In particular, blood parasites of vertebrates are abundant and diverse although they often occur at low infection intensities and exist as multispecies infections, rendering the isolation of genomic sequence data challenging. Here, we use birds and their diverse haemosporidian parasites to illustrate the potential for metatranscriptome sequencing to generate large quantities of genome-wide sequence data from multiple blood parasite species simultaneously. We used RNA-sequencing of 24 blood samples from songbirds in North America to show that metatranscriptomes can yield large proportions of haemosporidian protein-coding gene repertoires even when infections are of low intensity (<0.1% red blood cells infected) and consist of multiple parasite taxa. By bioinformatically separating host and parasite transcripts and assigning them to the haemosporidian genus of origin, we found that transcriptomes detected ~23% more total parasite infections across all samples than were identified using microscopy and DNA barcoding. For single-species infections, we obtained data for >1,300 loci from samples with as low as 0.03% parasitaemia, with the number of loci increasing with infection intensity. In total, we provide data for 1,502 single-copy orthologous loci from a phylogenetically diverse set of 33 haemosporidian mitochondrial lineages. The metatranscriptomic approach described here has the potential to accelerate ecological and evolutionary research on haemosporidians and other diverse parasites.


Assuntos
Doenças das Aves/parasitologia , Sangue/parasitologia , Genômica/métodos , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/parasitologia , Animais , Doenças das Aves/sangue , Haemosporida/classificação , Haemosporida/genética , Filogenia , Infecções Protozoárias em Animais/sangue , Aves Canoras/sangue , Aves Canoras/parasitologia , Transcriptoma
11.
J Anim Ecol ; 89(2): 423-435, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571223

RESUMO

Geographic variation in environmental conditions as well as host traits that promote parasite transmission may impact infection rates and community assembly of vector-transmitted parasites. Identifying the ecological, environmental and historical determinants of parasite distributions and diversity is therefore necessary to understand disease outbreaks under changing environments. Here, we identified the predictors and contributions of infection probability and phylogenetic diversity of Leucocytozoon (an avian blood parasite) at site and species levels across the New World. To explore spatial patterns in infection probability and lineage diversity for Leucocytozoon parasites, we surveyed 69 bird communities from Alaska to Patagonia. Using phylogenetic Bayesian hierarchical models and high-resolution satellite remote-sensing data, we determined the relative influence of climate, landscape, geography and host phylogeny on regional parasite community assembly. Infection rates and parasite diversity exhibited considerable variation across regions in the Americas. In opposition to the latitudinal gradient hypothesis, both the diversity and prevalence of Leucocytozoon parasites decreased towards the equator. Host relatedness and traits known to promote vector exposure neither predicted infection probability nor parasite diversity. Instead, the probability of a bird being infected with Leucocytozoon increased with increasing vegetation cover (NDVI) and moisture levels (NDWI), whereas the diversity of parasite lineages decreased with increasing NDVI. Infection rates and parasite diversity also tended to be higher in cooler regions and higher latitudes. Whereas temperature partially constrains Leucocytozoon diversity and infection rates, landscape features, such as vegetation cover and water body availability, play a significant role in modulating the probability of a bird being infected. This suggests that, for Leucocytozoon, the barriers to host shifting and parasite host range expansion are jointly determined by environmental filtering and landscape, but not by host phylogeny. Our results show that integrating host traits, host ancestry, bioclimatic data and microhabitat characteristics that are important for vector reproduction are imperative to understand and predict infection prevalence and diversity of vector-transmitted parasites. Unlike other vector-transmitted diseases, our results show that Leucocytozoon diversity and prevalence will likely decrease with warming temperatures.


Assuntos
Doenças das Aves/epidemiologia , Haemosporida/genética , Infecções , Parasitos , Alaska , Animais , Teorema de Bayes , Aves , Filogenia , Probabilidade
12.
Parasitol Res ; 119(2): 601-609, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31754857

RESUMO

The Bellinger River snapping turtle (Myuchelys georgesi) is endemic to Australia and is confined to a highly restricted distribution in the Bellinger River in New South Wales. Routine veterinary health examinations of 17 healthy turtles were undertaken, along with the collection and analysis of blood samples, during conservation efforts to save the species following a catastrophic population decline. Microscopy analysis of blood films detected Haemoproteidae parasites that morphologically resembled Haemocystidium chelodinae inside turtle erythrocytes. Of the 17 turtles examined, 16 were positive for infection with H. chelodinae by both light microscopy and PCR. DNA sequencing of a partial fragment of the mitochondrial cytochrome b (cytb) gene and phylogenetic analysis identified two different H. chelodinae-like genotypes. The phylogenetic relationship of H. chelodinae-like to other Haemoproteidae species based on cytb sequences grouped H. chelodinae-like into the reptile clade, but revealed the Haemocystidium genus to be paraphyletic as the clade also contained Haemoproteus, thus supporting a re-naming of Haemoproteus species from reptiles to Haemocystidium species. This study reports for the first time the genetic characterisation of H. chelodinae-like organisms isolated from a new Testudine host species, the Bellinger River snapping turtle. As evidence grows, further research will be necessary to understand the mode of transmission and to investigate whether these parasites are pathogenic to their hosts.


Assuntos
Haemosporida/isolamento & purificação , Tartarugas/parasitologia , Animais , Austrália , Citocromos b/genética , DNA de Protozoário , Feminino , Genes Mitocondriais , Haemosporida/classificação , Haemosporida/genética , Masculino , New South Wales , Filogenia , Reação em Cadeia da Polimerase , Rios , Análise de Sequência de DNA/veterinária
13.
Parasitol Res ; 119(2): 447-463, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31883048

RESUMO

In this study, we explore blood parasite prevalence, infection intensity, and co-infection levels in an urban population of feral pigeons Columba livia in Cape Town. We analyze the effect of blood parasites on host body condition and the association between melanin expression in the host's plumage and parasite infection intensity and co-infection levels. Relating to the haemosporidian parasite itself, we study their genetic diversity by means of DNA barcoding (cytochrome b) and show the geographic and host distribution of related parasite lineages in pigeons worldwide. Blood from 195 C. livia individuals was collected from April to June 2018. Morphometric measurements and plumage melanism were recorded from every captured bird. Haemosporidian prevalence and infection intensity were determined by screening blood smears and parasite lineages by DNA sequencing. Prevalence of Haemoproteus spp. was high at 96.9%. The body condition of the hosts was negatively associated with infection intensity. However, infection intensity was unrelated to plumage melanism. The cytochrome b sequences revealed the presence of four Haemoproteus lineages in our population of pigeons, which show high levels of co-occurrence within individual birds. Three lineages (HAECOL1, COLIV03, COQUI05) belong to Haemoproteus columbae and differ only by 0.1% to 0.8% in the cytochrome b gene. Another lineage (COLIV06) differs by 8.3% from the latter ones and is not linked to a morphospecies, yet. No parasites of the genera Leucocytozoon and Plasmodium were detected.


Assuntos
Doenças das Aves/parasitologia , Columbidae/parasitologia , Variação Genética , Haemosporida/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Doenças das Aves/epidemiologia , Citocromos b/genética , Prevalência , Infecções Protozoárias em Animais/epidemiologia , África do Sul/epidemiologia
14.
Int J Parasitol ; 50(1): 63-73, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866311

RESUMO

Habitat change caused by deforestation can modify the interactions of many biotic and abiotic factors, and in turn influence patterns of diseases in wild birds. Whether deforestation directly or indirectly affects the prevalence of avian haemosporidian parasites through their hosts and/or vectors is still not well understood. We sampled understory bird communities (insectivorous, frugivorous, granivorous and nectarivorous birds) and mosquitoes in three habitats showing a gradient of deforestation (pristine forest, fragmented forest, and young palm oil plantation), to assess the effects of habitat changes on avian haemosporidian (Plasmodium and Haemoproteus) prevalence and its relationship to bird feeding guilds and mosquito abundance. Blood samples of 845 individual birds belonging to 85 species and 27 families were collected in the three habitat types and screened using microscopy and PCR. Plasmodium infections were detected in 136 individuals (16.09%) and varied significantly among habitat types while Haemoproteus infections were detected in 98 individuals (11.60%) and did not vary significantly among habitat types. However, the prevalence of Plasmodium and Haemoproteus in bird feeding groups varied significantly among habitats. Nectarivorous and granivorous birds had the highest Plasmodium and Haemoproteus prevalence, respectively. The abundance of mosquitoes varied significantly among habitat types and the prevalence of Plasmodium significantly and positively correlated with mosquito abundance in fragmented forest. This study highlights the importance of host and mosquito determinants in the transmission dynamics of avian Plasmodium and Haemoproteus infections following habitat changes. Selective logging favored an increase in the prevalence of Plasmodium in insectivores, the prevalence of Haemoproteus in nectarivores and the abundance of female mosquitoes while, the establishment of the palm oil plantation favored an increase in the prevalence of Plasmodium in granivores and Haemoproteus in nectarivores. Species feeding behavior is also an important determinant to consider for a better understanding of patterns of parasite infections in a changing environment.


Assuntos
Aves/parasitologia , Haemosporida/genética , Mosquitos Vetores/parasitologia , Plasmodium/genética , Animais , Doenças das Aves/parasitologia , Sangue/parasitologia , Camarões , Conservação dos Recursos Naturais , Culicidae/parasitologia , DNA de Protozoário , Haemosporida/isolamento & purificação , Filogenia , Plasmodium/isolamento & purificação , Prevalência , Floresta Úmida
15.
Parasit Vectors ; 12(1): 516, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685020

RESUMO

BACKGROUND: Haemoproteus parasites (Haemosporida, Haemoproteidae) are cosmopolitan in birds and recent molecular studies indicate enormous genetic diversity of these pathogens, which cause diseases in non-adapted avian hosts. However, life-cycles remain unknown for the majority of Haemoproteus species. Information on their exoerythrocytic development is particularly fragmental and controversial. This study aimed to gain new knowledge on life-cycle of the widespread blood parasite Haemoproteus majoris. METHODS: Turdus pilaris and Parus major naturally infected with lineages hPHYBOR04 and hPARUS1 of H. majoris, respectively, were wild-caught and the parasites were identified using microscopic examination of gametocytes and PCR-based testing. Bayesian phylogeny was used to determine relationships between H. majoris lineages. Exoerythrocytic stages (megalomeronts) were reported using histological examination and laser microdissection was applied to isolate single megalomeronts for genetic analysis. Culicoides impunctatus biting midges were experimentally exposed in order to follow sporogonic development of the lineage hPHYBOR04. RESULTS: Gametocytes of the lineage hPHYBOR04 are indistinguishable from those of the widespread lineage hPARUS1 of H. majoris, indicating that both of these lineages belong to the H. majoris group. Phylogenetic analysis supported this conclusion. Sporogony of the lineage hPHYBOR04 was completed in C. impunctatus biting midges. Morphologically similar megalomeronts were reported in internal organs of both avian hosts. These were big roundish bodies (up to 360 µm in diameter) surrounded by a thick capsule-like wall and containing irregularly shaped cytomeres, in which numerous merozoites developed. DNA sequences obtained from single isolated megalomeronts confirmed the identification of H. majoris. CONCLUSIONS: Phylogenetic analysis identified a group of closely related H. majoris lineages, two of which are characterized not only by morphologically identical blood stages, but also complete sporogonic development in C. impunctatus and development of morphologically similar megalomeronts. It is probable that other lineages belonging to the same group would bear the same characters and phylogenies based on partial cytb gene could be used to predict life-cycle features in avian haemoproteids including vector identity and patterns of exoerythrocytic merogony. This study reports morphologically unique megalomeronts in naturally infected birds and calls for research on exoerythrocytic development of haemoproteids to better understand pathologies caused in avian hosts.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Passeriformes/parasitologia , Infecções Protozoárias em Animais/parasitologia , Aves Canoras/parasitologia , Animais , Teorema de Bayes , Aves , Ceratopogonidae/parasitologia , Haemosporida/classificação , Haemosporida/genética , Filogenia
16.
J Vet Med Sci ; 81(12): 1892-1895, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31685730

RESUMO

One captive musophagid bird at a zoological garden in Japan showed clinical symptoms and was found to be infected with avian haemosporidia. We subsequently collected blood from all musophagid birds kept in the garden and examined for avian haemosporidia using both microscopic and molecular examination. Only Haemoproteus gametocytes were observed in the blood of two Guinea turaco (Tauraco persa). Three genetic lineages of Haemoproteus were identified from three Guinea turacos and one genetic lineage of Leucocytozoon was identified from a grey plantain-eater (Crinifer piscator). Detected Haemoproteus lineages were all identical and completely different from those previously reported in Japan, suggesting that these birds were infected in their original habitat. This is the first record of Haemoproteus infection in Guinea turacos.


Assuntos
Doenças das Aves/parasitologia , Haemosporida/isolamento & purificação , Infecções Protozoárias em Animais/diagnóstico , Animais , Animais de Zoológico/parasitologia , Doenças das Aves/diagnóstico , Aves , DNA Mitocondrial , Feminino , Haemosporida/genética , Japão/epidemiologia , Masculino , Reação em Cadeia da Polimerase , Infecções Protozoárias em Animais/sangue , Infecções Protozoárias em Animais/epidemiologia
17.
Malar J ; 18(1): 305, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481072

RESUMO

BACKGROUND: Plasmodium species feature only four to eight nuclear ribosomal units on different chromosomes, which are assumed to evolve independently according to a birth-and-death model, in which new variants originate by duplication and others are deleted throughout time. Moreover, distinct ribosomal units were shown to be expressed during different developmental stages in the vertebrate and mosquito hosts. Here, the 18S rDNA sequences of 32 species of avian haemosporidian parasites are reported and compared to those of simian and rodent Plasmodium species. METHODS: Almost the entire 18S rDNAs of avian haemosporidians belonging to the genera Plasmodium (7), Haemoproteus (9), and Leucocytozoon (16) were obtained by PCR, molecular cloning, and sequencing ten clones each. Phylogenetic trees were calculated and sequence patterns were analysed and compared to those of simian and rodent malaria species. A section of the mitochondrial CytB was also sequenced. RESULTS: Sequence patterns in most avian Plasmodium species were similar to those in the mammalian parasites with most species featuring two distinct 18S rDNA sequence clusters. Distinct 18S variants were also found in Haemoproteus tartakovskyi and the three Leucocytozoon species, whereas the other species featured sets of similar haplotypes. The 18S rDNA GC-contents of the Leucocytozoon toddi complex and the subgenus Parahaemoproteus were extremely high with 49.3% and 44.9%, respectively. The 18S sequences of several species from all three genera showed chimeric features, thus indicating recombination. CONCLUSION: Gene duplication events leading to two diverged main sequence clusters happened independently in at least six out of seven avian Plasmodium species, thus supporting evolution according to a birth-and-death model like proposed for the ribosomal units of simian and rodent Plasmodium species. Patterns were similar in the 18S rDNAs of the Leucocytozoon toddi complex and Haemoproteus tartakovskyi. However, the 18S rDNAs of the other species seem to evolve in concerted fashion like in most eukaryotes, but the presence of chimeric variants indicates that the ribosomal units rather evolve in a semi-concerted manner. The new data may provide a basis for studies testing whether differential expression of distinct 18S rDNA also occurs in avian Plasmodium species and related haemosporidian parasites.


Assuntos
Aves/parasitologia , DNA de Protozoário/análise , Haemosporida/genética , RNA Ribossômico 18S/análise , Animais , Doenças das Aves/parasitologia , Núcleo Celular/genética , DNA Ribossômico/análise , Filogenia , Plasmodium/genética , Especificidade da Espécie
18.
Infect Genet Evol ; 75: 103978, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31352147

RESUMO

Phylogenetic inference of Hepatocystis, a haemosporidian parasite of diverse primate and bat hosts, revealed that the parasites from Australasian Pteropus bat species form a distinct clade to all other Hepatocystis parasites from Africa and Asia. Here, we investigate the phylogenetic placement of Hepatocystis in the Australian bat Pteropus poliocephalus for the first time and examine parasite morphology and prevalence from selected points across its range. Hepatocystis infections were detected in low prevalences in P. poliocephalus in contrast to high numbers in P. alecto and P. scapulatus. The prevalence in P. poliocephalus varied across its distribution range with 15% in the central biogeographic areas (central Queensland and New South Wales) and 1% in the southern-most edge (South Australia) of its range. Sequencing of five genes revealed high genetic similarity in Hepatocystis of P. poliocephalus independent of sampling location. Phylogenetic analysis placed these parasites with Hepatocystis from other Pteropus species from Australia and Asia. While numerous haplotypes were identified among sequences from the Pteropus hosts, no patterns of host specificity were recovered within the Pteropus-specific parasite group.


Assuntos
Quirópteros/parasitologia , Haemosporida/classificação , Proteínas de Protozoários/genética , Análise de Sequência de DNA/métodos , Animais , Ásia , Austrália , Haemosporida/genética , New South Wales , Filogenia , Filogeografia , Queensland
19.
Parasit Vectors ; 12(1): 282, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159851

RESUMO

BACKGROUND: Avian haemosporidian parasites can cause severe disease in their hosts due to excessive exo-erythrocytic merogony and anaemia caused by blood stages. Notably, the development of megalomeronts by species of Haemoproteus and Leucocytozoon has been associated with mortalities in birds. Diagnosis of lethal infections is currently accomplished by the detection of parasites' tissue stages in histological sections combined with PCR and sequencing. However, sequences frequently are not reliably obtained and the generic discrimination of exo-erythrocytic tissue stages based on morphological characters is challenging. Therefore, the present study aimed at developing specific molecular probes for the identification of Haemoproteus spp. and Leucocytozoon spp. in histological sections using chromogenic in situ hybridization. METHODS: Parasite subgenus-specific oligonucleotide probes were designed to target the 18S ribosomal RNA of Haemoproteus species (subgenus Parahaemoproteus) and Leucocytozoon spp. (subgenus Leucocytozoon) and were in situ hybridized to sections from formalin-fixed, paraffin-embedded tissue samples determined positive for these parasites by PCR and histopathology. To confirm the presence of parasites at sites of probe hybridization, consecutive sections were stained with haematoxylin-eosin and examined. RESULTS: Parahaemoproteus- and Leucocytozoon-specific probes labelled erythrocytic and exo-erythrocytic stages of Haemoproteus spp. and Leucocytozoon spp., respectively. Binding of probes to parasites was consistent with detection of the same exo-erythrocytic meronts in consecutive haematoxylin-eosin-stained sections. Cross-reactivity of the probes was ruled out by negative chromogenic in situ hybridization when applied to samples positive for a parasite of a genus different from the probes' target. CONCLUSIONS: Chromogenic in situ hybridization using 18S ribosomal RNA-specific oligonucleotide probes reliably identifies and discriminates Haemoproteus and Leucocytozoon parasites in tissue sections and enables unequivocal diagnosis of haemosporidioses.


Assuntos
Aves/parasitologia , Haemosporida/genética , Sondas Moleculares , Infecções Protozoárias em Animais/diagnóstico , Animais , Doenças das Aves/diagnóstico , Compostos Cromogênicos/química , DNA de Protozoário/genética , Haemosporida/isolamento & purificação , Hibridização In Situ , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 18S/genética
20.
Parasit Vectors ; 12(1): 292, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182151

RESUMO

BACKGROUND: Climate-related changes are expected to influence the prevalence and distribution of vector-borne haemosporidian parasites at northern latitudes, although baseline information about resident birds is still lacking. In this study, we investigated prevalence and genetic diversity of Plasmodium, Haemoproteus, and Leucocytozoon parasites infecting the northwestern crow (Corvus caurinus), a non-migratory passerine with unique life-history characteristics. This species occupies both intertidal and forested habitats and is subject to high prevalence of avian keratin disorder (AKD), a disease that causes gross beak deformities. Investigation of avian blood parasites in northwestern crows at sites broadly distributed across coastal Alaska provided an opportunity to evaluate specific host factors related to parasite infection status and assess geographical patterns of prevalence. RESULTS: We used molecular methods to screen for haemosporidian parasites in northwestern crows and estimated genus-specific parasite prevalence with occupancy modeling that accounts for imperfect detection of parasite infection. We observed considerable geographical and annual variation in prevalence of Plasmodium, Haemoproteus, and Leucocytozoon, but these patterns were not correlated with indices of local climatic conditions. Our models also did not provide support for relationships between the probability of parasite infection and body condition or the occurrence of co-infections with other parasite genera or clinical signs of AKD. In our phylogenetic analyses, we identified multiple lineages of each parasite genus, with Leucocytozoon showing greater diversity than Plasmodium or Haemoproteus. CONCLUSIONS: Results from this study expand our knowledge about the prevalence and diversity of avian blood parasites in northern resident birds as well as corvids worldwide. We detected all three genera of avian haemosporidians in northwestern crows in Alaska, although only Leucocytozoon occurred at all sites in both years. Given the strong geographical and annual variation in parasite prevalence and apparent lack of correlation with climatic variables, it appears that there are other key factors responsible for driving transmission dynamics in this region. Thus, caution is warranted when using standard climatic or geographical attributes in a predictive framework. Our phylogenetic results demonstrate lower host specificity for some lineages of Leucocytozoon than is typically reported and provide insights about genetic diversity of local haemosporidian parasites in Alaska.


Assuntos
Doenças das Aves/epidemiologia , Corvos/parasitologia , Variação Genética , Parasitos/genética , Doenças Parasitárias em Animais/sangue , Alaska/epidemiologia , Animais , Doenças das Aves/parasitologia , Mudança Climática , DNA de Protozoário/genética , Ecossistema , Haemosporida/genética , Haemosporida/isolamento & purificação , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Parasitos/isolamento & purificação , Doenças Parasitárias em Animais/epidemiologia , Filogenia , Plasmodium/genética , Plasmodium/isolamento & purificação , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...