Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.649
Filtrar
1.
Water Res ; 168: 115144, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31605830

RESUMO

Bromide and natural organic matter (NOM) are both precursors of halogenated disinfection byproducts (DBPs) in drinking water. During drinking water treatment process, chloride-form anion-exchange resin adsorption is expected to be capable of removing these DBP precursors and in the meantime releasing chloride ions. The released chloride as well as the chloride initially present in source water could be oxidized through electrolysis to generate free chlorine for disinfection. Based on the above assumptions, we developed a new disinfection approach using chloride-form anion-exchange resin adsorption followed by electrolysis to control halogenated DBPs. Parameter setup and optimization were performed for resin adsorption and electrolysis processes. Results showed that 93.7% of NOM and 90% of bromide could be removed at a resin dose of 20 mL per 2 L of simulated source water sample with a contact time of 1 h. Meanwhile, 49.5 mg/L of chloride was released from the resin to the water sample via anion-exchange, and the released chloride was further oxidized by electrolysis (Ti/RuO2-IrO2 anode and graphite cathode, current intensity of 0.4 A) to generate free chlorine (5 mg/L as Cl2) within 192 s. With this new approach, formation of total organic halogen, four trihalomethanes, and five haloacetic acids was reduced by 86.4%, 98.5%, and 93.2%, respectively, compared with chemical chlorination alone. Although the new approach might enhance the formation of some phenolic DBPs by decreasing bromide levels in source water, the overall cytotoxicity of the water samples treated with the new approach was significantly decreased by 68.8% according to a human hepatoma cell cytotoxicity assay. Notably, disinfection ability evaluation showed that the new approach achieved 3.36-log10 reductions of three seeded bacteria (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) in 19 s, suggesting that it was not only effective to E. coli but also effective to the chlorine-resistant bacteria (P. aeruginosa and S. aureus).


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Adsorção , Desinfecção , Eletrólise , Escherichia coli , Halogenação , Humanos , Staphylococcus aureus
2.
Water Res ; 168: 115105, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31614236

RESUMO

The high content of organics in municipal reverse osmosis concentrate (ROC) requires proper treatment. Here, this study applied the photoelectrocatalysis (PEC) to reduce the concentration of organics in ROC. Meanwhile, the formation of disinfection byproducts (DBPs) was investigated. Participation of primary oxidants in organics removal and DBPs formation was revealed at different anodic potentials and pHs. The results showed that PEC process effectively oxidized the organics in ROC, achieving the highest mineralization rate of 63%. Increasing anodic potential from 0 to 1.0 V enhanced the oxidations of bulk organics (i.e., dissolved organic carbons (DOC), UV254, fluorescence, large molecular weight compounds) and trace-level pharmaceuticals. Raising anodic potential to higher than 1.0 V slightly benefited the oxidations of bulk organics, owing to the relatively stable formation of hydroxyl radicals (OH•) and radical reactive chlorine species (r-RCS). The continuously rising concentration of free chlorine (FC) accelerated the decompositions of pharmaceuticals at ≥ 1.0 V. However, the generated FC raised the concentration of DBPs up to 10.36 µmol/L at 3.0 V. Lowering initial pH from 7-9 to 4-6 improved the mineralization rates by around 20% due to the higher formation of OH• at pH 4-6. Further decreasing initial pH from 6 to 4 enhanced the breakdown of large molecular weight compounds as well as the decomposition of pharmaceuticals. This came from the strengthened formation of FC and r-RCS at lower pHs. The intense participation of FC and r-RCS resulted in a higher total DBP concentration at pH 4-6 than that at pH 7-9. However, the individual species of DBPs changed differently toward the pH shift. The results of this study show that PEC could be an alternative for organics oxidation in ROC with proper control of DBPs formation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfecção , Halogenação , Osmose
3.
Water Res ; 168: 115131, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622913

RESUMO

The formation and occurrence of haloacetonitriles (HANs) in drinking water is of increasing concern because recent data have shown that they are the major contributors to DBP-associated toxicity of disinfected waters. Earlier research on HAN formation had established free amino acids as important HAN precursors due to their high reactivity with chlorine. However, free amino acids are unlikely to be the primary precursors for HANs in natural waters, mainly because the actual concentrations of these compounds are too low to sufficiently account for observed HAN formation. On the other hand, combined amino acids (i.e., peptides and proteins) are of much higher abundance even though it is unclear if they can contribute to HAN formation given that nearly all the amino nitrogen is tied up in peptide linkages. In order to clarify the reactivity of combined amino acids with chlorine to form HANs, dichloroacetonitrile (DCAN) formation kinetics was compared between free aspartic acid and two aspartyl-containing tetrapeptides (i.e., Asp-Asp-Asp-Asp and Arg-Gly-Asp-Ser). Results indicated that aspartyl residue could also lead to DCAN formation upon chlorination, whereas the rate of DCAN formation was much slower compared to that from free aspartic acid chlorination. Moreover, DCAN formation from the two model peptides was catalyzed by high pH. This is because chlorine-induced peptide backbone degradation is the key to DCAN formation from the chlorination of combined amino acids and this slow stepwise process is base-catalyzed. Perhaps most importantly, regardless of the precursors, DCAN was continuously formed but simultaneously degraded especially at alkaline pHs, leaving the corresponding N-chloro-2,2-dichloroacetamide (N-Cl-DCAM) and dichloroacetic acid (DCAA) as major end products. It was observed that over increasing chlorine exposure, there exists an important transition from initial organic precursors through metastable chlorination intermediates (e.g., DCAN and N-Cl-DCAM) and finally to stable end products (e.g., DCAA). By weighting DBP concentrations by their respective cytotoxic potencies, it is estimated that the aggregate cytotoxicity of chlorinated water would reach its maximum at relatively short chlorine contact times. In general, shorter water age and lower pH both resulted in higher levels of metastable intermediates (i.e., DCAN) and thus higher levels of aggregate calculated cytotoxicity. The resulting toxicity profile is different from the prevailing notion that supports current DBP regulations. Therefore, there is a risk that by placing regulatory limits and control strategies exclusively on regulated end products (e.g., HAAs), the overall toxicity of drinking water might be inadvertently elevated.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Ácido Aspártico , Cloro , Desinfecção , Halogenação
4.
Water Res ; 168: 115194, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31655436

RESUMO

The UV/persulfate (PS) process is a promising water treatment technology, and it can not only effectively degrade contaminants of emerging concern, but also control formation of disinfection byproducts (DBPs). In this study, we investigated the potential and mechanisms of chloropicrin (i.e. trichloronitromethane, TCNM) formation during chlorination that followed UV/PS pretreatment in the presence of low concentrations of nitrite. We found that when nitrite was present in the UV/PS system, unexpected high concentrations of TCNM were formed. The formation potential of TCNM was impacted by operational conditions and water matrix components: (1) high pH enhanced TCNM formation; (2) high UV fluence inhibited TCNM formation; and (3) organic compounds containing phenolic groups enhanced TCNM formation. We discovered that electrophilic substitutions by reactive nitrogen species were favored for phenolic groups, and thus more nitrite-N was transformed to organic nitrogen. We also found that more TCNM was generated from natural organic matter than algal organic matter during chlorination following pretreatment using UV/PS. Accordingly, more attention needs to be paid to TCNM formation, if nitrite is present and the water is pretreated using UV/PS (when applied at upstream of chlorination). For example, we found that if monochloramine was used as a disinfectant downstream of the UV/PS process, the formation of TCNM was reduced.


Assuntos
Hidrocarbonetos Clorados , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Halogenação , Nitritos
5.
Chem Commun (Camb) ; 55(83): 12455-12458, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31565704

RESUMO

Hypochlorous acid (HClO) is one of the most important reactive oxygen species (ROS) and plays a vital role in many physiological and pathological processes. The comprehensive exploration of mechanistic details and the potential clinical translation necessitate the development of reliable probes for prompt and accurate detection of HClO in complex biological environments. Herein we report a fluorinated bihydrazide conjugate as a 19F NMR/MRI probe with a "turn-on" character for the detection of HClO. This probe could selectively respond to HClO, leading to a significant recovery of 19F signals for 19F NMR/MRI. Activatable sensing and imaging of HClO were achieved with SMMC-7721 cells and nude mice, which demonstrates that this small molecular conjugate could serve as a selective probe for real-time sensing and imaging of HClO in biological systems.


Assuntos
Corantes Fluorescentes/química , Hidrazinas/química , Ácido Hipocloroso/análise , Imagem por Ressonância Magnética , Animais , Linhagem Celular Tumoral , Radioisótopos de Flúor , Halogenação , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Nus , Espécies Reativas de Oxigênio
6.
Water Res ; 165: 115023, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472336

RESUMO

Purine and pyrimidines are present an important pool of dissolved organic nitrogen in aqueous medias and also precursors of disinfection byproducts. The degradation kinetics of cytosine and adenine-model pyrimidine and purine compounds-were investigated along with their transformation pathways leading to the formation of disinfection byproducts during two typical multi-barrier disinfection processes: UV irradiation and UV/chlorine pretreatment followed by post-chlorination. UV irradiation followed by post-chlorination enhanced the degradation of cytosine and adenine (by 17.1 and 26.1%, respectively), but it also generated more byproduct precursors compared to chlorination alone. The presence of reactive species in the UV/chlorine treatment greatly enhanced cytosine and adenine degradation (by 61.8 and 123.0%) but generated even more disinfection byproducts. Compared to 24 h chlorination, the concentrations of byproducts increased by up to 361.6% for cytosine and 85.1% for adenine with longer UV/chlorine treatment (from 2 to 30 min). Thirty minutes of combined UV/chlorine treatment decreased the total organic chlorine produced from cytosine by 34.4% (from 233.8 to 153.3 µg Cl L-1) but it increased byproduct generation by 68.3% compared with 24 h of simple chlorination. The TOCl from adenine increased by 50.0% (from 9.2 to 18.4 µg Cl L-1) but byproduct generation was 11.0% less after 30 min of UV/chlorine pretreatment followed by 24 h of chlorination. The intermediates generated were analyzed in detail and multiple transformation pathways leading to byproduct formation are proposed.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfecção , Halogenação , Purinas , Pirimidinas , Raios Ultravioleta
7.
Water Res ; 165: 115024, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473357

RESUMO

UV irradiation was reported to be able to degrade some kinds of DBPs, yet its influence on the toxicity of chlorinated water to mammalian cells remains unknown. This study systematically investigated the influence of low-pressure UV irradiation on the DBPs and toxicity of chlorinated drinking water (DW) and reclaimed water (RW). The apparent first-order rate constant (kobs) of degradation kinetics of known DBPs increased with the increased Br substitutions. Haloacetonitriles were identified as toxicity drivers among the detected DBPs, which even contributed more to the toxicity after UV irradiation, mainly due to the refractory bromochloroacetonitrile (BCAN) and dichloroacetonitrile (dCAN). Both total organic halogen, cytotoxicity and genotoxicity were significantly removed under UV irradiation, with the removal rate of 22.9%-41.7% for cytotoxicity and a higher rate of 33.1%-55.5% for genotoxicity under 2400 mJ/cm2 irradiation. UV irradiation significantly decreased the UV254, SUVA254 and fluorescence intensity (FLU) of chlorinated water. Results from high performance size exclusion chromatography revealed that chlorinated DW mainly contained high molecular weight (MW) compounds (>1000 Da) while chlorinated RW mainly contained lower MW compounds (100-500 Da). Chromophores and fluorophores in compounds of 100-500 Da increased in chlorinated DW while decreased in chlorinated RW under UV irradiation. Both the removal of UV254, SUVA254, FLU, MW-based UV254 (>1000 Da) and MW-based FLU (each fractions) were significantly correlated (p < 0.05) with the removal of toxicity under UV irradiation. The UV254 of chlorinated water was recommended as the optimal surrogate for toxicity removal.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Desinfecção , Halogenação , Halogênios , Raios Ultravioleta , Água
8.
Water Res ; 166: 115041, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536888

RESUMO

This study investigated formation and genotoxicities of disinfection by-products (DBPs) during chlorination of hydrophobic organic compounds (HOCs) extracted from six drinking water reservoirs around the Pearl River Delta region, China. Chemical analyses firstly showed that after chlorination aromatic HOCs (including polycyclic aromatic hydrocarbons, PAHs) decreased but DBPs (including chlorinated PAHs) increased, while genotoxicity assays revealed that the chlorination increased DNA damage in human Caco-2 cells. Although the link between DBPs and the genotoxicity was weak (insignificant correlations, p ≥ 0.05), we observed that chlorination of HOCs from more contaminated reservoirs in general resulted in higher genotoxicity. Secondly, remedial effects of catalase and dietary antioxidants (i.e. vitamin C and epigallocatechin gallate) in protecting cells against DBPs genotoxicity were detected. After 1 h treatment by the antioxidants, the DNA damage in Caco-2 cells (due to previous exposure to DBPs) significantly decreased (p < 0.05) in 7 out of a total of 18 treatments (38.9%). This is the first study demonstrating that catalase, vitamin C and epigallocatechin gallate protected human cells in vitro against DNA damage upon exposure to chlorinated genotoxic DBPs.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Antioxidantes , Células CACO-2 , China , Desinfecção , Halogenação , Humanos
9.
Water Res ; 166: 115087, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541789

RESUMO

The present study investigated the effect of oxoanions on catalytic behaviour of copper corrosion products (CCPs) during chlorination of bromide-containing waters. Three types of oxoanions (carbonate, sulphate, and phosphate) and four types of CCPs (Cu2+, Cu(OH)2, Cu2O, and CuO) were involved in investigation and the effect of oxoanions concentration was also examined. The result indicated that carbonate and sulphate slightly inhibited oxidant decay in the presence of CCPs, but the formation of brominated disinfection by-products (Br-DBPs) remained largely unchanged. In contrast, the presence of phosphate (0.2-1 mM) almost eliminated the catalytic effect of Cu2+. For CCP solids (i.e. Cu(OH)2, Cu2O, and CuO), phosphate preferentially inhibited the formation of bromate rather than Br-DBPs. Despite the catalysis by CCP solids was reduced to some extent, the oxidant decay rate and bromate and Br-DBP formation were still significantly higher than blank groups, even at high phosphate concentration. By testing different addition scheme (simultaneous/sequential addition), it was proposed that phosphate was a strong competitor for hypohalites, rapidly destroying CCPs-hypohalites complexes on some adsorption sites. However, there were some specific sites that can only be adsorbed by hypohalites, leading to the incomplete inhibition of phosphate. Finally, the inhibition effect of phosphate on CCPs catalysis was tested in real water matrix. For Cu2+, higher reduction of bromate and Br-DBPs was found in raw water rather than filtered water, while converse pattern was true for Cu(OH)2 and Cu2O, and this discrepancy can be ascribed to the difference in catalytic mechanism between Cu2+ and CCP solids.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Bromatos , Brometos , Cobre , Corrosão , Desinfecção , Halogenação , Oxidantes
10.
Chemosphere ; 234: 971-977, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31519106

RESUMO

Iodinated contrast media (ICM) are found at considerably higher concentrations than any other pharmaceutical in waste water, surface water and bank filtrate. While the compounds are persistent to deiodination in aerobic environments, field data from bank filtration transects have demonstrated a partial deiodination in reducing soil-water environments. In a previous lab study, we have shown that this reductive deiodination is abiotically catalyzed by (free) corrinoids. To achieve a better understanding of the incomplete deiodination in the environment, we now investigated the reaction kinetics based on the decrease of the iodinated compound, the formation of deiodinated transformation products and the iodide release. The deiodination follows first-order kinetics and consists of three partial reactions for the release of three iodine atoms. The deiodination rate decreased with decreasing iodination degree with the deiodination rate constants k1 > k2 > k3. In contrast to the ICM, 2,4,6- and 2,3,5-triiodobenzoic acid, 5-amino-2,4,6-triiodoisophthalic acid and monoiodobenzoic acids did not show a complete deiodination under the same test conditions. Our results show that the deiodination strongly depends on the substitution pattern of the bound iodine atoms as well as on adjacent functional groups. Iodine atoms in ortho-position to another iodine atom or a carboxyl group were released more easily while an amino group in ortho-position inhibited the deiodination. Tests in tap water in the presence of B12 showed a much slower deiodination than in ultrapure water, most likely caused by competitive electron acceptors in the water matrix.


Assuntos
Meios de Contraste/química , Compostos de Iodo/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Catálise , Corrinoides , Filtração , Halogenação , Iodo , Cinética , Oxidantes , Eliminação de Resíduos Líquidos/métodos , Raios X
11.
Chem Commun (Camb) ; 55(79): 11948-11951, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31531452

RESUMO

The toxic halogenated anilines 2,4,6-tribromoaniline, 2,4,6-trichloroaniline and their dibromochloro and bromodichloro derivatives were considered as compounds of exclusive synthetic origin. Labeling studies and kinetic experiments confirmed that these substances are also biosynthesized by a marine biofilm forming microalga. They represent a novel class of halogenated natural products.


Assuntos
Compostos de Anilina/química , Biofilmes , Produtos Biológicos/química , Halogênios/química , Microalgas/química , Vias Biossintéticas , Halogenação , Cinética
12.
Waste Manag ; 99: 31-41, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31470264

RESUMO

To avoid the formation of undesired Cl compounds during polyvinyl chloride (PVC) wastes treatment and facilitate the recycling of valuable NaCl and dechlorinated hydrocarbons as feedstocks, advanced dechlorination (de-Cl) process should be developed. Here, an up-scale ball mill reactor was established for the de-Cl of real PVC wastes, including sealing strips from waste refrigerators and crushed cable coverings from waste cables. The effects of NaOH on de-Cl were validated with lab-scale studies and the influences of mechanical conditions were innovatively investigated. A maximum de-Cl degree of 99% was obtained with 1 M NaOH in ethylene glycol for sealing strips, whereas a maximum de-Cl degree of 92% was obtained with Φ1.27 cm stainless steel balls at a moderate rotation speed for cable coverings. The remaining Cl content in the sample residues was small and decreased with decreasing residue size, resulting in minimum contents of 0.49% and 0.61% for sealing strips and cable coverings, respectively. The de-Cl behavior was consistent with a shrinking-core model and the meaning of kinetic parameters was illustrated. The ball milling process was simulated by discrete element method (DEM). A positive correlation was observed between the apparent rate constant of the experimental de-Cl process and the specific impact energy calculated using DEM simulations. The combined experimental and simulation approach suggested that the surface of PVC is first dechlorinated and then crushed into fine particles by ball milling to expose the inner unreacted surface. For industrial application, the balance of chemical and mechanical conditions should be optimized.


Assuntos
Etilenoglicol , Cloreto de Polivinila , Halogenação , Reciclagem , Hidróxido de Sódio
13.
Mar Pollut Bull ; 146: 442-453, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31426179

RESUMO

This paper reports long-term concentration records of metals and organic halogenated compounds in tissues of 49 species of marine organisms from Eastern South Pacific coast, Biobio region, Chile during a marine monitoring program developed between 2006 and 2015. Principal component (PCA) and generalized linear model (GLM) analyses indicated significant differences in the concentrations of metals and organic halogenated compounds among taxonomic and functional groups. The strongest relationships exist between species that share similar feeding habits rather than between species of the same taxonomic group or habitat. The significant differences between these groups were maintained over time; thus concentrations detected are, in general, within the ranges reported at genus level for Chile and the rest of the world. Since there is no evidence of any pollution process in the area, this information can be used as an environmental reference to establish natural concentrations for the parameters and organisms analyzed.


Assuntos
Organismos Aquáticos/química , Monitoramento Ambiental , Halogênios/análise , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise , Biota , Cádmio/análise , Chile , Halogenação , Chumbo/análise , Mercúrio/análise , Compostos Orgânicos/análise , Dibenzodioxinas Policloradas/análise , Zinco/análise
14.
Water Res ; 165: 114930, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31426006

RESUMO

Nickel phosphide (Ni2P) is an emerging efficient catalyst for the hydrogen evolution and water splitting. Herein, we report that Ni2P is also a promising catalyst for enhancing electrochemical dechlorination of chlorinated disinfection byproducts (DBPs). Amorphous Ni2P (ANP) mini-nanorod arrays were in-situ fabricated on nickel foam (NF) via a facile phosphidation process, and then used as a binder-free cathode for electrochemical dechlorination of trichloroacetic acid (TCAA). Results showed that ANP exhibited superior performance on electrochemical dechlorination of TCAA than other metal cathodes (e.g., NF and Pd/C). Scavenging experiments and electron spin resonance (ESR) technique indicated that atomic H* was generated from water reduction through ANP catalysis, and primarily contributed to TCAA dechlorination. Indeed, the superhydrophilic surface of ANP favored electrocatalyst/electrolyte contact, and its low impedance further afforded rapid electron transport from the electrode to water or protons for atomic H* generation. The kinetic modelling and mass balance evaluation revealed the transformation mechanism of TCAA dechlorination. This study is among the first to develop ANP as a binder-free cathode for electrochemical dechlorination, and have important implications for eliminating chlorinated DBPs in water.


Assuntos
Halogenação , Níquel , Catálise , Eletrodos , Hidrogênio
15.
Water Res ; 165: 114976, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445306

RESUMO

Disinfection is a key step in drinking water treatment process to prevent water-borne infections. However, reactions between chlorine, one of the most common disinfectants, and natural organic matter (NOM) often lead to the formation of hazardous disinfection byproducts (DBPs). However, the cytotoxicity of some DBPs is still poorly understood. Such knowledge is critical for proper selection of disinfection processes. We investigated the effects of DBPs on mouse acute liver injury. The exacerbation of liver damage increased with the DBPs concentrations, likely due to the increased hepatic macrophages. Haloacetonitriles (HANs) and haloketones (HKs) are more toxic to Human Hepatocellular (Hep3B) cells than trihalomethanes (THMs). Cytotoxicity of DBPs were governed by the halogen type (brominated DBPs > chlorinated DBPs) and the numbers of halogen atoms per molecule. Then, we used the pilot-scale WDS to study the best conditions for reducing the formation of DBPs. The result showed that the formation of DBPs followed the order: stainless-steel (SS) > ductile iron (DI) > polyethylene (PE) pipe. Higher flowrate promoted the formation of DBPs in all three pipes. The results suggest that the formation of DBPs in chlorine disinfection can be reduced by using PE pipes and low flow rate in water distribution systems (WDS).


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Animais , Desinfecção , Halogenação , Humanos , Camundongos , Trialometanos
16.
Water Res ; 165: 114994, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31445310

RESUMO

In this study, the formation of 17 N-chloramines from proteinogenic amino acids and HOCl was studied by direct kinetic method in the pH = 3-13 range. Thus, the uncertainties associated with the indirect methods used in some of the previous studies were eliminated. Each reaction proceeds according to an overall second order kinetics: v = - k [HOCl][R-NH2] and the rate constants are several times 107 M-1s-1. A very slight correlation was found between the lgk and the pKAA of the amino acids. The results make possible to predict the reactivity order of the amino acids toward HOCl under various conditions. A comparison of the parameters of activation indicates that the presence of a bulky substituent on the side chain close to the α-carbon atom decreases the strength of bonding between the reactants and make the structure more diffuse in the transition state. The chlorination of histidine proceeds via two pH dependent paths presumably leading to the formation of N-chloramine and a side chain chlorinated product. The latter compound may be involved in fast subsequent trans-chlorination reactions. The results presented here resolve earlier discrepancies in the literature and are relevant in chlorination water treatment technologies as well as in the interpretation of in vivo processes involving the formation of N-chloro amino acids in a wide pH range.


Assuntos
Cloraminas , Purificação da Água , Aminoácidos , Cloro , Halogenação , Ácido Hipocloroso , Cinética
17.
Ecotoxicol Environ Saf ; 183: 109509, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31398579

RESUMO

Microcystin-LR (MC-LR) is the most widely distributed and harmful variant toxins released by cyanobacteria, which poses potential threaten to people and aquatic animals when entering natural water. In our research, solar/chlorine process was comprehensively investigated to degrade and detoxify MC-LR. Under the chlorine concentration of 1.0 mg L-1, MC-LR (1.0 µM) was decreased by 96.7%, 26%, and 9% by solar/chlorine process, chlorination, and solar irradiation respectively. Quenching experiments confirmed that reactive chlorine species (RCS) and hydroxyl radical (HO) were the predominant reactive species in solar/chlorine process at neutral condition, and ozone was generated because of the participation of triplet-state oxygen (O(3P)). The respective contributions of each reactive species were calculated with the order as: RCS, HO, ozone, and solar irradiation. The presence of HCO3- and natural organic matter in water inhibited the degradation efficiency of MC-LR. Moreover, the transformation products of MC-LR generated during the solar/chlorine process were identified and a possible pathway was proposed. The hepatotoxicity of MC-LR and its transformation products was compared using protein phosphatase 2A. Our experimental results revealed that the concentration and hepatotoxicity of MC-LR both significantly decreased, and most products were not hepatoxic. Overall, the solar/chlorine process is a promising alternative technology to degrade MC-LR during eutrophication.


Assuntos
Cloro/química , Microcistinas/química , Luz Solar , Poluentes Químicos da Água/química , Purificação da Água/métodos , Animais , Recuperação e Remediação Ambiental , Halogenação , Microcistinas/isolamento & purificação , Microcistinas/toxicidade , Oxirredução , Água/química , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/toxicidade
18.
Ecotoxicol Environ Saf ; 182: 109415, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31299471

RESUMO

Erythromycin (ERY), azithromycin (AZI) and telithromycin (TEL) are widely-used macrolide antibiotics that are frequently detected in various water environments, including resource water and drinking water. In the performed chlorination disinfection process, at least 10, 20 and 200 new disinfection byproducts of ERY, AZI and TEL, respectively, were observed (the mixtures of the disinfection byproducts of ERY, AZI and TEL were named ERY-M, AZI-M and TEL-M, respectively). There is limited information available regarding their comparative toxicities, and their potential health risks are still unknown. In this study, the Jurkat cell line was used to compare the toxicities of the disinfection byproduct mixtures and their precursor compounds. The cell viability results indicated that the toxicity of ERY-M may not be enhanced after disinfection by chlorination. In contrast, at the same concentrations, AZI-M and TEL-M induced more significant inhibitory effects on cell viability than their parent compounds. Additionally, the total antioxidant capacity (T-AOC) and cell cytokine release (including interleukin-2, interleukin-8 and tumor necrosis factor-α) analyses of AZI-M and TEL-M further verified these results. Our findings demonstrate that the cytotoxicity of AZI and TEL was enhanced during the chlorination disinfection process. This investigation will provide substantial new details related to the toxicity of the mixed disinfection byproducts (DBPs) of ERY, AZI and TEL generated in the chlorination disinfection process.


Assuntos
Antibacterianos/toxicidade , Desinfetantes/toxicidade , Antibacterianos/análise , Desinfetantes/análise , Desinfecção/métodos , Água Potável/análise , Eritromicina/análise , Halogenação , Cetolídeos , Testes de Toxicidade , Poluentes Químicos da Água/análise , Purificação da Água/métodos
19.
Chem Biol Interact ; 310: 108739, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31288001

RESUMO

Phenol red (PR) is the standard pH indicator in various cell and tissue culture media, as it provides a quick check for the health of the culture. PR has also been used in multiple protocols to detect cellular hydrogen peroxide as well as peroxidase activity from human peroxidase enzymes. The majority of promyelocytic leukemia cell lines (e.g. HL-60 cells) express myeloperoxidase (MPO), which may react with PR, especially as the latter is present in cell culture media at sufficient concentrations (~15 µM) to partake in redox reactions. Moreover, phenolic molecules are often efficient donor substrates for peroxidase enzymes. In this study, we hypothesized that MPO metabolism of PR via MPO-expressing HL-60 cells could result in PR metabolite(s) that could modulate cell viability. We used purified human MPO for UV-visible spectrophotometry, electron paramagnetic resonance (EPR) and LC-MS analyses to investigate PR peroxidation. 2-chloro-5,5-dimethyl-1,3-cyclohexanedione (monochloro-dimedone, MCD) was used to assess the effect of PR on MPO-catalyzed chlorination activity, and we assessed PR uptake by HL-60 cells using LC-MS analysis. Lastly, we investigated the impact of PR metabolism by intracellular MPO on cell viability (ATP, using CellTiter-Glo®), cytotoxicity (using trypan blue), and on reduced and oxidized glutathione (using GSH/GSSG-Glo™). Our results demonstrate that PR undergoes oxidative halogenation via MPO, resulting in its UV-vis spectral changes due to the formation of mono- and di-halogenated products. Moreover, a significant increase in MPO-catalyzed chlorination of MCD and an increase in glutathionyl radical detection (using EPR) were observed in the presence of PR. Our in-vitro studies revealed that PR is readily taken up by HL-60 cells and its metabolism by intracellular MPO leads to a significant decrease in cellular glutathione as well as a significant increase in glutathione disulphide formation. In spite of the latter, PR had no considerable effect on HL-60 cell viability. These results provide evidence that while no overt decrease in cell viability may be observed, PR does impart redox activity, which investigators should be wary of in experimental protocols.


Assuntos
Protocolos Clínicos/normas , Concentração de Íons de Hidrogênio , Peroxidase/metabolismo , Fenolsulfonaftaleína/farmacologia , Células HL-60 , Halogenação , Humanos , Peróxido de Hidrogênio/metabolismo , Leucemia Promielocítica Aguda/enzimologia , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Oxirredução , Fenolsulfonaftaleína/química , Fenolsulfonaftaleína/metabolismo , Fenolsulfonaftaleína/farmacocinética , Espectrofotometria
20.
Environ Pollut ; 253: 120-129, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302398

RESUMO

Flame retardants (FRs), such as brominated flame retardants (BFRs) and organophosphorus flame retardants (OPFRs), are diverse groups of compounds used in various products related to the indoor environment. In this study concentrations of eight polybrominated diphenyl ethers (PBDEs), two alternative BFRs and ten OPFRs were determined in indoor dust (n = 20) and pet cat hair (n = 11) from South Africa. The OPFRs were the major FRs, contributing to more than 97% of the total FR concentration. The median Ʃ10OPFRs concentrations were 44,800 ng/g in freshly collected dust (F-dust), 19,800 ng/g in the dust collected from vacuum cleaner bags (V-dust), and 865 ng/g in cat hair (C-hair). Tris(1-chloro-2-propyl) phosphate (TCIPP) was the dominant OPFR in the dust samples with median concentrations of 7,010 ng/g in F-dust and 3,590 ng/g in V-dust. Tris(2-butoxyethyl) phosphate (TBOEP) was the dominant OPFR in C-hair, with a median concentration of 387 ng/g. The concentrations of Ʃ8PBDEs were higher in F-dust than in V-dust. BDE209 was the dominant BFR in all three matrices. Bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5- tetrabromobenzoate (EH-TBB) showed notable contributions to the BFR profile in cat hair. A worst-case dust exposure estimation was performed for all analytes. The estimated TCIPP daily intake through dust ingestion was up to 1,240 ng/kg bw for toddlers. The results indicate that OPFRs are ubiquitous in South African indoor environment. Indoor dust is a major source of human exposure to environmental contaminants. This can for example occur through hand-to-mouth contact of toddlers, and is an important route of exposure to currently used FRs accumulated on dust particles. The presence of FRs, in particular high concentrations of OPFRs, suggests that children and indoor pet cats may have greater exposure to FRs than adults.


Assuntos
Retardadores de Chama/análise , Cabelo/química , Compostos Organofosforados/análise , Adulto , Poluição do Ar em Ambientes Fechados/análise , Animais , Gatos , Pré-Escolar , Poeira/análise , Monitoramento Ambiental , Éteres Difenil Halogenados/análise , Halogenação , Humanos , Organofosfatos/análise , Fosfatos/análise , Ácidos Ftálicos , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA