Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.023
Filtrar
1.
Acta Cir Bras ; 39: e396124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39356932

RESUMO

PURPOSE: To examine whether isoflurane preconditioning (IsoP) has a protective effect against renal ischemia/reperfusion injury (I/RI) in diabetic conditions and to further clarify the underlying mechanisms. METHODS: Control and streptozotocin-induced diabetic rats were randomly assigned to five groups, as follows: normal sham, normal I/R, diabetic sham, diabetic I/R, and diabetic I/R + isoflurane. Renal I/RI was induced by clamping renal pedicle for 45 min followed by reperfusion for 24 h. IsoP was achieved by exposing the rats to 2% isoflurane for 30 min before vascular occlusion. Kidneys and blood were collected after reperfusion for further analysis. Renal histology, blood urea nitrogen, serum creatinine, oxidative stress, inflammatory cytokines, and renal cell apoptosis were assessed. Furthermore, the expression of brahma related gene 1 (Brg1), nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and nuclear factor-κB (NF-κB) were determined. RESULTS: Compared with control, diabetic rats undergoing I/R presented more severe renal injury, oxidative stress, inflammatory reaction, and apoptosis with the impairment of Brg1/Nrf2/HO-1 signaling. All these alterations were significantly attenuated by pretreatment with isoflurane. CONCLUSIONS: These findings suggest that isoflurane could alleviate renal I/RI in diabetes, possibly through improving Brg1/Nrf2/HO-1 signaling.


Assuntos
Apoptose , Diabetes Mellitus Experimental , Precondicionamento Isquêmico , Isoflurano , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Distribuição Aleatória , Traumatismo por Reperfusão , Transdução de Sinais , Fatores de Transcrição , Animais , Isoflurano/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Diabetes Mellitus Experimental/complicações , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Precondicionamento Isquêmico/métodos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , DNA Helicases/metabolismo , Rim/efeitos dos fármacos , Rim/irrigação sanguínea , Rim/patologia , Proteínas Nucleares/metabolismo , Heme Oxigenase-1/metabolismo , Anestésicos Inalatórios/farmacologia , Ratos , Ratos Sprague-Dawley , NF-kappa B/metabolismo
2.
Eur Rev Med Pharmacol Sci ; 28(18): 4277-4289, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39359199

RESUMO

OBJECTIVE: Ferroptosis of neurons is a significant cause of brain injury following intracerebral hemorrhage (ICH). As an iron-containing compound in hemoglobin, heme contributes to nerve injury post-ICH. Melatonin has been shown to mitigate the effects of ICH, yet its specific functions remain largely elusive. In this study, we aimed to explore the roles and mechanisms of melatonin in heme-induced ferroptosis subsequent to ICH. MATERIALS AND METHODS: C57BL/6 mice were intracranially injected with heme and then treated with melatonin. Behavior tests [modified neurological severity score (mNSS), forelimb placing, and corner turn tests], H&E staining, Nissl staining, and Prussian blue staining were used to evaluate mouse brain tissue injury. In vitro, HT-22 cells were stimulated with heme and cell viability was determined by crystal violet staining. The iron contents were determined in heme-treated brains and cells, and the levels of 4-hydroxynonenal (4-HNE) and malonaldehyde (MDA) were assessed by ELISA. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to investigate the mRNA levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Immunoblotting was used to analyze the protein expression of glutathione peroxidase 4 (GPX4), solute carrier family 7 member 11 (SLC7A11), Nrf2, and HO-1. Finally, small interfering RNA (siRNA) was used to knock down Nrf2 in HT-22 cells. RESULTS: Melatonin treatment alleviated heme-induced injuries to neural function, as indicated by improved behavior in the mice. Moreover, melatonin decreased cell death and iron concentrations, increased MDA and 4-HNE levels, and reversed the decreases in GPX4, SLC7A11, Nrf2, and HO-1 induced by heme in vitro and in vivo. These results indicated that melatonin could improve the ferroptosis induced by heme. In addition, we found that Nrf2 knockdown attenuated the therapeutic effect of melatonin on neuronal ferroptosis induced by heme. CONCLUSIONS: In general, melatonin alleviates heme-induced ferroptosis by activating the Nrf2/HO-1 pathway, which implies that melatonin is a promising treatment for ferroptosis in ICH.


Assuntos
Ferroptose , Heme Oxigenase-1 , Heme , Melatonina , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Neurônios , Animais , Ferroptose/efeitos dos fármacos , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Heme Oxigenase-1/metabolismo , Heme/metabolismo , Masculino , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas de Membrana
3.
J Immunol Res ; 2024: 8273732, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359694

RESUMO

Oxidative stress is crucial in ulcerative colitis (UC) and colitis-associated colorectal cancer (CAC). Intestinal epithelial cells (IECs) are an important component of the intestinal barrier. In previous studies, we have demonstrated that suppressing microRNA-222-3p (miR-222-3p) can protect against oxidative stress in IECs, which ameliorates colonic injuries in UC mice and prevents the conversion of UC to CAC. In this case, we hope to explore whether moxibustion can alleviate UC and CAC by inhibiting miR-222-3p based on mouse models of UC and CAC. After herb-partitioned moxibustion (HPM) intervention, the disease activity index (DAI) and colon macroscopic damage index (CMDI) were significantly reduced in UC mice, and the number and volume of intestinal tumors were decreased considerably in CAC mice. Meanwhile, we found that HPM suppressed miR-222-3p expression and upregulated the mRNA and protein expression of Brahma-related gene 1 (BRG1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), while inhibiting Kelch-like ECH-associated protein 1 (Keap1) expression in IECs of UC and CAC mice. With changes in reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and inflammatory cytokines interleukin (IL)-1ß and tumor necrosis factor (TNF)-α), we verified that HPM protects against oxidative stress and inflammation in IECs of UC and CAC mice. The effect of HPM was inhibited in miR-222-3p overexpression mice, further demonstrating that the protective effect of HPM on UC and CAC mice was through inhibiting miR-222-3p. In summary, HPM regulates the BRG1/Nrf2/HO-1 pathway by inhibiting miR-222-3p to attenuate oxidative stress in IECs in UC and CAC.


Assuntos
Colite Ulcerativa , Modelos Animais de Doenças , Heme Oxigenase-1 , MicroRNAs , Moxibustão , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Transdução de Sinais , Fatores de Transcrição , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Colite Ulcerativa/terapia , Colite Ulcerativa/metabolismo , Colite Ulcerativa/genética , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , DNA Helicases/metabolismo , DNA Helicases/genética , Neoplasias Associadas a Colite/etiologia , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/metabolismo , Neoplasias Associadas a Colite/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Humanos
4.
Biomed Res ; 45(5): 197-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39370298

RESUMO

Our study explored the therapeutic effect and the mechanism of quercetin against hypoxia/reoxygenation (H/R)-induced injury in human coronary artery endothelial cells (CAECs). Quercetin was selected as a potential component for the BuShenKangShuaiPian formula (BSKSP) treatment via the Network pharmacology analysis. Cell viability and reactive oxygen species (ROS) production were measured by CCK8 assay and immunofluorescence, respectively. The expression of Bax, Bcl-2, Cle-caspase-3, cytochrome c (Cyt-C), NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) protein was quantified by western blotting. The superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) activity, mtDNA copy number, and ATP production were measured via corresponding kits. Quercetin was selected from the BSKSP for its high degree value (Degree value: 22). Besides, quercetin protected CAECs against H/R-induced cytotoxicity and apoptosis. The H/R-induced increased ROS level, ATP production, Cyt-C release, and decreased mtDNA copy number were removed by the quercetin. Moreover, quercetin upregulated the Nrf2/ HO-1 axis, SOD, and CAT activity, and downregulated MDA levels in H/R treated CAECs, while knockdown Nrf2 reversed the protection of quercetin against H/R-induced oxidative stress, mitochondrial damage, and apoptosis. Quercetin protects CAECs against H/R-induced mitochondrial apoptosis via the Nrf2/HO-1 axis, which innovatively suggests the therapeutic potential of quercetin for coronary heart disease (CHD) treatment.


Assuntos
Apoptose , Vasos Coronários , Células Endoteliais , Heme Oxigenase-1 , Mitocôndrias , Fator 2 Relacionado a NF-E2 , Quercetina , Espécies Reativas de Oxigênio , Transdução de Sinais , Humanos , Quercetina/farmacologia , Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Espécies Reativas de Oxigênio/metabolismo , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Vasos Coronários/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos
5.
J Med Virol ; 96(10): e29945, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39370874

RESUMO

Borna disease virus 1 (BoDV-1) is a neurotropic RNA virus that has been linked to fatal BoDV-1 encephalitis (BVE) in humans. Ferroptosis represents a newly recognized kind of programmed cell death that marked by iron overload and lipid peroxidation. Various viral infections are closely related to ferroptosis. However, the link between BoDV-1 infection and ferroptosis, as well as its role in BVE pathogenesis, remains inadequately understood. Herein, we used primary rat cortical neurons, human microglial HMC3 cells, and Sprague‒Dawley rats as models. BoDV-1 infection induced ferroptosis, as ferroptosis characteristics were detected (iron overload, reactive oxygen species buildup, decreased antioxidant capacity, lipid peroxidation, and mitochondrial damage). Analysis via qRT-PCR and Western blot demonstrated that BoDV-1-induced ferroptosis was mediated through Nrf2/HO-1/SLC7a11/GPX4 antioxidant pathway suppression. Nrf2 downregulation was due to BoDV-1 infection promoting Nrf2 ubiquitination and degradation. Following BoDV-1-induced ferroptosis, the PTGS2/PGE2 signaling pathway was activated, and various intracellular lipid peroxidation products and damage-associated molecular patterns were released, contributing to BVE occurrence and progression. More importantly, inhibiting ferroptosis or the ubiquitin‒proteasome system effectively alleviated BVE. Collectively, these findings demonstrate the interaction between BoDV-1 infection and ferroptosis and reveal BoDV-1-induced ferroptosis as an underlying pathogenic mechanism of BVE.


Assuntos
Doença de Borna , Vírus da Doença de Borna , Ferroptose , Peroxidação de Lipídeos , Fator 2 Relacionado a NF-E2 , Neurônios , Ratos Sprague-Dawley , Vírus da Doença de Borna/fisiologia , Animais , Ratos , Humanos , Neurônios/virologia , Neurônios/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Doença de Borna/virologia , Doença de Borna/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Microglia/virologia , Microglia/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular , Encefalite/virologia , Encefalite/patologia , Células Cultivadas
6.
Wei Sheng Yan Jiu ; 53(5): 771-777, 2024 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-39308109

RESUMO

OBJECTIVE: To probe into the protective effect of different dose of secoisolariciresinol diglucoside(SDG) on brain of offspring of mice anainst oxidative damage and inflammatory reaction induced by maternal exposure to trans fatty acids(TFA) during gestation, and observe the the changes of regulating Nrf2/Keap1 pathway in the course. METHODS: 30 healthy female mice(C57BL/6) were divided into 5 groups randomly, they are respectively control group, TFA-exposed group, and three SDG-intervention groups(low-(TFA+LSDG), medium-(TFA+MSDG) and high-(TFA+HSDG)). The pregnancy mice of control group and TFA group were treated with distilled water and 60 mg/kg·d TFA by gavage, in the same time, the mice of three SDG-intervention groups were treated with 60 mg/kg·d TFA by gavage and fed with feed included SDG(10, 20 and 30 mg/kg). The treatment to pregnancy mice continued to birth of offspring. After 21 days of lactation, the offspring were killed under anesthesia and the experiment was ended. The coefficient of brain was calculated. The levels of superoxide dismutase(SOD), glutathione peroxidase(GSH-Px), malondialdehyde(MDA), tumor necrosis factor-α(TNF-α), interferon-γ(IFN-γ) and amyloid-ß(Aß)of brain were detected. RT-PCR and Western Blot was used to detected gene expression and protein levels of nuclear factor erythroid-2 related factor 2(Nrf2), kelch-like ECH-associated protein 1(Keap1), quinone oxidoreductase 1(NQO1) and hemeoxygenase-l(HO-1). RESULTS: Compared with control group, the brain coefficient and Aß1-40 of offspring of TFA-group had no significant changes(P>0.05), the activity of SOD and GSH-Px reduced, the content of MDA, IFN-γ, TNF-α and Aß1-42 increased, the level of mRNA and protein expression of Nrf2, NQO1 and HO-1 decreased and the level of mRNA and protein expression of Keap1 increase because of the exposion to TFA during gestation and all the differences were statistically significant(P<0.05). Compared with TFA-group, the brain coefficient, Aß1-40 and the level of NQO1 mRNA of offspring of three SDG-intervention groups had no significant changes(P>0.05), the activity of SOD(the middle and high dose SDG intervention groups) and GSH-Px(three SDG-intervention groups) increased, the content of MDA(the middle and high dose SDG intervention groups), IFN-γ(the middle and high dose SDG intervention groups), TNF-α(three SDG-intervention groups) and Aß1-42(the middle and high dose SDG intervention groups) decreased, the mRNA expression of Nrf2 and HO-1(the middle and high dose SDG intervention groups) was up-regulated, the mRNA expression of Keap1(the middle and high dose SDG intervention group) decreased, proteic expression of Nrf2, NQO1 and HO-1 of three SDG-intervention groups increase and the level of protein of Keap1 decreased because of the intervention of SDG during gestation(P<0.05). CONCLUSION: These result suggest that maternal TFA exposure during gestation can result in oxidative stress and inflammation to brain of offspring in a way. SDG can protect brain of mice of offspring from TFA-induced oxidative injury by up-regulating the expression of mRNA and protein of Nrf2, down-regulating the expression of Keap1, accelerating expression of protein of NQO1 and HO-1 which are antioxidant protein lying downstream of pathway of Nrf2/Keap1.


Assuntos
Encéfalo , Butileno Glicóis , Glucosídeos , Proteína 1 Associada a ECH Semelhante a Kelch , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Ácidos Graxos trans , Animais , Feminino , Camundongos , Glucosídeos/farmacologia , Gravidez , Fator 2 Relacionado a NF-E2/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Estresse Oxidativo/efeitos dos fármacos , Butileno Glicóis/farmacologia , Ácidos Graxos trans/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Inflamação/metabolismo , Inflamação/induzido quimicamente , Exposição Materna/efeitos adversos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Malondialdeído/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética
7.
Ann Clin Lab Sci ; 54(4): 446-451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39293832

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is a common chronic autoimmune inflammatory disease. The pathogenesis of RA is complex, and RA lacks effective therapeutic drugs. Heme oxygenase 1 (HO-1) is found to be reduced in RA. However, the role of HO-1 in RA and related mechanisms have not been elucidated. METHODS: RA rat model was established. The expression of HO-1 was upregulated by hemin. The increase weight rate, the degree of toe swelling, and the arthritis index were analyzed to evaluate the therapeutic effect of HO-1 on RA. In vitro RAW264.7 inflammatory cell model was established using 5 ng/mL IL-1. SnPP or hemin were used to inhibit or upregulate HO-1 expression. Tetrazolium salt colorimetric assay (MTT) was selected to test cell proliferation. ELISA was used to determine the concentrations of cellular inflammatory factors IL-1 and IL-6. Reactive oxygen species (ROS) activity was assessed. Western blot was performed to analyze NF-[Formula: see text]B and MMP-3 expressions. RESULTS: The expression of HO-1 was decreased in RA rats, and hemin increased HO-1 level in arthritic rats, which elevated the increase weight rate and decreased toe swelling degree and arthritis index (P<0.05). Hemin significantly upregulated HO-1 expression, inhibited inflammatory cell proliferation, decreased IL-1 and IL-6 expressions, declined ROS level, restrained NF-[Formula: see text]B expression, and enhanced MMP-3 expression in Raw264.7 cells induced by LPS (P<0.05). SnPP obviously inhibited the expression of HO-1, promoted cell proliferation, elevated IL-1 and IL-6 secretions, increased ROS level, promoted NF-[Formula: see text]B expression, and decreased MMP-3 level compared with LPS group (P<0.05). CONCLUSION: Upregulation of HO-1 can improve arthritis symptoms by reducing ROS expression, inhibiting NF-[Formula: see text]B signaling pathway, elevating MMP-3 expression, attenuating inflammatory factor secretion, and suppressing inflammatory cell proliferation.


Assuntos
Artrite Reumatoide , Heme Oxigenase-1 , Hemina , Espécies Reativas de Oxigênio , Animais , Camundongos , Ratos , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante) , Heme Oxigenase-1/metabolismo , Hemina/farmacologia , Inflamação/patologia , Inflamação/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , NF-kappa B/metabolismo , Protoporfirinas/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo
8.
Chem Biol Drug Des ; 104(3): e14618, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39313485

RESUMO

This study aimed to investigate the effects of the monoterpenes thymol and p-cymene on the liver of rats subjected to prolonged immobilization stress and to discover the possible mechanism behind this effect. For 14 consecutive days, the rats were placed in a restrainer for 2.5 h every day to expose them to stress. During the same period, thymol (10 mg/kg, gavage) and p-cymene (50 mg/kg, intraperitoneally) were also administered. Thymol and p-cymene prevented the increase in malondialdehyde levels and the decrease in glutathione content in the liver of rats exposed to chronic immobility. They also increased the activity of the glutathione peroxidase enzyme in the liver of stressed animals, but only thymol could increase the activity of superoxide dismutase. These monoterpenes reduced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, and IL-6 and nuclear factor kappa B (NF-κB) in the liver of stressed animals. They increased the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Thymol and p-cymene greatly prevented the infiltration of inflammatory cells in the liver parenchyma of stressed rats. In conclusion, the study found that thymol and p-cymene have a hepatoprotective effect on immobilized rats, likely exerted by suppressing oxidative stress and inflammation, stimulating Nrf2/HO-1 signaling, and inhibiting the TNF-α/NF-κB pathway.


Assuntos
Cimenos , Fígado , Monoterpenos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Estresse Oxidativo , Timol , Fator de Necrose Tumoral alfa , Animais , Cimenos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , NF-kappa B/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/metabolismo , Timol/farmacologia , Masculino , Monoterpenos/farmacologia , Ratos Wistar , Heme Oxigenase-1/metabolismo , Malondialdeído/metabolismo , Imobilização , Superóxido Dismutase/metabolismo , Glutationa/metabolismo , Heme Oxigenase (Desciclizante)
9.
Int J Mol Sci ; 25(17)2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39273143

RESUMO

Prostate cancer (PC) is a significant cause of mortality in men worldwide, hence the need for a comprehensive understanding of the molecular mechanisms underlying its progression and resistance to treatment. Heme oxygenase-1 (HO-1), an inducible enzyme involved in heme catabolism, has emerged as a critical player in cancer biology, including PC. This review explores the multifaceted role of HO-1 in PC, encompassing its function, regulation, and implications in cancer therapy. HO-1 influences cell proliferation, anti-apoptotic pathways, angiogenesis, and the tumor microenvironment, thereby influencing tumor growth and metastasis. HO-1 has also been associated with therapy resistance, affecting response to standard treatments. Moreover, HO-1 plays a significant role in immune modulation, affecting the tumor immune microenvironment and potentially influencing therapy outcomes. Understanding the intricate balance of HO-1 in PC is vital for developing effective therapeutic strategies. This review further explores the potential of targeting HO-1 as a therapeutic approach, highlighting challenges and opportunities. Additionally, clinical implications are discussed, focusing on the prognostic value of HO-1 expression and the development of novel combined therapies to augment PC sensitivity to standard treatment strategies. Ultimately, unraveling the complexities of HO-1 in PC biology will provide critical insights into personalized treatment approaches for PC patients.


Assuntos
Heme Oxigenase-1 , Neoplasias da Próstata , Microambiente Tumoral , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Neoplasias da Próstata/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Animais , Proliferação de Células
10.
J Neuroimmune Pharmacol ; 19(1): 50, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312021

RESUMO

Depression is a global psychiatric illness that imposes a substantial economic burden. Unfortunately, traditional antidepressants induce many side effects which limit patient compliance thus, exploring alternative therapies with fewer adverse effects became urgent. This study aimed to investigate the effect of trimetazidine (TMZ); a well-known anti-ischemic drug in lipopolysaccharide (LPS) mouse model of depression focusing on its ability to regulate toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) as well as nuclear factor erythroid 2 related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) signaling pathways. Male Swiss albino mice were injected with LPS (500 µg/kg, i.p) every other day alone or parallel with oral doses of either escitalopram (Esc) (10 mg/kg/day) or TMZ (20 mg/kg/day) for 14 days. Treatment with TMZ attenuated LPS-induced animals' despair with reduced immobility time inforced swimming test. TMZ also diminished LPS- induced neuro-inflammation via inhibition of TLR4/NF-κB pathway contrary to Nrf2/HO-1 cascade activation with consequent increase in reduced glutathione (GSH) and HO-1 levels whereas the pro-inflammatory cytokines; tumor necrosis factor-α (TNF-α) and interleukin (IL)-1ß were evidently reduced. Besides, TMZ replenished brain serotonin levels via serotonin transporter (SERT) inhibition. Thus, TMZ hindered LPS-induced neuro-inflammation, oxidative stress, serotonin deficiency besides its anti-apoptotic effect which was reflected by decreased caspase-3 level. Neuroprotective effects of TMZ were confirmed by the histological photomicrographs which showed prominent neuronal survival. Here we showed that TMZ is an affluent nominee for depression management via targeting TLR4/NF-κB and Nrf2/HO-1 pathways. Future research addressing TMZ-antidepressant activity in humans is mandatory to enroll it as a novel therapeutic strategy for depression.


Assuntos
Depressão , Lipopolissacarídeos , Fator 2 Relacionado a NF-E2 , NF-kappa B , Receptor 4 Toll-Like , Trimetazidina , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/metabolismo , Trimetazidina/farmacologia , Trimetazidina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Heme Oxigenase-1/metabolismo , Proteínas de Membrana
11.
Int J Mol Sci ; 25(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39337313

RESUMO

Itaconic acid (IA) is recognized for its potential application in treating intestinal diseases owing to the anti-inflammatory and antioxidant properties. Perfluorooctanoic acid (PFOA) can accumulate in animals and result in oxidative and inflammatory damages to multi-tissue and organ, particularly in the intestinal tract. This study aimed to explore whether IA could mitigate intestinal damage induced by PFOA exposure in laying hens and elucidate its potential underlying mechanisms. The results showed that IA improved the antioxidant capacity of laying hens and alleviated the oxidative damage induced by PFOA, as evidenced by the elevated activities of T-SOD, GSH-Px, and CAT, and the decreased MDA content in both the jejunum and serum. Furthermore, IA improved the intestinal morphological and structural integrity, notably attenuating PFOA-induced villus shedding, length reduction, and microvillus thinning. IA also upregulated the mRNA expression of ZO-1, Occludin, Claudin-1, and Mucin-2 in the jejunum, thereby restoring intestinal barrier function. Compared with the PF group, IA supplementation downregulated the gene expression of Keap1 and upregulated the HO-1, NQO1, SOD1, and GPX1 expression in the jejunum. Meanwhile, the PF + IA group exhibited lower expressions of inflammation-related genes (NF-κB, IL-1ß, IFN-γ, TNF-α, and IL-6) compared to the PF group. Moreover, IA reversed the PFOA-induced imbalance in gut microbiota by reducing the harmful bacteria such as Escherichia-Shigella, Clostridium innocuum, and Ruminococcus torques, while increasing the abundance of beneficial bacteria like Lactobacillus. Correlation analysis further revealed a significant association between gut microbes, inflammatory factors, and the Keap1/Nrf2/HO-1 pathway expression. In conclusion, dietary IA supplementation could alleviate the oxidative and inflammatory damage caused by PFOA exposure in the intestinal tract by reshaping the intestinal microbiota, modulating the Keap1/Nrf2/HO-1 pathway and reducing oxidative stress and inflammatory response, thereby promoting intestinal homeostasis.


Assuntos
Caprilatos , Fluorocarbonos , Microbioma Gastrointestinal , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Caprilatos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Galinhas , Heme Oxigenase-1/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Feminino , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Intestinos/patologia
12.
Redox Biol ; 76: 103342, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39265498

RESUMO

BACKGROUND: Disruption of the blood-brain barrier (BBB) is a major contributor to hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). However, the clinical therapies aimed at BBB protection after IVT remain limited. METHODS: One hundred patients with AIS who underwent IVT were enrolled (42 with HT and 58 without HT 24 h after IVT). Based on the cytokine chip, the serum levels of several AIS-related proteins, including LCN2, ferritin, matrix metalloproteinase-3, vascular endothelial-derived growth factor, and X-linked inhibitor of apoptosis, were detected upon admission, and their associations with HT were analyzed. After finding that LCN2 was related to HT in patients with IVT, we clarified whether the modulation of LCN2 influenced BBB dysfunction and HT after thrombolysis and investigated the potential mechanism. RESULTS: In patients with AIS following IVT, logistic regression analysis showed that baseline serum LCN2 (p = 0.023) and ferritin (p = 0.046) levels were independently associated with HT. A positive correlation between serum LCN2 and ferritin levels was identified in patients with HT. In experimental studies, recombinant LCN2 (rLCN2) significantly aggravated BBB dysfunction and HT in the thromboembolic stroke rats after thrombolysis, whereas LCN2 inhibition by ZINC006440089 exerted opposite effects. Further mechanistic studies showed that, LCN2 promoted endothelial cell ferroptosis, accompanied by the induction of high mobility group box 1 (HMGB1) and the inhibition of nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Ferroptosis inhibitor ferrostatin-1 (fer-1) significantly restricted the LCN2-mediated BBB disruption. Transfection of LCN2 and HMGB1 siRNA inhibited the endothelial cell ferroptosis, and this effects was reversed by Nrf2 siRNA. CONCLUSION: LCN2 aggravated BBB disruption after thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway, this may provide a promising therapeutic target for the prevention of HT after IVT.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Ferroptose , Proteína HMGB1 , Lipocalina-2 , Fator 2 Relacionado a NF-E2 , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Proteína HMGB1/metabolismo , Ferroptose/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Feminino , Lipocalina-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Idoso , Pessoa de Meia-Idade , Terapia Trombolítica , AVC Isquêmico/metabolismo , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/patologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética
13.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167496, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39237046

RESUMO

Liver ischemia-reperfusion (I/R) injury is a detrimental complication of organ transplantation, shock, and sepsis. However, the available drugs to mitigate I/R injury remain limited. Jujuboside A (JuA) is renowned for its antioxidant, anti-inflammatory, and anti-apoptotic properties; nevertheless, its potential in liver I/R injury remains unknown. Thus, this study aimed to explore the role and underlying mechanisms of JuA in liver I/R injury. Mouse models of I/R and AML12 cell models of hypoxia/reoxygenation (H/R) were constructed. Haematoxylin and eosin staining, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) detection, and cell viability analysis were used to assess liver injury. To evaluate oxidative stress, inflammation, apoptosis, and mitochondrial damage, immunofluorescence staining, transmission electron microscopy analysis, enzyme-linked immunosorbent assay, and flow cytometry were conducted. Moreover, molecular docking techniques and western blot were employed to identify downstream target molecules and pathways affected by JuA. The results showed that JuA pretreatment effectively attenuated liver necrosis and ALT and AST level elevations induced by I/R while enhancing AML12 cell viability following H/R. Furthermore, JuA pretreatment suppressed oxidative stress triggered by I/R and H/R, thereby inhibiting the level of pro-inflammatory factors and NLRP3 inflammasome activation. Notably, JuA pretreatment alleviated mitochondrial damage and apoptosis. Mechanistically, JuA pretreatment resulted in the activation of the AKT/NRF2/HO-1 signalling pathways, whereas MK2206, the inhibitor of AKT, partially reversed the hepatoprotective effects of JuA during liver I/R. Collectively, our findings illustrated that JuA mitigated oxidative stress, inflammation, apoptosis, and mitochondrial damage by facilitating the AKT/NRF2/HO-1 signalling pathway, thereby alleviating liver I/R injury.


Assuntos
Apoptose , Fígado , Fator 2 Relacionado a NF-E2 , Proteínas Proto-Oncogênicas c-akt , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Masculino , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Heme Oxigenase-1/metabolismo , Linhagem Celular , Proteínas de Membrana/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo
14.
Phytomedicine ; 134: 155981, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39260134

RESUMO

BACKGROUND: Sarcandra glabra (S. glabra), a traditional Chinese medicine (TCM), has demonstrated significant anticancer activity; however, the underlying mechanisms have not yet been fully elucidated. PURPOSE: This study aimed to investigate the effects of S. glabra on lung cancer and to explore its underlying mechanisms. METHODS: The chemical profile of S. glabra was analyzed via ultrahigh-performance liquid chromatography coupled with mass spectrometry (UPLC-MS). The effects of S. glabra on the viability, proliferation, apoptosis, migration, and invasion of lung cancer cells were assessed via CCK8, colony formation, flow cytometry, scratch, and Transwell assays. In vivo anticancer activity was evaluated in an LLC mouse model. Proteomic analysis was performed to identify key molecules and pathways in S. glabra-treated LLC cells. The expression of ferroptotic proteins and associated cellular events were examined via western blotting, ROS production, iron accumulation, and lipid peroxidation assays. Immune modulation in tumor-bearing mice was evaluated by detecting immune cells and cytokines in the peripheral blood and tumor tissue. RESULTS: Our analysis quantified 1997 chemical markers in S. glabra aqueous extracts. S. glabra inhibited the viability and proliferation of lung cancer cells and induced cell cycle arrest and apoptosis. Scratch and Transwell assays demonstrated that S. glabra suppressed the migration and invasion of lung cancer cells. Oral administration of S. glabra significantly inhibited tumor growth in LLC tumor-bearing mice. Proteomic analysis revealed that S. glabra upregulated the expression of the HMOX1 protein and activated the ferroptosis pathway. Consistent with these findings, we found that S. glabra triggered ferroptosis in lung cancer cells, as evidenced by the upregulation of HMOX1, downregulation of GPX4 and ferritin light chain proteins, iron accumulation, increased ROS production, and lipid peroxidation. Furthermore, S. glabra demonstrated immunostimulatory properties in LLC tumor-bearing mice, leading to increased populations of immune cells (NK cells) and elevated cytokine levels (IL-2). CONCLUSION: This study is the first to demonstrate that S. glabra induces ferroptosis in lung cancer cells by regulating HMOX1, GPX4, and FTL. These findings provide a robust scientific basis for the clinical application of S. glabra in lung cancer treatment.


Assuntos
Ferroptose , Neoplasias Pulmonares , Ferroptose/efeitos dos fármacos , Animais , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Camundongos , Linhagem Celular Tumoral , Heme Oxigenase-1/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos C57BL , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Células A549
15.
J Nanobiotechnology ; 22(1): 531, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218878

RESUMO

Ferroptosis, triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DOX-induced cardiomyopathy (DIC), and thus limits the use of doxorubicin (DOX) in clinic. Here, we further showed that cardiac ferroptosis induced by DOX in mice was attributed to up-regulation of Hmox1, as knockdown of Hmox1 effectively inhibited cardiomyocyte ferroptosis. To targeted delivery of siRNA into cardiomyocytes, siRNA-encapsulated exosomes were injected followed by ultrasound microbubble targeted destruction (UTMD) in the heart region. UTMD greatly facilitated exosome delivery into heart. Consistently, UTMD assisted exosomal delivery of siHomox1 nearly blocked the ferroptosis and the subsequent cardiotoxicity induced by doxorubicin. In summary, our findings reveal that the upregulation of HMOX1 induces ferroptosis in cardiomyocytes and UTMD-assisted exosomal delivery of siHmox1 can be used as a potential therapeutic strategy for DIC.


Assuntos
Doxorrubicina , Exossomos , Ferroptose , Heme Oxigenase-1 , Microbolhas , Miócitos Cardíacos , RNA Interferente Pequeno , Ferroptose/efeitos dos fármacos , Animais , Doxorrubicina/farmacologia , Exossomos/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Heme Oxigenase-1/metabolismo , RNA Interferente Pequeno/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Sistemas de Liberação de Medicamentos , Cardiomiopatias/metabolismo , Proteínas de Membrana
16.
Carbohydr Polym ; 345: 122597, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39227128

RESUMO

Fucoxanthin (Fx) has garnered significant interest due to its exceptional biological properties. However, its efficacy in enhancing food quality and human health is contingent upon the solubility of the compound in water and its physicochemical stability. Therefore, nanocarriers must be developed to enhance the stability and biocompatibility of Fx. In this study, oxidized paramylon and Fx self-assembled nanoparticles (Fx-OEP) were prepared via the anti-solvent method, with a loading rate of 82.47 % for Fx. The Fx-OEP exhibited robust storage and photostability. In vitro simulated digestion assays demonstrated that Fx-OEP effectively protected Fx from premature gastric release, while achieving a release efficiency of 72.17 % in the intestinal phase. Fx-OEP has the capacity to scavenge a range of reactive oxygen species (ROS) induced by cellular oxidative stress. Treatment with Fx-OEP resulted in a significant reduction in ROS accumulation in insulin-resistant HepG2 cells, which was attributed to the activation of the nuclear factor E2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway. This, in turn, activated insulin receptor substrate 1/glucose transporter type 4 (IRS1/GLUT4), promoting cellular glucose absorption and utilization. These findings indicate the potential of self-assembled nanoparticles based on oxidized paramylon as a new type of nanocarrier for delivering hydrophobic substances.


Assuntos
Resistência à Insulina , Nanopartículas , Xantofilas , Humanos , Xantofilas/farmacologia , Xantofilas/química , Nanopartículas/química , Células Hep G2 , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Portadores de Fármacos/química , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Liberação Controlada de Fármacos , Glucanos/química , Glucanos/farmacologia
17.
Mol Biol Rep ; 51(1): 976, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259343

RESUMO

OBJECTIVE: Bidirectional influences between senescence and inflammation are newly discovered. This study aimed to clarify the roles and mechanism of Porphyromonas gingivalis (P. gingivalis) in exacerbating senescence in human gingival fibroblasts (HGFs). DESIGN: Subgingival plaque and gingivae were collected from twenty-four periodontitis patients and eighteen periodontally healthy subjects. Quantities of P. gingivalis in subgingival plaque were explored using real-time PCR and the expressions of p53, p21 and SIRT6 in gingivae were detected by IHC. Moreover, senescence in HGFs was induced by P. gingivalis lipopolysaccharide (LPS) and the expressions of senescence-related ß-galactosidase (SA-ß-gal), p53, p21 and senescence-associated secretory phenotype (IL-6 and IL-8) with or without treatment by SIRT6 activator UBCS039 were explored by IHC, western blot and ELISA, respectively. In addition, the levels of SIRT6, Nrf2, HO-1 and reactive oxygen species (ROS) were examined by western blot and flow cytometry. RESULTS: Quantities of P. gingivalis in subgingival plaque and semi-quantitative scores of p53 and p21 in gingivae of periodontitis patients were increased compared with healthy controls (p < 0.05), while SIRT6 score in periodontitis patients was decreased (p < 0.001). Quantities of P. gingivalis were positively correlated with p53 and p21 scores (0.6 < r < 0.9, p < 0.01), and negatively correlated with SIRT6 score (-0.9 < r<-0.6, p < 0.01). Moreover, P. gingivalis LPS increased the levels of SA-ß-gal, p53, p21, IL-6, IL-8 and ROS and decreased the levels of SIRT6, Nrf2 and HO-1 in HGFs, which was rescued by UBCS039 (p < 0.05). CONCLUSIONS: P. gingivalis LPS could induce senescence of HGFs, which could be reversed by SIRT6 via Nrf2-HO-1 signaling pathway.


Assuntos
Senescência Celular , Fibroblastos , Gengiva , Fator 2 Relacionado a NF-E2 , Porphyromonas gingivalis , Espécies Reativas de Oxigênio , Sirtuínas , Humanos , Porphyromonas gingivalis/patogenicidade , Gengiva/microbiologia , Gengiva/metabolismo , Fibroblastos/metabolismo , Sirtuínas/metabolismo , Sirtuínas/genética , Masculino , Feminino , Adulto , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Espécies Reativas de Oxigênio/metabolismo , Lipopolissacarídeos/farmacologia , Periodontite/microbiologia , Periodontite/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Pessoa de Meia-Idade , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética
18.
Sci Rep ; 14(1): 21425, 2024 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-39271809

RESUMO

Oxidative stress in adipose tissue may alter the secretion pattern of adipocytokines and potentially promote atherosclerosis. However, the therapeutic role of hydrogen in adipose tissue under oxidative stress remains unclear. In this study, subcutaneous adipose tissue (SCAT) was collected from the mid-thoracic wounds of 12 patients who underwent open-heart surgery with a mid-thoracic incision. The adipose tissue was then immersed in a culture medium dissolved with hydrogen, which was generated using a hydrogen-generating device. The weight of the adipose tissue was measured before and after hydrogenation, and the tissue was immunostained for nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and superoxide dismutase (SOD), which are markers of oxidative stress. The immunostaining results showed that HO-1 and Nrf2 expression levels were significantly decreased in the hydrogenated group, whereas SOD expression levels increased, but did not attain statistical significance. Image analysis of adipose tissue revealed that a reduction in adipocyte size. Furthermore, hydrogenated adipose tissue showed a trend toward increased gene expression levels of adiponectin and decreased gene expression levels of chemerin, an adipocytokine involved in adipogenesis. These results demonstrated the therapeutic potential of hydrogen gas for oxidative stress in adipose tissue and for reducing adipocyte size.


Assuntos
Tecido Adiposo , Hidrogênio , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Humanos , Hidrogênio/farmacologia , Hidrogênio/metabolismo , Masculino , Feminino , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Pessoa de Meia-Idade , Superóxido Dismutase/metabolismo , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Idoso , Adiponectina/metabolismo , Adiponectina/genética , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Gordura Subcutânea/efeitos dos fármacos , Fator 2 Relacionado a NF-E2
19.
J Orthop Surg Res ; 19(1): 531, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218922

RESUMO

BACKGROUND: Bone loss caused by microgravity exposure presents a serious threat to the health of astronauts, but existing treatment strategies have specific restrictions. This research aimed to investigate whether salidroside (SAL) can mitigate microgravity-induced bone loss and its underlying mechanism. METHODS: In this research, we used hindlimb unloading (HLU) and the Rotary Cell Culture System (RCCS) to imitate microgravity in vivo and in vitro. RESULTS: The results showed that salidroside primarily enhances bone density, microstructure, and biomechanical properties by stimulating bone formation and suppressing bone resorption, thereby preserving bone mass in HLU rats. In MC3T3-E1 cells cultured under simulated microgravity in rotary wall vessel bioreactors, the expression of osteogenic genes significantly increased after salidroside administration, indicating that salidroside can promote osteoblast differentiation under microgravity conditions. Furthermore, the Nrf2 inhibitor ML385 diminished the therapeutic impact of salidroside on microgravity-induced bone loss. Overall, this research provides the first evidence that salidroside can mitigate bone loss induced by microgravity exposure through stimulating the Nrf2/HO-1 pathway. CONCLUSION: These findings indicate that salidroside has great potential for treating space-related bone loss in astronauts and suggest that Nrf2/HO-1 is a viable target for counteracting microgravity-induced bone damage.


Assuntos
Glucosídeos , Fator 2 Relacionado a NF-E2 , Fenóis , Simulação de Ausência de Peso , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Animais , Fenóis/farmacologia , Fenóis/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Camundongos , Simulação de Ausência de Peso/efeitos adversos , Ratos , Masculino , Heme Oxigenase-1/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Ausência de Peso/efeitos adversos , Osteogênese/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Elevação dos Membros Posteriores , Reabsorção Óssea/prevenção & controle , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Densidade Óssea/efeitos dos fármacos , Proteínas de Membrana
20.
Int J Nanomedicine ; 19: 8779-8796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220192

RESUMO

Purpose: Atopic dermatitis (AD) is a chronic inflammatory skin condition that can affect individuals of all ages. Recent research has shown that oxidative stress plays a crucial role in the development of AD. Therefore, inhibiting oxidative stress may be an effective therapeutic approach for AD. Nano-molybdenum is a promising material for use as an antioxidant. We aimed to evaluate the therapeutic effects and preliminary mechanisms of molybdenum nanoparticles (Mo NPs) by using a murine model of chemically induced AD-like disease. Methods: HaCaT cells, a spontaneously immortalized human keratinocyte cell line, were stimulated by tumor necrosis factor-alpha /interferon-gamma after pre-treatment with Mo NPs. Reactive oxygen species levels, production of inflammatory factors, and activation of the nuclear factor kappa-B and the nuclear factor erythroid 2-related factor pathways were then evaluated. Mo NPs was topically applied to treat a murine model of AD-like disease induced by MC903, a vitamin D3 analog. Dermatitis scores, pruritus scores, transepidermal water loss and body weight were evaluated. AD-related inflammatory factors and chemokines were evaluated. Activation of the nuclear factor kappa-B and nuclear factor erythroid 2-related factor / heme oxygenase-1 pathways was assessed. Results: Our data showed that the topical application of Mo NPs dispersion could significantly alleviate AD skin lesions and itching and promote skin barrier repair. Further mechanistic experiments revealed that Mo NPs could inhibit the excessive activation of the nuclear factor kappa-B pathway, promote the expression of nuclear factor erythroid 2-related factor and heme oxygenase-1 proteins, and suppress oxidative stress reactions. Additionally, they inhibited the expression of thymic stromal lymphopoietin, inflammatory factors, and chemokines, thereby alleviating skin inflammation. Conclusion: Mo NPs present a promising alternative treatment option for patients with AD as they could address three pivotal mechanisms in the pathogenesis of AD concurrently.


Assuntos
Dermatite Atópica , Heme Oxigenase-1 , Nanopartículas Metálicas , Molibdênio , Fator 2 Relacionado a NF-E2 , NF-kappa B , Espécies Reativas de Oxigênio , Transdução de Sinais , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Heme Oxigenase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Molibdênio/farmacologia , Molibdênio/química , Humanos , Camundongos , Nanopartículas Metálicas/química , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Células HaCaT , Antioxidantes/farmacologia , Camundongos Endogâmicos BALB C , Nanopartículas/química , Linhagem Celular , Pele/efeitos dos fármacos , Pele/metabolismo , Proteínas de Membrana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA