Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.088
Filtrar
1.
Arch Insect Biochem Physiol ; 108(4): e21848, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34676595

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) infection causes a series of physiological and pathological changes in Bombyx mori (B. mori). Here, a metabolomic study of the innate immunity organs including hemolymph, fat body, and midgut of the silkworm strain Dazao following BmNPV challenge was conducted to reveal the metabolic variations in B. mori. Compared to the control, 4964 and 4942 features with 4077 and 4327 high-quality features were generated under positive and negative modes, respectively, from BmNPV-infected larvae. The principal component analysis and supervised learning method using partial least squares discrimination analysis demonstrated good analytical stability and experimental reproducibility of the metabolic profiles. Based on database annotations, a total of 296, 108, and 215 differential expressed metabolites (DEMs) were identified from BmNPV-infected group of hemolymph, fat body, and midgut, respectively, which were all mainly grouped into carboxylic acids and derivatives, fatty acyls, and glycerophospholipids. Kyoto Encyclopedia of Genes and Genomes Database enrichment analysis of the DEMs showed that amino acid metabolism was increased at 24 h after BmNPV infection. BmNPV induction was adopted to significantly alter a series of immune-related pathways including phospholipase D signaling pathway, FoxO signaling pathway, metabolism of xenobiotics by cytochrome P450, melanogenesis, membrane transport, carbohydrate metabolism, and lipid metabolism. The different levels of expression of several DEMs including l-glutamate, naphthalene, 3-succinoylpyridine 1-acyl-sn-glycerol 3-phosphate, and l-tyrosine which were involved in those pathways exhibited the immune responses of B. mori to BmNPV infection. Our findings are valuable for a better understanding of the antiviral mechanism of B. mori underlying the interaction between the silkworm and BmNPV.


Assuntos
Bombyx , Imunidade Inata , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus , Animais , Bombyx/imunologia , Bombyx/metabolismo , Bombyx/virologia , Sistema Digestório/metabolismo , Corpo Adiposo/metabolismo , Hemolinfa/metabolismo , Interações entre Hospedeiro e Microrganismos , Metaboloma/imunologia , Metabolômica/métodos , Nucleopoliedrovírus/imunologia
2.
Nat Commun ; 12(1): 5633, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561451

RESUMO

The brain plays a key role in energy homeostasis, detecting nutrients, metabolites and circulating hormones from peripheral organs and integrating this information to control food intake and energy expenditure. Here, we show that a group of neurons in the Drosophila larval brain expresses the adiponectin receptor (AdipoR) and controls systemic growth and metabolism through insulin signaling. We identify glucose-regulated protein 78 (Grp78) as a circulating antagonist of AdipoR function produced by fat cells in response to dietary sugar. We further show that central AdipoR signaling inhibits peripheral Juvenile Hormone (JH) response, promoting insulin signaling. In conclusion, we identify a neuroendocrine axis whereby AdipoR-positive neurons control systemic insulin response.


Assuntos
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Neurônios/metabolismo , Receptores de Adiponectina/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Linhagem Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Metabolismo Energético/genética , Hemolinfa/metabolismo , Homeostase , Hormônios Juvenis/metabolismo , Larva/genética , Larva/metabolismo , Receptores de Adiponectina/genética , Transdução de Sinais/genética
3.
PLoS One ; 16(9): e0256735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34478479

RESUMO

The crustacean molting process is regulated by an interplay of hormones produced by the eyestalk ganglia and Y-organs (YO). Molt-inhibiting hormone and crustacean hyperglycemic hormone released by the sinus gland of the eyestalk ganglia (EG) inhibit the synthesis and secretion of ecdysteroid by the YO, hence regulating hemolymph levels during the molt cycle. The purpose of this study is to investigate the ecdysteroidogenesis pathway, specifically genes linked to changes in ecdysteroid levels occurring at early premolt (ePM). To this end, a reference transcriptome based on YO, EG, and hepatopancreas was de novo assembled. Two genes (cholesterol 7-desaturase Neverland and cytochrome p450 307a1-like Spook) involved in ecdysteroidogenesis were identified from the YO transcriptome using sequence comparisons and transcript abundance. Two other candidates, Hormone receptor 4 and probable cytochrome p450 49a1 potentially involved in ecdysteroidogenesis were also identified. Since cholesterol is the ecdysteroid precursor, a putative cholesterol carrier (Apolipoprotein D-like) was also examined to understand if cholesterol uptake coincided with the increase in the ecdysteroid levels at the ePM stage. The expression level changes of the five candidate genes in the YO were compared between intermolt (IM) and induced ePM (iePM) stages using transcriptomic analysis. Expression analysis using qPCR were carried out at IM, iePM, and normal ePM. The increase in Spook and Neverland expression in the YO at the ePM was accompanied by a concomitant rise in ecdysteroid levels. The data obtained from iePM stage were congruent with those obtained from the normal ePM stage of intact control animals. The present findings support the role of Halloween genes in the ecdysteroidogenesis and molt cycle in the blue crab, Callinectes sapidus.


Assuntos
Braquiúros , Colesterol , Ecdisteroides , Regulação da Expressão Gênica no Desenvolvimento , Muda/genética , Animais , Proteínas de Artrópodes/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Colesterol/genética , Colesterol/metabolismo , Ecdisteroides/genética , Ecdisteroides/metabolismo , Hemolinfa/metabolismo , Hormônios de Invertebrado/metabolismo , Transcriptoma
4.
Zoolog Sci ; 38(4): 332-342, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342954

RESUMO

Animals survive nutrient deficiency by controlling their physiology, such as sugar metabolism and energy-consuming developmental events. Although research on the insect neural mechanisms of the starvation-induced modulation has progressed, the mechanisms have not been fully understood due to their complexity. Myoinhibitory peptides are known to be neuropeptides involved in various physiological activities, development, and behavior. Here, we analyzed the responsiveness of Plautia stali myoinhibitory peptides (Plast-MIPs) to starvation and their physiological role in the brown-winged green bug, P. stali. First, we performed immunohistochemical analyses to investigate the response of Plast-MIP neurons in the cephalic ganglion to fasting under long day conditions. Fasting significantly enhanced the immunoreactivity to Plast-MIPs in the pars intercerebralis (PI), which is known to be a brain region related to various endocrine regulations. Next, to analyze the physiological role of Plast-MIPs, we performed RNA interference-mediated knockdown of Plast-Mip and injection of synthetic Plast-MIP in normally fed and fasted females. The knockdown of Plast-Mip did not have significant effects on the body weight or proportions of ovarian development in each feeding condition. On the other hand, the knockdown of Plast-Mip increased the gonadosomatic index of normally fed females whereas it did not have a significant effect on food intake. Notably, the knockdown of Plast-Mip diminished the fasting-induced reduction of hemolymph reducing sugar levels. Additionally, injection of synthetic Plast-MIP acutely decreased the hemolymph reducing sugar level. Our results suggested responsiveness of Plast-MIPs in the PI to fasting and their functional role in reduction of the hemolymph reducing sugar level.


Assuntos
Carboidratos/química , Hemolinfa/química , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Animais , Metabolismo dos Carboidratos , Feminino , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Interferência de RNA
5.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443500

RESUMO

Prostaglandins are a group of important cell-signaling molecules involved in the regulation of ovarian maturation, oocyte development, egg laying and associated behaviors in invertebrates. However, the presence of prostaglandin E2 (PGE2), the key enzymes for PGE2 biosynthesis and its interference by drugs were not investigated previously in the ovary of ticks. The present study was undertaken to assess the modulation of the PGE2-mediated pathway in the eclosion blocking effect of flumethrin and terpenoid subfraction isolated from Artemisia nilagirica in Rhipicephalus annulatus ticks. The acaricidal activities and chemical profiling of the terpenoid subfraction were performed. The localization of the cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) enzymes and the quantification of PGE2 in the ovaries of the ticks treated with methanol (control), flumethrin and terpenoid subfraction were also undertaken. In addition, the vitellogenin concentration in hemolymph was also assayed. Both flumethrin and the terpenoid subfraction of A. nilagirica elicited a concentration-dependent inhibition of fecundity and blocking of hatching of the eggs. The COX1 could not be detected in the ovaries of treated and control ticks, while there was no significant difference observed in the concentration of vitellogenin (Vg) in them. The presence of PGES in the oocytes of control ticks was confirmed while the immunoreactivities against PGES were absent in the vitellogenic oocytes of ticks treated with flumethrin and terpenoid subfraction. The levels of PGE2 were below the detection limit in the ovaries of the flumethrin-treated ticks, while it was significantly lower in the ovaries of the terpenoid subfraction-treated ticks. Hence, the prostaglandin E synthase and PGE2 were identified as very important mediators for the signaling pathway for ovarian maturation and oviposition in ticks. In addition, the key enzyme for prostaglandin biosynthesis, PGES and the receptors for PGE2 can be exploited as potential drug targets for tick control. The detection of PGES by immunohistochemistry and quantification of PGE2 by LC-MSMS can be employed as valuable tools for screening newer compounds for their eclosion blocking acaricidal effects.


Assuntos
Artemisia/química , Dinoprostona/metabolismo , Piretrinas/farmacologia , Rhipicephalus/efeitos dos fármacos , Terpenos/isolamento & purificação , Terpenos/farmacologia , Animais , Anticorpos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hemolinfa/metabolismo , Imersão , Ovário/efeitos dos fármacos , Ovário/enzimologia , Peroxidase/metabolismo , Prostaglandina-E Sintases/metabolismo , Vitelogeninas/metabolismo
6.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443685

RESUMO

Recognition of pathogen-associated molecular patterns (PAMPs) by appropriate pattern recognition receptors (PRRs) is a key step in activating the host immune response. The role of a fungal PAMP is attributed to ß-1,3-glucan. The role of α-1,3-glucan, another fungal cell wall polysaccharide, in modulating the host immune response is not clear. This work investigates the potential of α-1,3-glucan as a fungal PAMP by analyzing the humoral immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan. We demonstrated that 57-kDa and 61-kDa hemolymph proteins, identified as ß-1,3-glucan recognition proteins, bound to A. niger α-1,3-glucan. Other hemolymph proteins, i.e., apolipophorin I, apolipophorin II, prophenoloxidase, phenoloxidase activating factor, arylphorin, and serine protease, were also identified among α-1,3-glucan-interacting proteins. In response to α-1,3-glucan, a 4.5-fold and 3-fold increase in the gene expression of antifungal peptides galiomicin and gallerimycin was demonstrated, respectively. The significant increase in the level of five defense peptides, including galiomicin, corresponded well with the highest antifungal activity in hemolymph. Our results indicate that A. niger α-1,3-glucan is recognized by the insect immune system, and immune response is triggered by this cell wall component. Thus, the role of a fungal PAMP for α-1,3-glucan can be postulated.


Assuntos
Aspergillus/química , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Mariposas/microbiologia , Padrões Moleculares Associados a Patógenos/metabolismo , Animais , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemolinfa/metabolismo , Imunização , Larva , Mariposas/efeitos dos fármacos , Mariposas/genética , Ligação Proteica/efeitos dos fármacos , Análise de Sobrevida
7.
Arch Insect Biochem Physiol ; 108(2): e21836, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34288123

RESUMO

In Asian rice systems, Cyrtorhinus lividipennis Reuter is an important predator that preys on rice planthopper eggs and young nymphs, as a primary food source. Alanine aminotransferase (ALT) acts in many physiological and biochemical processes in insects. We cloned the full-length complementary DNA of C. lividipennis ClALT. Expression analysis showed higher expression in the fat body and midgut compared to other tissues. It is expressed in all C. lividipennis developmental stages and at least four organs. Silencing of ClALT by RNA interference significantly decreased the ClALT enzyme activity and ClALT expression compared to dsGFP-treated controls at 2 days after emergence (DAE). Silencing of ClALT influenced free hemolymph amino acid compositions, resulting in a reduction of Aspartic acid (Asp) and Alanine (Ala) proportions, and increased Cysteine (Cys) and Valine (Val) proportions in females at 2 DAE. dsClALT treatments led to decreased soluble total protein concentrations in ovary and fat body, and to lower reduced vitellogenin (Vg) expression, body weight, and the numbers of laid eggs. The double-stranded RNA viruse treatments also led to prolonged preoviposition periods and hindered ovarian development. Western blot analysis indicated that silencing ClALT also led to reduced fat body Vg protein abundance at 2 DAE. These data support our hypothesis that ClALT influences amino acid metabolism and fecundity in C. lividipennis.


Assuntos
Alanina Transaminase , Aminoácidos/metabolismo , Fertilidade , Heterópteros , Alanina Transaminase/genética , Alanina Transaminase/metabolismo , Aminoácidos/genética , Animais , Hemolinfa/metabolismo , Heterópteros/genética , Heterópteros/metabolismo , Heterópteros/fisiologia , Proteínas de Insetos/metabolismo , Interferência de RNA , Vitelogeninas/metabolismo
8.
Arch Insect Biochem Physiol ; 108(1): e21764, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34272769

RESUMO

Melanization is mediated by the prophenoloxidase (proPO) activation cascade and plays an important role in the arthropods immune system. Previously, we found that the hemolymph of the p50 strain does not perform melanization after infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, this mechanism is still unclear. In this study, the underlying mechanism of the inhibition of hemolymph melanization was investigated by analysing the AcMNPV-susceptible or -resistant silkworm strains after inoculation with AcMNPV. The results showed that the level of hemolymph melanization was higher in resistant strain C108 than in susceptible strain p50 at the late stage (72 to 120 h postinoculation). The PO activity decreased significantly at the late stage of infection (72 to 120 hpi), and the expression of BmPPO1 and BmPPO2 was downregulated in p50. However, the PO activity increased in the resistant strain C108, while the expression level of BmPPO1 and BmPPO2 displayed no significant changes. The expression of the BmPPAE gene was upregulated in two strains during viral infection. In addition, the hemolymph melanization can weaken the viral activity in vitro. Our results suggested that the silkworm hemolymph melanization response is related to defence against the AcMNPV infection.


Assuntos
Bombyx , Imunidade , Melaninas/metabolismo , Nucleopoliedrovírus/imunologia , Animais , Bombyx/imunologia , Bombyx/virologia , Hemolinfa/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Viroses/veterinária
9.
Sci Rep ; 11(1): 13610, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193937

RESUMO

The sawfly larvae of most Argidae and Pergidae (Hymenoptera: Symphyta) species contain toxic peptides, and these along with other traits contribute to their defense. However, the effectiveness of their defense strategy, especially against ants, remains poorly quantified. Here, five Arge species, A. berberidis, A. nigripes, A. ochropus, A. pagana, A. pullata, plus three Pergidae species, Lophyrotoma analis, Lophyrotoma zonalis, Philomastix macleaii, were tested in laboratory bioassays on ant workers mainly of Myrmica rubra. The experiments focused on short-term predator-prey interactions, sawfly survival rate after long-term interactions, and feeding deterrence of the sawfly hemolymph. The larvae of Arge species were generally surrounded by few ants, which rarely bit them, whereas larvae of Pergidae, especially P. macleaii, had more ants around with more biting. A detailed behavioral analysis of Arge-ant interactions revealed that larval body size and abdomen raising behavior were two determinants of ant responses. Another determinant may be the emission of a volatile secretion by non-eversible ventro-abdominal glands. The crude hemolymph of all tested species, the five Arge species and L. zonalis, was a strong feeding deterrent and remained active at a ten-fold dilution. Furthermore, the study revealed that the taxon-specific behavior of ants, sting or spray, impacted the survival of A. pagana but not the large body-sized A. pullata. The overall results suggest that the ability of Arge and Pergidae larvae to defend against ants is influenced by the body size and behavior of the larvae, as well as by chemicals.


Assuntos
Formigas , Hemolinfa/metabolismo , Comportamento Predatório , Animais , Tamanho Corporal , Larva
10.
Viruses ; 13(5)2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066413

RESUMO

Viruses rely on host cell metabolism to provide the necessary energy and biosynthetic precursors for successful viral replication. Infection of the silkworm, Bombyx mori, by Bombyx mori nucleopolyhedrovirus (BmNPV), has been studied extensively in the past to unravel interactions between baculoviruses and their lepidopteran hosts. To understand the interaction between the host metabolic responses and BmNPV infection, we analyzed global metabolic changes associated with BmNPV infection in silkworm hemolymph. Our metabolic profiling data suggests that amino acid metabolism is strikingly altered during a time course of BmNPV infection. Amino acid consumption is increased during BmNPV infection at 24 h post infection (hpi), but their abundance recovered at 72 hpi. Central carbon metabolism, on the other hand, particularly glycolysis and glutaminolysis, did not show obvious changes during BmNPV infection. Pharmacologically inhibiting the glycolytic pathway and glutaminolysis also failed to reduce BmNPV replication, revealing that glycolysis and glutaminolysis are not essential during BmNPV infection. This study reveals a unique amino acid utilization process that is implemented during BmNPV infection. Our metabolomic analysis of BmNPV-infected silkworm provides insights as to how baculoviruses induce alterations in host metabolism during systemic infection.


Assuntos
Aminoácidos/metabolismo , Baculoviridae/fisiologia , Bombyx/metabolismo , Bombyx/virologia , Hemolinfa/metabolismo , Hemolinfa/virologia , Metabolômica , Animais , Bombyx/genética , Cromatografia Líquida , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica , Glicólise , Interações Hospedeiro-Patógeno , Metaboloma , Metabolômica/métodos , Espectrometria de Massas em Tandem
11.
Artigo em Inglês | MEDLINE | ID: mdl-34062270

RESUMO

The sesquiterpenoid methyl farnesoate (MF) is a de-epoxidized form of insect juvenile hormone (JH) III in crustaceans, and its precise titer plays important roles in regulating many critical physiological processes, including reproduction and ovarian maturation. Understanding the synthetic and degradation pathways of MF is equally important for determining how to maintain MF titers at appropriate levels and thus for potential applications in crab aquaculture. Although the synthetic pathway of MF has been well established, little is known about MF degradation. Previous research proposed that specific carboxylesterases (CXEs) that degrade MF in crustaceans are conserved from those of JH III. In this study, we identified a novel Es-CXE5 gene from Eriocheir sinensis. The Es-CXE5 protein contains some conserved motifs, including catalytic triad and oxyanion hole, which are characteristics of the biologically active CXE family. The phylogenetic analysis showed that Es-CXE5 belongs to the hormone/semiochemical processing group of the CXE family. Moreover, Tissue and stage-specific expression results suggested that Es-CXE5 expression in hepatopancreas was highest and associated with the hemolymph MF titer. Furthermore, Es-CXE5 mRNA transcripts were detected in both in vitro and in vivo experiments and ESA experiment in the hepatopancreas and ovary. The results of this study showed that Es-CXE5 mRNA abundance in the hepatopancreas was notably induced by MF addition but had no effect on the ovary. Taken together, our results suggest that Es-CXE5 may degrade MF in the hepatopancreas and may thus be involved in ovarian development in E. sinensis.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/enzimologia , Carboxilesterase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hemolinfa/metabolismo , RNA Mensageiro/metabolismo , Animais , Proteínas de Artrópodes/genética , Braquiúros/genética , Braquiúros/crescimento & desenvolvimento , Carboxilesterase/genética , Filogenia , RNA Mensageiro/genética
12.
PLoS One ; 16(6): e0252858, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166412

RESUMO

The amount of artificial electromagnetic fields of various parameters in the honey bee's environment increases globally. So far, it had been proven that exposure to an E-field at 50 Hz can cause changes in bee's behavior, alter the activity of proteases, and enzymatic antioxidants. Due to the potentially harmful effect of this factor on honey bees, we decided to investigate the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP), and the concentration of albumin and creatinine in bee's hemolymph after exposure to 50 Hz E-field. Honey bee workers were placed in wooden cages (200 × 150 × 70 mm) and exposed to the 50 Hz E-field with the intensity of <1, 5.0, 11.5, 23.0, or 34.5 kV/m for 1, 3, 6, or 12h. A homogeneous 50 Hz E-field was generated in the form of a plate capacitor. Hemolymph samples for analysis were taken immediately after the end of exposure to the E-field from 100 bees from each group. According to our study, the activity of AST, ALT, and ALP in honey bees' hemolymph decreased after exposure to 50 Hz E-field with various intensities. The decrease in AST, ALT, and ALP activity intensified with prolonged exposure time. 50 Hz E-field may cause the impairment of crucial metabolic cycles in the honey bees' organism (such as the citric acid cycle, ATP synthesis, oxidative phosphorylation, ß-oxidation). Moreover, exposure to E-Field altered the concentration of creatinine and albumin, which are important non-enzymatic antioxidants. Such changes may indicate a disturbance in protein metabolism and increased muscle activity.


Assuntos
Abelhas/metabolismo , Biomarcadores/metabolismo , Eletricidade/efeitos adversos , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Animais , Abelhas/efeitos dos fármacos , Hemolinfa/efeitos dos fármacos
13.
J Insect Physiol ; 132: 104252, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022191

RESUMO

Previously, we found that nodule formation, a cellular defense response in insects, is regulated by humoral factors called C-type lectins in the hemolymph. To elucidate the factors that elicit nodule formation following the recognition of microorganisms by C-type lectins, a reproducible quantitative in vitro assay system was constructed. Then, using this system, the inhibitory activities of antisera raised against hemolymph proteases (HPs), serine protease homologues (SPHs), and pathogen-associated molecular pattern (PAMP)-recognition proteins were assessed. Among the antisera raised against HP and SPH, only that against HP8, a terminal proteinase that activates Spätzle, consistently inhibited in-vitro nodule-like aggregate formation in all three tested microorganisms, Micrococcus luteus, Escherichia coli, and Saccharomyces cerevisiae. Antisera raised against C-type lectins, BmLBP, and BmMBP also inhibited nodule-like aggregate formation, while those against ß-glucan recognition proteins and peptidoglycan recognition protein-S1 did not. Microorganisms pretreated with hemolymph, which contains HP8 and C-type lectins, also induced nodule-like aggregate formation, indicating that nodulation factors are present on microbial cells. Furthermore, antisera raised against HP8, BmLBP, and BmMBP showed inhibitory activities in the in vivo nodule formation system using Bombyx mori larvae. Thus, two humoral factors in the hemolymph of B. mori larvae, BmHP8 and C-type lectins, were found to play significant roles in eliciting the cellular defense response of nodule formation.


Assuntos
Bombyx/imunologia , Hemolinfa/metabolismo , Imunidade Celular , Lectinas Tipo C/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Bombyx/metabolismo , Bombyx/microbiologia , Bombyx/fisiologia , Proteínas de Transporte/metabolismo , Escherichia coli/imunologia , Hemócitos/metabolismo , Imunidade Humoral , Proteínas de Insetos/metabolismo , Micrococcus luteus/imunologia , Saccharomyces cerevisiae/imunologia
14.
Nat Commun ; 12(1): 2658, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976202

RESUMO

Many herbivorous insects selectively accumulate plant toxins for defense against predators; however, little is known about the transport processes that enable insects to absorb and store defense compounds in the body. Here, we investigate how a specialist herbivore, the horseradish flea beetle, accumulates glucosinolate defense compounds from Brassicaceae in the hemolymph. Using phylogenetic analyses of coleopteran major facilitator superfamily transporters, we identify a clade of glucosinolate-specific transporters (PaGTRs) belonging to the sugar porter family. PaGTRs are predominantly expressed in the excretory system, the Malpighian tubules. Silencing of PaGTRs leads to elevated glucosinolate excretion, significantly reducing the levels of sequestered glucosinolates in beetles. This suggests that PaGTRs reabsorb glucosinolates from the Malpighian tubule lumen to prevent their loss by excretion. Ramsay assays corroborated the selective retention of glucosinolates by Malpighian tubules of P. armoraciae in situ. Thus, the selective accumulation of plant defense compounds in herbivorous insects can depend on the ability to prevent excretion.


Assuntos
Brassicaceae/metabolismo , Besouros/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucosinolatos/metabolismo , Hemolinfa/metabolismo , Túbulos de Malpighi/metabolismo , Animais , Transporte Biológico , Brassicaceae/parasitologia , Besouros/fisiologia , Herbivoria/fisiologia , Modelos Biológicos , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Açúcares/metabolismo
15.
Viruses ; 13(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915836

RESUMO

State-of-the-art virus detection technology has advanced a lot, yet technology to evaluate the impacts of viruses on bee physiology and health is basically lacking. However, such technology is sorely needed to understand how multi-host viruses can impact the composition of the bee community. Here, we evaluated the potential of hemolymph metabolites as biomarkers to identify the viral infection status in bees. A metabolomics strategy based on ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry was implemented. First, we constructed a predictive model for standardized bumble bees, in which non-infected bees were metabolically differentiated from an overt Israeli acute paralysis virus (IAPV) infection (R2Y = 0.993; Q2 = 0.906), as well as a covert slow bee paralysis virus (SBPV) infection (R2Y = 0.999; Q2 = 0.875). Second, two sets of potential biomarkers were identified, being descriptors for the metabolomic changes in the bee's hemolymph following viral infection. Third, the biomarker sets were evaluated in a new dataset only containing wild bees and successfully discriminated virus infection versus non-virus infection with an AUC of 0.985. We concluded that screening hemolymph metabolite markers can underpin physiological changes linked to virus infection dynamics, opening promising avenues to identify, monitor, and predict the effects of virus infection in a bee community within a specific environment.


Assuntos
Hemolinfa/metabolismo , Metaboloma , Varroidae/virologia , Viroses/veterinária , Vírus/metabolismo , Animais , Biomarcadores/análise , Hemolinfa/química , Metabolômica/métodos , Fenômenos Fisiológicos Virais
16.
J Insect Physiol ; 131: 104237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831437

RESUMO

Nosema ceranae is a microsporidium that infects Apis mellifera, causing diverse physiological and behavioral alterations. Given the existence of individual and social mechanisms to reduce infection and fungal spread in the colony, bees may respond differently to infection depending on their rearing conditions. In this study, we investigated the effect of N. ceranae in honey bee foragers naturally infected with different fungal loads in a tropical region. In addition, we explored the effects of N. ceranae artificially infected young bees placed in a healthy colony under field conditions. Honey bees naturally infected with higher loads of N. ceranae showed downregulation of genes from Toll and IMD immune pathways and antimicrobial peptide (AMP) genes, but hemolymph total protein amount and Vitellogenin (Vg) titers were not affected. Artificially infected bees spread N. ceranae to the controls in the colony, but fungal loads were generally lower than those observed in cages, probably because of social immunity. Although no significant changes in mRNA levels of AMP-encoding were observed, N. ceranae artificially infected bees showed downregulation of miR-989 (an immune-related microRNA), lower vitellogenin gene expression, and decreased hemolymph Vg titers. Our results demonstrate for the first time that natural infection by N. ceranae suppresses the immune system of honey bee foragers in the field. This parasite is detrimental to the immune system of young and old bees, and disease spread, mitigation and containment will depend on the colony environment.


Assuntos
Abelhas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Nosema/fisiologia , Animais , Abelhas/metabolismo , Abelhas/microbiologia , Expressão Gênica , Hemolinfa/metabolismo
17.
J Insect Physiol ; 131: 104239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33845095

RESUMO

The work presents identification of antimicrobial peptides and proteins (AMPs) in the hemolymph of Galleria mellonella larvae infected with two Pseudomonas aeruginosa strains (ATCC 27,853 and PA18), differing in the profile of secreted proteases. The insects were immunized with bacteria cultivated in rich (LB) and minimal (M9) media, which resulted in appearance of a similar broad set of AMPs in the hemolymph. Among them, 13 peptides and proteins were identified, i.e. proline-rich peptides 1 and 2, lebocin-like anionic peptide 1 and anionic peptide 2, defensin/galiomicin, cecropin, cecropin D-like peptide, apolipophoricin, gallerimycin, moricin-like peptide B, lysozyme, apolipophorin III, and superoxide dismutase. Bacterial strain- and/or medium-dependent changes in the level of proline-rich peptide 1, anionic peptide 1 and 2, moricin-like peptide B, cecropin D-like and gallerimycin were observed. The analysis of the expression of genes encoding cecropin, gallerimycin, and galiomicin indicated that they were differently affected by the bacterial strain but mainly by the medium used for bacterial culture. The highest expression was found for the LB medium. In addition to the antibacterial and antifungal activity, proteolytic activity was detected in the hemolymph of the P. aeruginosa-infected insects. Based on these results and those presented in our previous reports, it can be postulated that the appearance of AMPs in G. mellonella hemolymph can be triggered not only by P. aeruginosa pathogen associated molecular patterns (PAMPs) but also by bacterial extracellular proteases secreted during infection. However, although there were no qualitative differences in the set of AMPs depending on the P. aeruginosa strain and medium, differences in the level of particular AMPs synthesized in response to the bacteria used were observed.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Interações Hospedeiro-Patógeno , Mariposas/metabolismo , Peptídeo Hidrolases/metabolismo , Pseudomonas aeruginosa/enzimologia , Animais , Hemolinfa/metabolismo , Larva/metabolismo , Larva/microbiologia , Mariposas/microbiologia
18.
PLoS One ; 16(4): e0250276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886622

RESUMO

Cyclooxygenase (COX) is a two-step enzyme that converts arachidonic acid into prostaglandin H2, a labile intermediate used in the production of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). In vertebrates and corals, COX must be N-glycosylated on at least two asparagine residues in the N-(X)-S/T motif to be catalytically active. Although COX glycosylation requirement is well-characterized in many species, whether crustacean COXs require N-glycosylation for their enzymatic function have not been investigated. In this study, a 1,842-base pair cox gene was obtained from ovarian cDNA of the black tiger shrimp Penaeus monodon. Sequence analysis revealed that essential catalytic residues and putative catalytic domains of P. monodon COX (PmCOX) were well-conserved in relation to other vertebrate and crustacean COXs. Expression of PmCOX in 293T cells increased levels of secreted PGE2 and PGF2α up to 60- and 77-fold, respectively, compared to control cells. Incubation of purified PmCOX with endoglycosidase H, which cleaves oligosaccharides from N-linked glycoproteins, reduced the molecular mass of PmCOX. Similarly, addition of tunicamycin, which inhibits N-linked glycosylation, in PmCOX-expressing cells resulted in PmCOX protein with lower molecular mass than those obtained from untreated cells, suggesting that PmCOX was N-glycosylated. Three potential glycosylation sites of PmCOX were identified at N79, N170 and N424. Mutational analysis revealed that although all three residues were glycosylated, only mutations at N170 and N424 completely abolished catalytic function. Inhibition of COX activity by ibuprofen treatment also decreased the levels of PGE2 in shrimp haemolymph. This study not only establishes the presence of the COX enzyme in penaeid shrimp, but also reveals that N-glycosylation sites are highly conserved and required for COX function in crustaceans.


Assuntos
Penaeidae/enzimologia , Prostaglandina-Endoperóxido Sintases/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Sequência de Bases , Inibidores de Ciclo-Oxigenase/farmacologia , Análise Mutacional de DNA/métodos , DNA Complementar/genética , Dinoprosta/metabolismo , Dinoprostona/metabolismo , Feminino , Glicosilação/efeitos dos fármacos , Células HEK293 , Hemolinfa/metabolismo , Humanos , Ibuprofeno/farmacologia , Peso Molecular , Ovário/metabolismo , Prostaglandina-Endoperóxido Sintases/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Tunicamicina/farmacologia
19.
Int J Mol Sci ; 22(7)2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807342

RESUMO

Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.


Assuntos
Proteínas Anticongelantes/genética , Besouros/enzimologia , Besouros/genética , Sequência de Aminoácidos , Animais , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Sequência de Bases , Evolução Biológica , Evolução Molecular , Congelamento , Hemolinfa/química , Hemolinfa/metabolismo , Proteínas de Insetos/genética , Larva , Filogenia , Isoformas de Proteínas/metabolismo , Tenebrio/genética
20.
Front Immunol ; 12: 659723, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868309

RESUMO

The "milky disease" of the Chinese mitten crab, Eriocheir sinensis, is a highly lethal fungal disease caused by Metschnikowia bicuspidata infection. To elucidate the immune responses of the hemolymph of E. sinensis to M. bicuspidata infection, a comparative analysis of the hemolymph of E. sinensis infected with M. bicuspidata and that treated with phosphate buffered saline was performed using label-free quantitative proteomics. A total of 429 proteins were identified. Using a 1.5-fold change in expression as a physiologically significant benchmark, 62 differentially expressed proteins were identified, of which 38 were significantly upregulated and 24 were significantly downregulated. The upregulated proteins mainly included cytoskeleton-related proteins (myosin regulatory light chain 2, myosin light chain alkali, tubulin α-2 chain, and tubulin ß-1 chain), serine protease and serine protease inhibitor (clip domain-containing serine protease, leukocyte elastase inhibitor, serine protein inhibitor 42Dd), catalase, transferrin, and heat shock protein 70. Upregulation of these proteins indicated that phenoloxidase system, phagocytosis and the ROS systems were induced by M. bicuspidata. The downregulated proteins were mainly organ and tissue regeneration proteins (PDGF/VEGF-related factor protein, integrin-linked protein kinase homing pat-4 gene) and hemagglutination-associated proteins (hemolymph clottable protein, hemocyte protein-glutamine gamma-glutamyltransferase). Downregulation of these proteins indicated that M. bicuspidata inhibited hemocyte regeneration and hemolymph agglutination. Fifteen differentially expressed proteins related to immunity were verified using a parallel reaction monitoring method. The expression trend of these proteins was similar to that of the proteome. To the best of our knowledge, this is the first report on the proteome of E. sinensis in response to M. bicuspidata infection. These results not only provide new and important information on the immune response of crustaceans to yeast infection but also provide a basis for further understanding the molecular mechanism of complex host pathogen interactions between crustaceans and fungi.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/metabolismo , Hemolinfa/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/isolamento & purificação , Braquiúros/genética , Braquiúros/microbiologia , China , Cromatografia Líquida/métodos , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Hemolinfa/microbiologia , Interações Hospedeiro-Patógeno , Masculino , Metschnikowia/fisiologia , Proteoma/genética , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...