Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.318
Filtrar
1.
Pestic Biochem Physiol ; 195: 105576, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37666602

RESUMO

Herbicide resistance is rapidly emerging in Cyperus difformis in rice fields across China. The response of a C. difformis population GX-35 was tested against five acetolactate synthase (ALS)-inhibiting herbicides, auxin herbicide MCPA and photosynthesis II (PSII)-inhibitor bentazone. Population GX-35 evolved multiple resistance to ALS-inhibiting herbicides (penoxsulam, bispyribac­sodium, pyrazosulfuron-ethyl, halosulfuron-methly and imazapic) and auxin herbicide MCPA, with resistance levels of 140-, 1253-, 578-, 18-, 13-, and 21-fold, respectively, compared to the susceptible population. In this population, ALS gene expression was similar to that of the susceptible population. However, an Asp376Glu mutation in ALS gene was observed, leading to reduced inhibition of in-vitro ALS activities by five ALS-inhibiting herbicides. Furthermore, CYP71D8, CYP77A3, CYP78A5 and three ABC transporter genes (cluster-14412.23067, cluster-14412.25321, and cluster-14412.24716) over-expressed in absence of penoxsulam. On the other hand, an UGT73C1 and an ABC transporter (cluster-14412.25038) were induced by penoxsulam. Additionally, both over-expression and induction were observed for CYP74, CYP71A1, UGT88A1 and an ABC transporter (cluster-14412.21723). The GX-35 population has indeed evolved multiple herbicide resistance in China. Therefore, a diverse range of weed control tactics should be implemented in rice field.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Acetolactato Sintase , Cyperus , Herbicidas , Oryza , Oryza/genética , Resistência a Herbicidas/genética , China , Transportadores de Cassetes de Ligação de ATP , Acetolactato Sintase/genética , Herbicidas/farmacologia , Ácidos Indolacéticos
2.
Curr Microbiol ; 80(11): 342, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725172

RESUMO

Thiobencarb has been extensively applied for weed control, resulting in severe environmental problems. In this study, thiobencarb degradation in liquid media and in soil by two bacterial strains, Pseudomonas sp. Th1 and Cupriavidus oxalaticus Th2, was investigated. Both bacterial isolates utilized the compound as a sole carbon, nitrogen and sulfur source. The utilization rates of thiobencarb by Pseudomonas sp. Th1 and C. oxalaticus Th2 in a liquid mineral medium were 1.02 ± 0.11 and 0.80 ± 0.07 µM/h at 100 µM, respectively. The determination of degradation and bacterial growth rates kinetics showed that the rates for pure thiobencarb followed the Michaelis-Menten model; meanwhile, the rates for thiobencarb in a commercial herbicide fitted well with the Edwards model. Their degradation by the mixed culture of both strains reduced the accumulation of intermediate products, including S-4-chlorobenzyl ethylthiocarbamate and 4-chlorobenzyl mercaptan, in media. The degradation by the mixed culture of these bacteria immobilized in rice straw was significantly higher than those of their free counterparts when determining in a packed bed bioreactor (P < 0.05). In addition, the inoculation of the mixed bacterial culture in soil significantly enhanced the degradation performance for both thiobencarb and propanil in a commercial herbicide. This study elucidates the differences in biodegradation of pure thiobencarb and thiobencarb in an herbicide.


Assuntos
Herbicidas , Pseudomonas , Solo , Herbicidas/farmacologia
3.
PLoS One ; 18(8): e0288775, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37616256

RESUMO

Amaranthus retroflexus L. is one of the malignant weeds which can cause a reduction in the soybean yield. We found a population of A. retroflexus (R-Q) resistant to fomesafen through the initial screening of whole-plant dose response bioassay in the research. The resistance index of the population (R-Q) was 183 times of the sensitive population (S-N). The resistant and sensitive populations were used as experimental materials in the paper. Strand-specific RNA-Seq analyses of R‒Q and S‒N populations obtained from herbicide-treated and mock-treated leaf samples after treatment were conducted to generate a full-length transcriptome database. We analyzed differentially expressed genes (DEGs) among the R-Q and S‒N A. retroflexus populations treated with recommended dose and mock-treated on the 1st (24 h) and 3rd (72 h) days to identify genes involved in fomesafen resistance. All 82,287 unigenes were annotated by Blastx search with E-value < 0.00001 from 7 databases. A total of 94,815 DEGs among the three group comparisons were identified. Two nuclear genes encoding PPO (PPX1 and PPX2) and five unigenes belonging to the AP2-EREBP, GRAS, NAC, bHLH and bZIP families exhibited different expression patterns between individuals of S‒N and R-Q populations. The A. retroflexus transcriptome and specific transcription factor families which can respond to fomesafen in resistant and susceptible genotypes were reported in this paper. The PPX1 and PPX2 genes of the target enzyme were identified. The study establishes the foundation for future research and provides opportunities to manage resistant weeds better.


Assuntos
Amaranthus , Herbicidas , Humanos , Transcriptoma , Amaranthus/genética , Perfilação da Expressão Gênica , Herbicidas/farmacologia , Plantas Daninhas
4.
Nat Plants ; 9(8): 1267-1279, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537400

RESUMO

Herbicide-resistant weeds pose a substantial threat to global food security. Perennial weed species are particularly troublesome. Such perennials as Sorghum halepense spread quickly and are difficult to manage due to their ability to reproduce sexually via seeds and asexually through rhizomes. Our theoretical study of S. halepense incorporates this complex life cycle with control measures of herbicide application and tillage. Rooted in the biology and experimental data of S. halepense, our population-based model predicts population dynamics and target-site resistance evolution in this perennial weed. We found that the resistance cost determines the standing genetic variation for herbicide resistance. The sexual phase of the life cycle, including self-pollination and seed bank dynamics, contributes substantially to the persistence and rapid adaptation of S. halepense. While self-pollination accelerates target-site resistance evolution, seed banks considerably increase the probability of escape from control strategies and maintain genetic variation. Combining tillage and herbicide application effectively reduces weed densities and the risk of control failure without delaying resistance adaptation. We also show how mixtures of different herbicide classes are superior to rotations and mono-treatment in controlling perennial weeds and resistance evolution. Thus, by integrating experimental data and agronomic views, our theoretical study synergistically contributes to understanding and tackling the global threat to food security from resistant weeds.


Assuntos
Herbicidas , Plantas Daninhas , Herbicidas/farmacologia , Agricultura , Adaptação Fisiológica , Aclimatação
5.
J Agric Food Chem ; 71(36): 13255-13262, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37651710

RESUMO

Extracting practical information from the large amounts of data gathered during the live imaging analysis of plant organs is a challenging issue. The present work investigates the use of the logistic growth model to analyze experimental data from root elongation assays performed in milli-fluidic devices with in situ imaging. Lactuca sativa was used as a bioindicator and was subjected to wide concentration ranges of four different herbicides: 2,4-D, atrazine, glyphosate, and paraquat. The model parameters were directly connected to standard indicators of toxicity and plant development, such as the LD50 and the absolute growth rate, respectively. In addition, it was found that realistic predictions of the maximum root length can be achieved about 60 h before the bioassay end point, which could significantly shorten the turnaround time. The combination of milli-fluidic devices, real-time imaging, and model-based data analysis becomes a powerful tool for environmental studies and ecotoxicity testing.


Assuntos
Atrazina , Herbicidas , Herbicidas/farmacologia , Alface , Diagnóstico por Imagem , Paraquat
6.
Pestic Biochem Physiol ; 194: 105510, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532326

RESUMO

Wild panicgrass (Panicum miliaceum L. var. ruderale kit.) is an annual grass weed that primarily occurs in maize fields. Nicosulfuron is a widely used selective herbicide that effectively controls gramineous weeds in maize fields. However, owing to its long-term and extensive application, the control of P. miliaceum has been substantially reduced. The objective of this study was to determine the resistance pattern to ALS inhibitors in P. miliaceum and investigate the underlying resistance mechanisms. These are important for guiding the prevention and eradication of resistant weeds. Whole plant bioassays showed P. miliaceum had evolved high levels of resistance to nicosulfuron and multiple resistance to atrazine and mesotrione. The ALS gene sequence results indicated the absence of mutations in the resistant population. Additionally, there was no significant difference found in the inhibition rate of the ALS enzyme activity (I50) between the resistant and sensitive populations. Following the application of malathion the resistant P. miliaceum population became more sensitive to nicosulfuron. At 96 h after application of nicosulfuron, glutathione-S-transferase activity in the resistant population was significantly higher than that in the susceptible population. The study reveals that the main cause of resistance to ALS inhibitor herbicide in P. miliaceum is likely increased metabolism of herbicides. These findings may assist in devising effective strategies for preventing and eliminating resistant P. miliaceum.


Assuntos
Acetolactato Sintase , Herbicidas , Panicum , Panicum/metabolismo , Herbicidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Piridinas/farmacologia , Zea mays , Resistência a Herbicidas/genética , Acetolactato Sintase/metabolismo , Proteínas de Plantas/genética
7.
Pestic Biochem Physiol ; 194: 105530, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532339

RESUMO

Eleusine indica causes problems in direct-seeding rice fields across Jiangsu Province in China. Long-term application of chemical herbicides has led to the widespread evolution of resistance in E. indica. In this study, we surveyed the resistance level of cyhalofop-butyl (CyB) in 19 field-collected E. indica biotypes, and characterized its underlying resistance mechanisms. All 19 biotypes evolved moderate- to high-level resistance to CyB (from 5.8- to 171.1-fold). 18 biotypes had a target-site mechanism with Trp-1999-Ser, Trp-2027-Cys, or Asp-2078-Gly mutations, respectively. One biotype (JSSQ-1) was identified to have metabolic resistance, in which malathion pretreatment significantly reduced the CyB resistance, and cyhalofop acid was degraded 1.7- to 2.5-times faster in this biotype compared with a susceptible control. Furthermore, the JSSQ-1 biotype showed multiple resistance to acetyl-CoA carboxylase (ACCase) inhibitor metamifop (RI = 4.6) and fenoxaprop-p-ethyl (RI = 5.1), acetolactate synthase (ALS) inhibitor imazethapyr (RI = 4.1), and hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione (RI = 3.5). In addition, 11 out of 19 E. indica biotypes exhibited multiple resistance to glyphosate. This research has identified the widespread occurrence of CyB resistance in E. indica, attributed to target-site mutations or enhanced metabolism. Moreover, certain biotypes have exhibited resistance to multiple herbicides or even cross-resistance. Consequently, there is an urgent need to implement diverse weed management practices to effectively combat the proliferation of this weed in rice fields.


Assuntos
Eleusine , Herbicidas , Oryza , Eleusine/genética , Acetil-CoA Carboxilase/metabolismo , Resistência a Herbicidas/genética , Oryza/genética , Oryza/metabolismo , Mutação , Herbicidas/farmacologia
8.
Pestic Biochem Physiol ; 194: 105532, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532340

RESUMO

Inhibitors targeting the 4-hydroxyphenyl pyruvate dioxygenase (HPPD) enzyme are well established herbicides and HPPD is also a primary enzyme within the tyrosine metabolism pathway in hematophagous arthropods, which is an essential metaboilic pathway post-blood feeding to prevent tyrosine-mediated toxicity. The objective of this study was to characterize the toxicity of triketone, pyrazole, pyrazolone, isoxazole, and triazole herbicides that inhibit HPPD to blood-fed mosquitoes and ticks. Topical exposure of nitisinone to blood-fed Aedes aegypti yielded high toxicity with an LD50 of 3.81 ng/insect (95% CI: 3.09 to 4.67 ng; Hillslope: 0.97, r2: 0.99), yet was non-toxic to non-blood fed (NBF) mosquitoes. The rank order of toxicity was nitisinone > tembotrione > pyrazoxyfen > tebuconazole > mesotrione against blood-fed Ae. Aegypti, but nitisinone was approximately 30-fold more toxic than other chemicals tested. We also assessed the toxicity of HPPD-inhibiting herbicides to the lone star tick, Amblyomma americanum and similarly, nitisinone was toxic to Am. americanum with a lethal time to kill 50% of subjects (LT50) of 23 h at 10 µM. Knockdown of the gene encoding the HPPD enzyme was performed through RNA-interference led to significant mortality after blood feeding in both, Ae. aegypti and Am. americanum. Lastly, a fluorescence assay was developed to determine relative quantities of L-tyrosine in Ae. aegypti and Am. americanum treated with HPPD inhibitors. L-tyrosine levels correlated with toxicity with nitisinone exposure leading to increased tyrosine concentrations post-blood feeding. Taken together, these data support previous work suggesting HPPD-inhibitors represent a novel mode of toxicity to mosquitoes and ticks and may represent base scaffolds for development of novel insecticides specific for hematophagous arthropods.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Aedes , Herbicidas , Animais , Herbicidas/farmacologia , Amblyomma , Aedes/metabolismo , Tirosina/metabolismo , Inibidores Enzimáticos
9.
Pestic Biochem Physiol ; 194: 105480, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532346

RESUMO

Natural products are one of the important sources for the creation of new pesticides. Drupacine ((1R,11S,12S,13R,15S)-13-methoxy-5,7,21-trioxa-19-azahexacyclo[11.7.1.02,10.04,8.011,15.015,19]henicosa-2,4(8),9-trien-12-ol), isolated from Cephalotaxus sinensis (Chinese plum-yew), is a potent herbicidal compound containing an oxo-bridged oxygen bond structure. However, its molecular target still remains unknown. In this study, the targets of drupacine in Amaranthus retroflexus were identified by combining drug affinity responsive target stability (DARTS), cellular thermal shift assay coupled with mass spectrometry (CETSA MS), RNA-seq transcriptomic, and TMT proteomic analyses. Fifty-one and sixty-eight main binding proteins were identified by DARTS and CETSA MS, respectively, including nine co-existing binding proteins. In drupacine-treated A. retroflexus seedlings we identified 1389 up-regulated genes and 442 down-regulated genes, 34 up-regulated proteins, and 194 down-regulated proteins, respectively. Combining the symptoms and the biochemical profiles, Profilin, Shikimate dehydrogenase (SkDH), and Zeta-carotene desaturase were predicted to be the drupacine potential target proteins. At the same time, drupacine was found to bind SkDH stronger by molecular docking, and its inhibition on ArSkDH increased with the treatment concentration increase. Our results suggest that the molecular target of drupacine is SkDH, a new herbicide target, which lay a foundation for the rational design of herbicides based on new targets from natural products and enrich the target resources for developing green herbicides.


Assuntos
Produtos Biológicos , Herbicidas , Herbicidas/farmacologia , Herbicidas/química , Simulação de Acoplamento Molecular , Proteômica , Oxirredutases , Proteínas
10.
Pestic Biochem Physiol ; 194: 105487, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532349

RESUMO

Recently, the herbicide fomesafen has frequently failed to control the troublesome weed Ipomoea nil in soybean fields in Liaoning Province, China. Hence, we collected 10 suspected resistant populations and evaluated their sensitivity to fomesafen. The results revealed various degrees of Ipomoea nil resistance to fomesafen, with a resistance index of 2.88 to 22.43; the highest value occurred in the LN3 population. Therefore, the mechanisms of the resistance in LN3 to fomesafen were explored. After fomesafen treatment, the expression levels of InPPX1 and InPPX2 genes were 4.19- and 9.29-fold higher, respectively, in LN3 than those in the susceptible (LN1) population. However, mutations and copy number variations were not detected between the two populations. Additionally, malathion pretreatment reduced the dose necessary to halve the growth rate of LN3 by 58%. Liquid chromatography with tandem mass spectrometry demonstrated that metabolism of fomesafen was significantly suppressed by malathion. Moreover, LN3 displayed increased reactive oxygen species scavenging capacity, which was represented by higher superoxide dismutase and peroxidase activities after fomesafen application than those in LN1. An orthogonal partial least squares-discriminant analysis revealed that the high resistance in LN3 could be attributed mainly to enhanced metabolism. Fortunately, the fomesafen-resistant I. nil remained sensitive to 2,4-D-ethylhexylester and bentazon, providing methods for its control.


Assuntos
Herbicidas , Ipomoea nil , Ipomoea nil/metabolismo , Variações do Número de Cópias de DNA , Malation , China , Herbicidas/farmacologia , Herbicidas/metabolismo
11.
Pestic Biochem Physiol ; 194: 105488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532350

RESUMO

Digitaria sanguinalis is a competitive and annual grass weed that commonly infests crops across the world. In recent years, the control of D. sanguinalis by nicosulfuron has declined in Hebei Province, China. To determine the resistance mechanisms of D. sanguinalis to nicosulfuron, a population of D. sanguinalis where nicosulfuron had failed was collected from a maize field of Hebei Province, China. Whole-plant dose-response experiments demonstrated that the resistant population (HBMT-15) displayed 6.9-fold resistance to nicosulfuron compared with the susceptible population (HBMT-5). Addition of the glutathione S-transferase (GSTs) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) significantly reduced the resistance level of the HBMT-15 population to nicosulfuron, and the GSTs activity of the HBMT-15 population was higher than the HBMT-5 population after nicosulfuron treatment. In vitro acetolactate synthase (ALS) enzyme experiments revealed that the nicosulfuron I50 value for the HBMT-15 population was 41 times higher than that of the HBMT-5 population. An Asp376 to Glu substitution in the ALS gene was identified in the HBMT-15 population. The HBMT-15 population had a moderate (2- to 4-fold) level of cross-resistance to three other ALS inhibitors (imazethapyr, pyroxsulam, and flucarbazone­sodium), but was susceptible to pyrithiobac­sodium. This study demonstrated that both an Asp376 to Glu substitution in the ALS gene and GSTs-involved metabolic resistance to ALS inhibitors coexisted in a D. sanguinalis population.


Assuntos
Acetolactato Sintase , Herbicidas , Digitaria/genética , Compostos de Sulfonilureia/farmacologia , Piridinas , Mutação , Acetolactato Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Resistência a Herbicidas/genética
12.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37569877

RESUMO

Widely used agrochemicals that do not exert negative effects on crops and selectively target weeds could influence plant resilience under unfavorable conditions. The cross-adaptation of wheat (Triticum aestivum L.) and triticale (×Triticosecale Wittm.) exposed to two environmental abiotic stressors (drought and waterlogging) was evaluated after treatment with a selective herbicide (Serrate®, Syngenta). The ambivalent effects of the herbicide on the two studied crops were particularly distinct in waterlogged plants, showing a significant reduction in wheat growth and better performance of triticale individuals exposed to the same combined treatment. Histochemical staining for the detection of reactive oxygen species (ROS) confirmed that the herbicide treatment increased the accumulation of superoxide anion in the flooded wheat plants, and this effect persisted in the younger leaves of the recovered individuals. Comparative transcript profiling of ROS scavenging enzymes (superoxide dismutase, peroxidase, glutathione reductase, and catalase) in stressed and recovered plants revealed crop-specific variations resulting from the unfavorable water regimes in combination with the herbicide treatment. Short-term dehydration was relatively well tolerated by the hybrid crop triticale and this aligned with the considerable upregulation of genes for L-Proline biosynthesis. Its drought resilience was diminished by herbicide application, as evidenced by increased ROS accumulation after prolonged water deprivation.


Assuntos
Herbicidas , Triticale , Humanos , Antioxidantes/farmacologia , Triticum , Espécies Reativas de Oxigênio/farmacologia , Herbicidas/farmacologia , Secas
13.
Molecules ; 28(15)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37570879

RESUMO

The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound ß-caryophyllene (ß-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-ß-cyclodextrin (HPßCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and ß-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and ß-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the ß-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and ß-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and ß-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.


Assuntos
Herbicidas , Óleos Voláteis , Psidium , 2-Hidroxipropil-beta-Ciclodextrina/química , Herbicidas/farmacologia , Herbicidas/análise , Óleos Voláteis/química , Folhas de Planta/química , Psidium/química , Solubilidade
14.
Molecules ; 28(15)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37570848

RESUMO

Long-chain molecules play a vital role in agricultural production and find extensive use as fungicides, insecticides, acaricides, herbicides, and plant growth regulators. This review article specifically addresses the agricultural biological activities and applications of long-chain molecules. The utilization of long-chain molecules in the development of pesticides is an appealing avenue for designing novel pesticide compounds. By offering valuable insights, this article serves as a useful reference for the design of new long-chain molecules for pesticide applications.


Assuntos
Fungicidas Industriais , Herbicidas , Inseticidas , Praguicidas , Inseticidas/farmacologia , Herbicidas/farmacologia , Agricultura
15.
J Mol Model ; 29(8): 241, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436478

RESUMO

CONTEXT: The design and synthesis of safe and highly active sulfonylurea herbicides is still a challenge. Therefore, following some principles of structure-activity relationship (SAR) of sulfonylurea herbicides, this work focuses on evaluating two sulfonylurea derivatives bearing electron-withdrawing substituents, namely, -(CO)OCH3 and -NO2 on the aryl group, on herbicidal activity. To understand the effects caused by the substituent groups, the molecular and electronic structures of the sulfonylureas were evaluated by density functional theory. Likewise, the crystalline supramolecular arrangements of both compounds were analyzed by Hirshfeld surface, QTAIM, and NBO, with the aim of verifying changes in intermolecular interactions caused by substituent groups. Finally, through a toxicophoric analysis, we were able to predict the interacting groups in their biological target, acetolactate synthase, and verify the interactions with the binding site. METHODS: All theoretical calculations were conducted using the highly parameterized empirical exchange-correlation functional M06-2X accompanied by the diffuse and polarized basis set 6-311++G(d,p). The atomic coordinates were obtained directly from the crystalline structures, and from the energies of the frontier molecular orbitals (HOMO and LUMO), chemical descriptors were obtained that indicated the influence of the functional groups in the sulfonylureas on the reactivity of the molecules. The intermolecular interactions in the crystals were analyzed using the Hirshfeld, QTAIM, and NBO surfaces. Toxicophoric modeling was performed by the PharmaGist webserver and molecular docking calculations were performed by the GOLD 2022.1.0 software package so that the ligand was fitted to the binding site in a 10 Å sphere. For this, genetic algorithm parameters were used using the ChemPLP scoring function for docking and ASP for redocking.


Assuntos
Acetolactato Sintase , Herbicidas , Simulação de Acoplamento Molecular , Modelos Moleculares , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Herbicidas/química , Herbicidas/farmacologia , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Pirimidinas
16.
Sci Rep ; 13(1): 11538, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460793

RESUMO

To ensure sufficient food supply worldwide, plants are treated with pesticides to provide protection against pathogens and pests. Herbicides are the most commonly utilised pesticides, used to reduce the growth of weeds. However, their long-term use has resulted in the emergence of herbicide-resistant biotypes in many weed species. Cornflower (Centaurea cyanus L., Asteraceae) is one of these plants, whose biotypes resistant to herbicides from the group of acetolactate synthase (ALS) inhibitors have begun to emerge in recent years. Some plants, although undesirable in crops and considered as weeds, are of great importance in phytomedicine and food production, and characterised by a high content of health-promoting substances, including antioxidants. Our study aimed to investigate how the acquisition of herbicide resistance affects the health-promoting properties of plants on the example of cornflower, as well as how they are affected by herbicide treatment. To this end, we analysed non-anthocyanin polyphenols and antioxidant capacity in flowers of C. cyanus from herbicide-resistant and susceptible biotypes. Our results indicated significant compositional changes associated with an increase in the content of substances and activities that have health-promoting properties. High antioxidant activity and higher total phenolic and flavonoid compounds as well as reducing power were observed in resistant biotypes. The latter one increased additionally after herbicide treatment which might also suggest their role in the resistance acquisition mechanism. Overall, these results show that the herbicide resistance development, although unfavourable to crop production, may paradoxically have very positive effects for medicinal plants such as cornflower.


Assuntos
Resistência a Herbicidas , Herbicidas , Herbicidas/farmacologia , Plantas Daninhas , Flores
17.
Biomolecules ; 13(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37509094

RESUMO

Modern agricultural cultivation relies heavily on genetically modified plants that survive after exposure to herbicides that kill weeds. Despite this biotechnology, there is a growing need for new sustainable, environmentally friendly, and biodegradable herbicides. We developed a novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino[2,1-b]benzothiazole-2-amine,4-(2-imidazole) that is active on PSII by inhibiting photosynthetic oxygen evolution on the micromolar level. [CuL2]Br2 reduces the FV of PSII fluorescence. Artificial electron donors do not rescind the effect of [CuL2]Br2. The inhibitory mechanism of [CuL2]Br2 remains unclear. To explore this mechanism, we investigated the effect of [CuL2]Br2 in the presence/absence of the well-studied inhibitor DCMU on PSII-containing membranes by OJIP Chl fluorescence transient measurements. [CuL2]Br2 has two effects on Chl fluorescence transients: (1) a substantial decrease of the Chl fluorescence intensity throughout the entire kinetics, and (2) an auxiliary "diuron-like" effect. The initial decrease dominates and is observed both with and without DCMU. In contrast, the "diuron-like" effect is small and is observed only without DCMU. We propose that [CuL2]Br2 has two binding sites for PSII with different affinities. At the high-affinity site, [CuL2]Br2 produces effects similar to PSII reaction center inhibition, while at the low-affinity site, [CuL2]Br2 produces effects identical to those of DCMU. These results are compared with other PSII-specific classes of herbicides.


Assuntos
Diurona , Herbicidas , Diurona/metabolismo , Diurona/farmacologia , Clorofila/metabolismo , Cobre/farmacologia , Spinacia oleracea , Complexo de Proteína do Fotossistema II/metabolismo , Fotoquímica , Fluorescência , Herbicidas/farmacologia
18.
J Agric Food Chem ; 71(30): 11654-11666, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467369

RESUMO

Herbicide resistance is a prevalent problem that has posed a foremost challenge to crop production worldwide. Light-dependent enzyme NADPH: protochlorophyllide oxidoreductase (LPOR) in plants is a metabolic target that could satisfy this unmet demand. Herein, for the first time, we embarked on proposing a new mode of action of herbicides by performing structure-based virtual screening targeting multiple LPOR binding sites, with the determination of further bioactivity on the lead series. The feasibility of exploiting high selectivity and safety herbicides targeting LPOR was discussed from the perspective of the origin and phylogeny. Besides, we revealed the structural rearrangement and the selection key for NADPH cofactor binding to LPOR. Based on these, multitarget virtual screening was performed and the result identified compounds 2 affording micromolar inhibition, in which the IC50 reached 4.74 µM. Transcriptome analysis revealed that compound 2 induced more genes related to chlorophyll synthesis in Arabidopsis thaliana, especially the LPOR genes. Additionally, we clarified that these compounds binding to the site enhanced the overall stability and local rigidity of the complex systems from molecular dynamics simulation. This study delivers a guideline on how to assess activity-determining features of inhibitors to LPOR and how to translate this knowledge into the design of novel and effective inhibitors against malignant weed that act by targeting LPOR.


Assuntos
Herbicidas , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Protoclorifilida/metabolismo , Luz , Herbicidas/farmacologia , NADP/metabolismo , Plantas/metabolismo , Oxirredutases , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
19.
J Agric Food Chem ; 71(30): 11320-11331, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37466454

RESUMO

The phytotoxicity of herbicides on crops is a major dilemma in agricultural production. Fortunately, the emergence of herbicide safeners is an excellent solution to this challenge, selectively enhancing the performance of herbicides in controlling weeds while reducing the phytotoxicity to crops. But owing to their potential toxicity, only a tiny proportion of safeners are commercially available. Natural products as safeners have been extensively explored, which are generally safe to mammals and cause little pollution to the environment. They are typically endogenous signal molecules or phytohormones, which are generally difficult to extract and synthesize, and exhibit relatively lower activity than commercial products. Therefore, it is necessary to adopt rational design approaches to modify the structure of natural safeners. This paper reviews the application, safener effects, structural characteristics, and modifications of natural safeners and provides insights on the discovery of natural products as potential safeners in the future.


Assuntos
Herbicidas , Animais , Herbicidas/farmacologia , Herbicidas/química , Agricultura , Plantas Daninhas , Mamíferos
20.
J Agric Food Chem ; 71(29): 10970-10981, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37439585

RESUMO

The use of herbicide combinations is a common practice in modern agriculture. However, unexpected results may be observed due to herbicide and weed diversity, therefore, highlighting the need for a predictive strategy. To this end, a data set was made based on recent studies. This data set included herbicide attributes, such as active ingredient, chemical family, and mode of action, and weed attributes, namely, species, clade, type of leaves, family, and lifespan. Globally, additive interactions (46.30%) were more frequent than antagonistic (29.09%) and synergistic (24.61%) ones. The occurrence of these herbicide interactions with regard to herbicide and weed features is also discussed. Moreover, mesotrione and glyphosate have been, respectively, identified as the most promising or inadequate herbicides in predicting beneficial mixtures. The resulting global trend could guide farmers in their choice of beneficial herbicide companions.


Assuntos
Herbicidas , Herbicidas/farmacologia , Controle de Plantas Daninhas/métodos , Resistência a Herbicidas , Agricultura , Plantas Daninhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...