Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.583
Filtrar
1.
Ecotoxicol Environ Saf ; 203: 111013, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888588

RESUMO

Multiple pesticides originating from plant protection treatments and the treatment of pests infecting honey bees are frequently detected in beehive matrices. Therefore, winter honey bees, which have a long life span, could be exposed to these pesticides for longer periods than summer honey bees. In this study, winter honey bees were exposed through food to the insecticide imidacloprid, the fungicide difenoconazole and the herbicide glyphosate, alone or in binary and ternary mixtures, at environmental concentrations (0 (controls), 0.1, 1 and 10 µg/L) for 20 days. The survival of the honey bees was significantly reduced after exposure to these 3 pesticides individually and in combination. Overall, the combinations had a higher impact than the pesticides alone with a maximum mortality of 52.9% after 20 days of exposure to the insecticide-fungicide binary mixture at 1 µg/L. The analyses of the surviving bees showed that these different pesticide combinations had a systemic global impact on the physiological state of the honey bees, as revealed by the modulation of head, midgut and abdomen glutathione-S-transferase, head acetylcholinesterase, abdomen glucose-6-phosphate dehydrogenase and midgut alkaline phosphatase, which are involved in the detoxification of xenobiotics, the nervous system, defenses against oxidative stress, metabolism and immunity, respectively. These results demonstrate the importance of studying the effects of chemical cocktails based on low realistic exposure levels and developing long-term tests to reveal possible lethal and adverse sublethal interactions in honey bees and other insect pollinators.


Assuntos
Abelhas/fisiologia , Fungicidas Industriais/toxicidade , Herbicidas/toxicidade , Inseticidas/toxicidade , Praguicidas/toxicidade , Animais , Dioxolanos/toxicidade , Sinergismo Farmacológico , Glicina/análogos & derivados , Glicina/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Polinização/efeitos dos fármacos , Triazóis/toxicidade
2.
Ecotoxicol Environ Saf ; 203: 111046, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888614

RESUMO

Agricultural pesticides serve as effective controls of unwanted weeds and pests. However, these same chemicals can exert toxic effects in non-target organisms. To determine chemical modes of action, the toxicity ratio (TR) and critical body residues (CBRs) of 57 pesticides were calculated for Daphnia magna. Results showed that the CBR values of inert compounds were close to a constant while the CBR values of pesticides varied over a wider range. Although herbicides are categorized as specifically-acting compounds to plants, herbicides did not exhibit excess toxicity to Daphnia magna and were categorized as inert compounds with an average logTR = 0.41, which was less than a threshold of one. Conversely, fungicides and insecticides exhibited strong potential for toxic effects to Daphnia magna with an average logTR >2. Many of these chemicals act via disruption of the nervous, respiratory, or reproductive system, with high ligand-receptor binding activity which leads to higher toxicity for Daphnia magna. Molecular docking using acetylcholinesterase revealed that fungicides and insecticides bind more easily with the biological macromolecule when compared with inert compounds. Quantitative structure-activity relationship (QSAR) analysis revealed that the toxicity of fungicides was mainly dependent upon the heat of formation and polar surface area, while the toxicity of insecticides was more related to hydrogen-bond properties. This comprehensive analysis reveals that there are specific differences in toxic mechanisms between fungicides and insecticides. These results are useful for determining relative risk associated with pesticide exposure to aquatic crustaceans, such as Daphnia magna.


Assuntos
Daphnia/efeitos dos fármacos , Modelos Biológicos , Praguicidas/química , Praguicidas/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Daphnia/metabolismo , Relação Dose-Resposta a Droga , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Herbicidas/química , Herbicidas/toxicidade , Ligação de Hidrogênio , Inseticidas/química , Inseticidas/toxicidade , Simulação de Acoplamento Molecular , Resíduos de Praguicidas/metabolismo , Relação Quantitativa Estrutura-Atividade
3.
Ecotoxicol Environ Saf ; 205: 111359, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961490

RESUMO

As one of the most commonly used and frequently detected herbicides in the coastal seawater, the ecotoxicity of atrazine to phytoplankton has been well demonstrated. However, little attention has been paid to the ecotoxicity of its two major hydrolysates (desisopropylatrazine (DIA) and desethylatrazine (DEA)), which are also widely distributed in natural seawater. Here we present a comprehensive analysis of the photosynthetic physiology and chromophoric dissolved organic matter (CDOM) characteristics of the diatom Phaeodactylum tricornutum Pt-1 (CCMP 2561) under atrazine, DIA and DEA stress, respectively. The results showed that both atrazine and the two derivatives had significant negative effects on the concentration of chlorophyll a, maximum quantum efficiency (Fv/Fm) and relative electron transport rates (rETR) of P. tricornutum Pt-1. Furthermore, the CDOM pattern released by P. tricornutum Pt-1 cells also changed significantly after 7-day exposure. Compared with the control group, the fluorescence intensity (3D-EEM spectra) of protein-like components was obviously lower, while that of the humic acid-like components was higher. The findings of this study indicate that the ecotoxicity of atrazine might have been underestimated in previous investigations: both atrazine and its two major derivatives are not only phototoxic to microalgae but also influence the carbon sequestration potential in the coastal seawater.


Assuntos
Atrazina/toxicidade , Sequestro de Carbono , Diatomáceas/fisiologia , Fotossíntese/efeitos dos fármacos , Clorofila A , Diatomáceas/efeitos dos fármacos , Transporte de Elétrons , Fluorescência , Herbicidas/toxicidade , Microalgas , Fitoplâncton/efeitos dos fármacos , Água do Mar
4.
Ecotoxicol Environ Saf ; 204: 111117, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32798753

RESUMO

Wood distillate (pyroligneous acid) can be successfully applied in agriculture to increase crop quality and productivity with a lower risk for the environment respect to synthetic chemical herbicides, pesticides or fertilizers. However, the effects of wood distillate on the environment and biota are still under investigation, depending on biological attributes of potentially influenced organisms. The potential toxicological effects of wood distillate on sensitive non-target organisms, lichens and mosses, are studied for the first time. The physiological parameters (chlorophyll a fluorescence emission FV/FM and PI(ABS), chlorophyll content, spectral reflectance, antioxidant power, and dehydrogenase activity) and eventual bioaccumulation of selected elements (As, Ba, Cd, Cr, Cu, Fe, Ni, Pb, Zn) were investigated in the lichen Xanthoria parietina and the moss Hypnum cupressiforme after short-term treatments over a range of wood distillate solutions (1:300, 1:500, 1:700) to detect potential early stress responses. Overall, the lichen did not show changes after the treatments, while in the moss wood distillate caused only modest alterations in FV/FM and PI(ABS) and progressive increasing of antioxidant activity according to the dose supplied. The bioaccumulation of toxic elements was low and did not show any pattern of uptake with increasing concentrations of wood distillate.


Assuntos
Briófitas/efeitos dos fármacos , Herbicidas/toxicidade , Líquens/efeitos dos fármacos , Terpenos/toxicidade , Poluentes Atmosféricos/análise , Ascomicetos/efeitos dos fármacos , Briófitas/química , Bryopsida , Clorofila/farmacologia , Clorofila A , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Madeira/química
5.
J Toxicol Sci ; 45(8): 423-434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741895

RESUMO

Paraquat (PQ) as a non-selective heterocyclic herbicide, has been applied worldwide for over a few decades. But PQ is very harmful to humans and rodents. The lung is the main target organ of PQ poisoning. It is an important event that lung epithelial cells are injured during PQ-induced acute lung injury and pulmonary fibrosis. As a regulator of mRNA expression, microRNA (miRNA) may play an important role in the progress. Our study was to investigate the mechanisms of PQ-induced injury of pulmonary epithelial cells through analyzing the profiling of miRNAs and their target genes. As a result, 11 differentially expressed miRNAs were screened, including 1 upregulated miRNA and 10 downregulated miRNAs in PQ-treated murine lung alveolar epithelial cells (MLE-12 cells). The bioinformatic analyses suggested that the target genes of these miRNAs were involved in mitochondrial apoptosis pathway and DNA methylation, and participated in the regulation of PI3K-Akt, mTOR, RAS, TNF, MAPK and other signal pathways which related to oxidative stress and apoptosis. This indicated that miRNAs were an important regulator of oxidative stress and apoptosis during PQ-induced injury of murine lung alveolar epithelial cells. The findings would deepen our understanding of the mechanisms of PQ-induced pulmonary injury and might provide new treatment targets for this disease.


Assuntos
Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Apoptose/genética , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Expressão Gênica , Herbicidas/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Paraquat/toxicidade , Alvéolos Pulmonares/citologia , Lesão Pulmonar Aguda/patologia , Animais , Células Cultivadas , Metilação de DNA/genética , Camundongos , MicroRNAs/fisiologia , Mitocôndrias/patologia
6.
Bull Environ Contam Toxicol ; 105(4): 588-594, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32856147

RESUMO

ProcellaCOR® (active ingredient [ai], florpyrauxifen-benzyl) is an aquatic herbicide registered for use in 2018 for managing invasive and nuisance macrophyte species. Registration studies evaluating its acute toxicity revealed a favorable environmental profile; however, prior to this study, no information existed on the toxicity of florpyrauxifen-benzyl to native freshwater mussels (Family Unionidae), one of the most sensitive and imperiled faunal groups globally. We followed standard acute (96 h) toxicity test guidelines and exposed juvenile Fatmucket (Lampsilis siliquoidea) and Eastern Lampmussel (Lampsilis radiata) to the following formulations or compounds: ProcellaCOR SC and EC formulations, technical grade active ingredient (TGAI, florpyrauxifen-benzyl), and an analytical-grade sample of the weaker florpyrauxifen acid (FA). In all tests, the estimated median lethal concentrations to produce 50% mortality (LC50) were greater than the highest concentration tested of each formulation or compound. The no observable adverse effect concentrations (NOAEC, based on analytical recoveries measured at the highest concentration tested where no toxicity was observed) were TGAI = 26 µg/L, FA = 100,000 µg/L, ProcellaCOR® SC = 193 µg ai/L ProcellaCOR® EC = 585 µg ai/L and the NOAEC values for the registered commercial formulation products (ProcellaCOR® SC and ProcellaCOR® EC) were orders of magnitude greater (3.9× and 11.7×, respectively) than the maximum application rate (50 µg/L). Our results show that the herbicide formulations and compounds tested were not acutely toxic to juveniles of these two species of freshwater mussels, indicating minimal risk of short-term exposure from florpyrauxifen-benzyl applications in the environment for aquatic weed control. However, potential chronic or sublethal effects remain uncharacterized and warrant additional investigation.


Assuntos
Compostos de Benzil/toxicidade , Bivalves/fisiologia , Herbicidas/toxicidade , Reguladores de Crescimento de Planta/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Ácidos Indolacéticos , Alimentos Marinhos , Unionidae
7.
Life Sci ; 258: 118227, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32781074

RESUMO

AIM: eEF1A2 is highly expressed in postmitotic cells and has been reported to interact with the antioxidant enzyme peroxiredoxin 1 (PRDX1). PRDX1 is involved in motor neuron differentiation. Here, we studied the relationship between eEF1A2 and PRDX1 during dopaminergic neuron differentiation, and examined their possible association in an oxidative stress model of Parkinson's disease (PD). MAIN METHODS: Expression of eEF1A2 and PRDX1 in SH-SY5Y cells at various durations of retinoic acid (RA) induction was detected using qRT-PCR, Western blotting and immunofluorescence. Neurons of 10-day differentiation were treated with the PRDX1 inhibitor H7, MPP+ and H7 plus MPP+. The cell viability, the amounts of apoptotic nuclei, DHE signals, and the expression of p53, p-Akt and p-mTOR were determined. The colocalization of eEF1A2 and PRDX1 was visualized using confocal microscopy. KEY FINDINGS: eEF1A2 gradually increased after RA-induced differentiation of SH-SY5Y cells, while PRDX1 protein gradually decreased. MPP+ treatment increased eEF1A2 in both undifferentiated and differentiated neurons; however, PRDX1 appeared to elevate only in mature neurons. The inhibition of the PRDX1 activity with H7 promoted MPP+-induced cell death, as evidenced by decreased cell viability, increased apoptotic nuclei, increased the DHE signal, and increased p53. However, H7 induced the activation of the prosurvival Akt and mTOR in MPP+-treated cells. Besides, a colocalization of eEF1A2 and PRDX1 was evidenced in MPP+-treated neurons. This colocalization was possibly prevented by inhibiting the PRDX1 activity, resulting in aggravated neuronal death. SIGNIFICANCE: Our results suggest that the possible association between eEF1A2 and PRDX1 may be a promising target for modifying neuronal death in PD.


Assuntos
1-Metil-4-fenilpiridínio/toxicidade , Diferenciação Celular/fisiologia , Fator 1 de Elongação de Peptídeos/metabolismo , Peroxirredoxinas/antagonistas & inibidores , Peroxirredoxinas/metabolismo , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Herbicidas/toxicidade , Humanos , Fator 1 de Elongação de Peptídeos/análise , Peroxirredoxinas/análise
8.
Chemosphere ; 259: 127417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623201

RESUMO

Glyphosate (Gly) is the most widely used herbicide in the world and has broad-spectrum and non-selective activity. Its indiscriminate use hence risks contamination of water bodies and can affect living organisms, especially sensitive or resistant non-target plants. Despite this, studies on physiological mechanisms and Gly remediation in Neotropical aquatic plants remain limited. This study aims to evaluate the physiological mechanisms of the aquatic macrophyte Salvinia biloba on exposure to different concentrations of a Gly commercial formulation (Gly-CF) and a Gly analytical standard (Gly-AS). Furthermore, using square-wave voltammetry (SWV), we determined whether the studied plant could remove Gly from water. Our data suggest that Gly-AS and Gly-CF induce similar physiological responses in S. biloba. However, Gly-CF was more phytotoxic. Depending on the concentration, the two forms of Gly affected the plants, decreasing the chlorophyll a and b contents and the photosystem II (PSII) photochemical activity. The data also revealed that Gly promoted oxidative stress and increased the shikimic acid concentration. At the same time, the plants removed Gly from water, with 100% removal for 1 mg L-1 Gly and above 60% removal for the other concentrations studied. Therefore, our results suggest that S. biloba may be a potential phytoremediation agent for low Gly concentrations, since 1 mg L-1 Gly was completely removed and exhibited low phytotoxicity. This study deepens our scientific understanding of the Gly impact on and the phytoremediation potential of S. biloba.


Assuntos
Biodegradação Ambiental , Glicina/análogos & derivados , Herbicidas/toxicidade , Traqueófitas/fisiologia , Clorofila A , Glicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II , Poluentes Químicos da Água/análise
9.
Chemosphere ; 259: 127380, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32634720

RESUMO

Fomesafen is widely used in agriculture and can be detected in the environment and agricultural products. Research on the developmental toxicity of fomesafen in animals is currently very limited. Here, we used zebrafish as an animal model to evaluate the toxicity of fomesafen in developing aquatic vertebrates and higher animals. From 6h to 72h following fertilization, exposure of zebrafish embryos to 5, 10 and 20 mg/L of fomesafen resulted in pericardial edema, a reduction in heart rate, shortening of body length, and yolk sac edema. Fomesafen reduced the number of immune cells such as neutrophils and macrophages, increased the expression of a number of inflammatory factors, induced the up-regulation of the oxidative stress response and apoptosis, and disrupted the activity of enzymes related to nerve development, which affected the motility of the embryos. In conclusion, the results provide new evidence for the comprehensive assessment of fomesafen toxicity in aquatic vertebrates.


Assuntos
Benzamidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Herbicidas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Regulação para Cima , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
10.
Environ Sci Pollut Res Int ; 27(31): 39054-39067, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32642888

RESUMO

Paraquat dichloride is a broad-spectrum herbicide used worldwide. It is very fast acting and used to kill a wide range of grasses and broad-leaved weeds. Paraquat dichloride gets run off to aquatic water bodies, and its presence has been reported by various researchers, where its effect is certain on aquatic organisms. Fish are vulnerable to aquatic pollutants as they are in direct contact with their environment. Therefore, our study was designed to evaluate the effects of herbicide paraquat dichloride on histology of vital organs (gills, liver, and kidney) of the fresh water fish Channa punctatus (Bloch). Toxicity effects are evaluated under static renewal test conditions, and histological alterations were detected microscopically. Fish were exposed to acute dose (96hLC50/2 = 32.93 mg/L) for 96 h of paraquat dichloride. Simultaneous control was also maintained. Principal histopathological alterations in gills during acute exposure showed curling of secondary lamellae, aneurysm, gill bridging, and enlargement of the cartilaginous core. The tissue damages like melanomacrophage centers, pyknotic nucleus, large sinusoidal congestion, and cell fusion are some histological alterations observed in the liver after acute exposure. The changes in histoarchitecture observed in the kidney include an increase in Bowman's space, necrosis of glomeruli, and damage to collecting duct at acute exposure. The histopathological changes were more prominent with the duration of exposure in the experimental groups. The present study demonstrated that the vital organs exhibited significant damage, among all gill histology specifically got altered being directly exposed to paraquat dichloride. Paraquat dichloride exposure affects the histology of gills, liver, and kidney, thus impairing the vital functions like respiration, excretion, and metabolic regulation which in turn will affect the fish health and is a serious threat. Histopathological alteration in gills, liver, and kidney can be regarded as sensitive biomarkers of paraquat dichloride toxicological manifestations and thus can be utilized for ecotoxicological biomonitoring of aquatic bodies. Graphical abstract.


Assuntos
Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Brânquias , Rim , Fígado , Paraquat/toxicidade
11.
Sci Total Environ ; 745: 140932, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32731069

RESUMO

Glyphosate is the world's most widely used herbicide, and its potential side effects on the intestinal microbiota of various animals, from honeybees to livestock and humans, are currently under discussion. Pigs are among the most abundant livestock animals worldwide and an impact of glyphosate on their intestinal microbiota function can have serious consequences on their health, not to mention the economic effects. Recent studies that addressed microbiota-disrupting effects focused on microbial taxonomy but lacked functional information. Therefore, we chose an experimental design with a short incubation time in which effects on the community structure are not expected, but functional effects can be detected. We cultivated intestinal microbiota derived from pig colon in chemostats and investigated the acute effect of 228 mg/d glyphosate acid equivalents from Roundup® LB plus, a frequently applied glyphosate formulation. The applied glyphosate concentration resembles a worst-case scenario for an 8-9 week-old pig and relates to the maximum residue levels of glyphosate on animal fodder. The effects were determined on the functional level by metaproteomics, targeted and untargeted meta-metabolomics, while variations in community structure were analyzed by 16S rRNA gene profiling and on the single cell level by microbiota flow cytometry. Roundup® LB plus did not affect the community taxonomy or the enzymatic repertoire of the cultivated microbiota in general or on the expression of the glyphosate target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in detail. On the functional level, targeted metabolite analysis of short chain fatty acids (SCFAs), free amino acids and bile acids did not reveal significant changes, whereas untargeted meta-metabolomics did identify some effects on the functional level. This multi-omics approach provides evidence for subtle metabolic effects of Roundup® LB plus under the conditions applied.


Assuntos
Microbioma Gastrointestinal , Herbicidas/toxicidade , Animais , Glicina/análogos & derivados , Glicina/toxicidade , Humanos , Metaboloma , RNA Ribossômico 16S/genética , Suínos
12.
Chemosphere ; 258: 127350, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32554012

RESUMO

The adverse effects of glyphosate herbicide on plants are well recognised, however, potential hormetic effects have not been well studied. This study aimed to use tomato as a model organism to explore the potential hormetic effects of glyphosate in water (0-30 mg L-1) and in compost soil (0-30 mg kg-1). The growth-promoting effects of glyphosate at concentrations of 0.03-1 mg L-1 in water or 0.03-1 mg kg-1 in compost were demonstrated in tomato for the first time. These hormetic effects were manifest as increased hypocotyl and radicle growth of seedlings germinated on paper towel soaked in glyphosate solution and also in crops which had been sprayed with glyphosate. Increased rates of photosynthesis (up to 2-fold) were observed in 4-week old crops when seeds were sown in compost amended with glyphosate and also when leaves were sprayed with glyphosate. The examination of chloroplast morphology using transmission electron microscopy revealed that the hormetic effects were associated with elongation of chloroplasts, possibly due to lateral expansion of thylakoid grana.


Assuntos
Germinação/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Lycopersicon esculentum/fisiologia , Cloroplastos/efeitos dos fármacos , Produtos Agrícolas/efeitos dos fármacos , Glicina/toxicidade , Hormese/efeitos dos fármacos , Lycopersicon esculentum/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Plântula/efeitos dos fármacos , Sementes/efeitos dos fármacos , Solo
13.
Ecotoxicol Environ Saf ; 201: 110824, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544747

RESUMO

The aim of the study was to investigate the effects of sublethal concentrations (0.3, 0.6 and 1.2 mg L-1) of the herbicide Ronstar on the hematology and some immune parameters in Clarias gariepinus juvenile (mean weight and length 58.72 ± 2.46 g and 27.60 ± 1.62 cm, respectively). The hematological and some immune parameters were studied for 21 days in a static renewal bioassay system in which the water and the herbicide were changed daily. The erythrocyte count, hemoglobin concentration (Hb), and packed cell volume (PCV) were significantly (p < 0.05) reduced in the treatment groups. When compared with the control, there were significant (p < 0.05) leucocytosis, lymphocytosis, neutropenia and monocytopenia in the treatment groups. Both the mean corpuscular hemoglobin (MCH) and mean corpuscular volume (MCV) were reduced ((p < 0.05) in the Ronstar-exposed fish. The result showed that the treated fish suffered hypochromic microcytic anemia. The total immunoglobulin and phagocytic indices (phagocytic capacity and phagocytic index) were significantly (p < 0.05) reduced in the treatment groups. while the respiratory burst was significantly (p < 0.05) increased in the treatment groups. The result showed that exposure to Ronstar had adverse effects on the hematology and immunocompetency of the fish.


Assuntos
Peixes-Gato , Herbicidas/toxicidade , Imunoglobulinas/sangue , Oxidiazóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Peixes-Gato/sangue , Peixes-Gato/imunologia , Relação Dose-Resposta a Droga , Contagem de Eritrócitos , Índices de Eritrócitos/efeitos dos fármacos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hematócrito , Hemoglobinas/análise , Fagócitos/citologia , Fagócitos/efeitos dos fármacos
14.
PLoS One ; 15(6): e0234857, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32559215

RESUMO

The Lipocalin Apolipoprotein D (ApoD) is one of the few genes consistently overexpressed in the aging brain, and in most neurodegenerative and psychiatric diseases. Its functions include metabolism regulation, myelin management, neuroprotection, and longevity regulation. Knowledge of endogenous regulatory mechanisms controlling brain disease-triggered ApoD expression is relevant if we want to boost pharmacologically its neuroprotecting potential. In addition to classical transcriptional control, Lipocalins have a remarkable variability in mRNA 5'UTR-dependent translation efficiency. Using bioinformatic analyses, we uncover strong selective pressures preserving ApoD 5'UTR properties, indicating unexpected functional conservation. PCR amplifications demonstrate the production of five 5'UTR variants (A-E) in mouse ApoD, with diverse expression levels across tissues and developmental stages. Importantly, Variant E is specifically expressed in the oxidative stress-challenged brain. Predictive analyses of 5'UTR secondary structures and enrichment in elements restraining translation, point to Variant E as a tight regulator of ApoD expression. We find two genomic regions conserved in human and mouse ApoD: a canonical (α) promoter region and a previously unknown region upstream of Variant E that could function as an alternative mouse promoter (ß). Luciferase assays demonstrate that both α and ß promoter regions can drive expression in cultured mouse astrocytes, and that Promoter ß activity responds proportionally to incremental doses of the oxidative stress generator Paraquat. We postulate that Promoter ß works in association with Variant E 5'UTR as a regulatory tandem that organizes ApoD gene expression in the nervous system in response to oxidative stress, the most common factor in aging and neurodegeneration.


Assuntos
Regiões 5' não Traduzidas , Apolipoproteínas D/genética , Apolipoproteínas E/genética , Regiões Promotoras Genéticas , Animais , Apolipoproteínas D/metabolismo , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Herbicidas/toxicidade , Lipocalinas/genética , Lipocalinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Estresse Oxidativo , Paraquat/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
15.
Ecotoxicol Environ Saf ; 201: 110821, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32544746

RESUMO

Primary production (PP) is a key variable to evaluate the quality of the ecological services provided by freshwater bodies because it gives information on the amount of oxygen and organic matter incorporated into the system. We analysed the impact of a mixture of commercial formulations of glyphosate- and 2,4-D-based herbicides (Roundup Max® and AsiMax 50®, respectively) on freshwater primary production. Primary production was studied through the oxygen exchange method. Four measurements were made during a 23-day experiment in outdoor mesocosms using the light and dark bottle method. High and low concentrations of the active ingredients were assayed to evaluate a concentration-dependent effect. Our results indicated that the mixture of Roundup Max® and AsiMax 50® acted mostly additively on gross and net primary production. Moreover, we found a concentration-dependent effect of each herbicide on PP. Thus, AsiMax 50® at low and Roundup Max® at high concentration induced a significant early decrease in respiration and gross primary production 4 h after application, attributable to physiological responses. Besides, significant increases in primary production were simultaneously recorded with increases in chlorophyll a concentration and micro + nano-phytoplankton abundance 7 days after the application of Roundup Max® at high concentration. This study contributes to the knowledge of the impact of widely used herbicides on freshwater ecosystems.


Assuntos
Água Doce/química , Herbicidas/toxicidade , Microbiota/efeitos dos fármacos , Fitoplâncton/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Ácido 2,4-Diclorofenoxiacético/análise , Ácido 2,4-Diclorofenoxiacético/toxicidade , Animais , Clorofila A/metabolismo , Relação Dose-Resposta a Droga , Água Doce/análise , Glicina/análogos & derivados , Glicina/análise , Glicina/toxicidade , Herbicidas/análise , Fitoplâncton/metabolismo , Poluentes Químicos da Água/análise
16.
Ecotoxicol Environ Saf ; 201: 110794, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526590

RESUMO

The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L-1 of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L-1; MA: 1.60 ± 0.32 mg L-1; MR: 1.81 ± 0.21 mg L-1), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH4+ and P-PO43-) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.


Assuntos
Água Doce/química , Glicina/análogos & derivados , Herbicidas/toxicidade , Espécies Introduzidas/tendências , Mytilidae/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Argininossuccinato Sintase , Biodegradação Ambiental , Proteínas de Escherichia coli , Glicina/toxicidade , Mytilidae/metabolismo , Testes de Toxicidade
17.
Chemosphere ; 258: 127217, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32535437

RESUMO

The widespread use of pesticides has received increasing attention in regulatory agencies because their extensive overuse and various adverse effects on all living organisms. Organizations such as EPA and ECHA have published laws that pesticides should be fully evaluated before bring them to market. In the present study, we evaluated the pesticides toxicity using the Quantitative Structural-Activity Relationship (QSAR) method. The models for the single class pesticides (herbicides, insecticides and fungicides) as well as the general class pesticides (the combined dataset plus some microbicides, molluscicides, etc.) were developed using the Genetic Algorithm and Multiple Linear Regression method. The internal and external validation results suggested that all the obtained models were stable and predictive. According to the modeling descriptors, the lipophilic descriptors contributed positively while all the electrotopological state descriptors showed a negative contribution, their presences in every model verified the conspicuous influence of molecular lipophilicity and hydrophilicity on the pesticides toxicity. However, the influence of topological structure descriptors was different and varies with the physiochemical information they encode. Finally, the models presented in this paper would help assess the pesticides toxicity against Americamysis bahia, shorten test time, and reduce the cost of pesticides risk assessment.


Assuntos
Crustáceos/efeitos dos fármacos , Modelos Teóricos , Praguicidas/química , Praguicidas/toxicidade , Animais , Bases de Dados Factuais , Fungicidas Industriais/química , Fungicidas Industriais/toxicidade , Herbicidas/química , Herbicidas/toxicidade , Interações Hidrofóbicas e Hidrofílicas , Inseticidas/química , Inseticidas/toxicidade , Modelos Lineares , Relação Quantitativa Estrutura-Atividade
18.
Chemosphere ; 258: 127254, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32559492

RESUMO

Glyphosate is the most used herbicide worldwide, targeting physiological pathways in plants. Recent studies have shown that glyphosate can also cause toxic effects in animals. We investigated the glyphosate-based herbicide (GBH)-induced changes in potato (Solanum tuberosum) plant chemistry and the effects of a GBH on the survival rate and oxidative status of the Colorado potato beetle (Leptinotarsa decemlineata). The beetles were reared on potato plants grown in pots containing soil treated with a GBH (Roundup Gold, 450 g/l) or untreated soil (water control). The 2nd instar larvae were introduced to the potato plants and then collected in 2 phases: as 4th instar larvae and as adults. The main glycoalkaloids of the potato plants, α-solanine and α-chaconine, were measured twice during the experiment. The α-solanine was reduced in potato plants grown in GBH-treated soil, which can be detrimental to plant defenses against herbivores. GBH treatment had no effect on the survival rate or body mass of the larvae or the adult beetles. In the larvae, total glutathione (tGSH) concentration and the enzyme activity of catalase (CAT), superoxide dismutase, and glutathione-S-transferase were increased in the GBH treatment group. In the adult beetles, CAT activity and tGSH levels were affected by the interactive effect of GBH treatment and the body mass. To conclude, environmentally relevant concentrations of a GBH can affect the potato plant's glycoalkaloid concentrations, but are not likely to directly affect the survival rate of the Colorado potato beetle, but instead, modify the antioxidant defense of the beetles via diet.


Assuntos
Besouros/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Solo/química , Solanum tuberosum/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Besouros/metabolismo , Glutationa Transferase/metabolismo , Glicina/toxicidade , Larva/efeitos dos fármacos , Larva/metabolismo , Oxirredução , Solanina/análogos & derivados , Solanina/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-32405782

RESUMO

The increasing demand for biofuels favored the expansion of sugarcane and, as a consequence, in the consumption of pesticides in Brazil. Amphibians are subject to pesticide exposure for occurring in or around sugarcane fields, and for breeding at the onset of the rainy season when pesticide consumption is common. We tested the hypothesis that herbicides used in sugarcane crops, although employed for weed control and manipulated at doses recommended by the manufacturers, can cause lethal and sublethal effects on amphibian larvae. Boana pardalis was exposed to glyphosate, ametryn, 2,4-D, metribuzin and acetochlor which account to up to 2/3 of the volume of herbicides employed in sugarcane production. High mortality was observed following prolonged exposure to ametryn (76%), acetochlor (68%) and glyphosate (15%); ametryn in addition significantly reduced activity rates and slowed developmental and growth rates. AChE activity was surprisingly stimulated by glyphosate, ametryn and 2,4-D, and GST activity by ametryn and acetochlor. Some of these sublethal effects, including the decrease in activity, growth and developmental rates, may have important consequences for individual performance for extending the larval period, and hence the risk of dessication, in the temporary and semi-permanent ponds where the species develops. Future studies should seek additional realism towards a risk analysis of the environmental contamination by herbicides through experiments manipulating not only active ingredients but also commercial formulations, as well as interactions among contaminants and other environmental stressors across the entire life cycle of native amphibian species.


Assuntos
Anuros , Proteção de Cultivos , Herbicidas/toxicidade , Saccharum/crescimento & desenvolvimento , Animais , Anuros/crescimento & desenvolvimento , Brasil , Produtos Agrícolas/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento
20.
J Environ Sci Health B ; 55(7): 646-654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32432942

RESUMO

The aim of this work was to know the differential composition of the dissolved fraction of a glyphosate-based herbicide (GBH), commercialized as GLIFOPAC, when reaches different aquatic environments and its ecotoxicological effects on crustaceans species living in them. Daphnia magna, Tisbe longicornis, and Emerita analoga were exposed to glyphosate herbicide called GLIFOPAC (480 g L-1 of active ingredient or a.i.) at concentrations between 0.5 and 4.8 g a.i. L-1. Acute toxicity in D. magna (48 h-LC50), E. analoga (48 h-LC50), and T. longicornis (96 h-LC50) was studied. Chromatographic analysis of the GBH composition used and water (freshwater/sea water) polluted with GLIFOPAC were evaluated. Results reported acute toxicity (48-96 h-LC50) values for D. magna, E. analoga and T. longicornis of 27.4 mg L-1, 806.4 mg L-1, and 19.4 mg L-1, respectively. Chromatographic evaluation described around 45 substances of the GLIFOPAC composition, such as from the surfactant structures (aliphatic chain with esther/ether group), metabolites (AMPA), and other substances (glucofuranose, glucopyranoside, galactopyranose). This study evidenced differences in the GLIFOPAC composition in freshwater and marine water, which may differentiate the toxic response at the crustacean-level in each aquatic environment.


Assuntos
Crustáceos/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Braquiúros/efeitos dos fármacos , Ecotoxicologia/métodos , Biomarcadores Ambientais/efeitos dos fármacos , Água Doce , Glicina/química , Glicina/toxicidade , Herbicidas/química , Dose Letal Mediana , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA