Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.393
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1975-1980, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694482

RESUMO

To reveal the effects of nitrogen (N) inputs and mowing on the abundance and richness of insect community in meadow steppe, we investigated the abundance and diversity of herbivorous insects under four treatments in Inner Mongolia meadow steppe in August 2022, including control, N addition, mowing, and combined N addition and mowing. At a long-term control experimental platform, we collected insects using the vacuum sampling method. The results showed that N addition significantly increased the abundance of herbivorous insects, and mowing significantly decreased the abundance of herbivorous insects. Nitrogen addition significantly increased insect abundance in unmown condition but not in the mown condition. The responses of insect abundance at the community level to N addition were mainly driven by the dominant groups, Cicadellidae and Lygaeidae, which was affected by the abundance of Gramineae species. In contrast, their responses to mowing were the opposite. Both N addition and mowing did not affect the diversity of herbivorous insects. Our results indicated that the responses of herbivorous insect abundance to N inputs and mowing were directly regulated by food resources. With increasing food resource availability, the abundance but not the diversity of herbivorous insects increased, with stronger responses of dominant groups than subordinate ones.


Assuntos
Pradaria , Insetos , Animais , China , Herbivoria , Nitrogênio
2.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656822

RESUMO

Myrmecophytes have mutualistic relationships with symbiotic ants. Although myrmecophytic Macaranga (Malpighiales: Euphorbiaceae) species are well protected by aggressive Crematogaster (Hymenoptera: Formicidae) ants, some bug species occur on the myrmecophytes. To clarify the associations of these bugs with the plants and the ants, we studied the food habits of 3 bug species, Pilophorus lambirensis Nakatani et Komatsu, 2013 (Hemiptera: Miridae: Phylinae), Phylinae sp. 1, and Arbela sp. 1 (Hemiptera: Nabidae). We conducted field observations in a Bornean rainforest. First, we located these bugs and studied their behavioral responses to the ants on Macaranga species; we then conducted stable isotope analyses. All bugs avoided direct contact with ants, but they occurred only on trees with active ants. Pilophorus lambirensis and Phylinae sp. 1 were most commonly observed on the apical parts of host trees, whereas Arbela sp. 1 was mainly in areas distant from the apical parts where ants were sparse. The stable isotope ratios indicated that Phylinae sp. 1 fed on food bodies, which are nutrient-rich spherical bodies produced by Macaranga trees on the apical parts for ants. Although the main diet of the other 2 species remains unclear, nitrogen isotopic signatures demonstrated that P. lambirensis is herbivorous, whereas Arbela sp. 1 is carnivorous. However, the distant location from ants and its isotopic signatures indicated that Arbela sp. 1 rarely fed on the ants. At least 2 mirid bug species might obtain enemy-free space in addition to the food provided by the myrmecophytes.


Assuntos
Formigas , Euphorbiaceae , Heterópteros , Malpighiales , Animais , Herbivoria , Comportamento Predatório
3.
PLoS One ; 18(9): e0291202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37682835

RESUMO

DNA cytosine methylation is an epigenetic mechanism involved in regulation of plant responses to biotic and abiotic stress and its ability to change can vary with the sequence context in which a cytosine appears (CpG, CHG, CHH, where H = Adenine, Thymine, Cytosine). Quantification of DNA methylation in model plant species is frequently addressed by Whole Genome Bisulfite Sequencing (WGBS), which requires a good-quality reference genome. Reduced Representation Bisulfite Sequencing (RRBS) is a cost-effective potential alternative for ecological research with limited genomic resources and large experimental designs. In this study, we provide for the first time a comprehensive comparison between the outputs of RRBS and WGBS to characterize DNA methylation changes in response to a given environmental factor. In particular, we used epiGBS (recently optimized RRBS) and WGBS to assess global and sequence-specific differential methylation after insect and artificial herbivory in clones of Populus nigra cv. 'italica'. We found that, after any of the two herbivory treatments, global methylation percentage increased in CHH, and the shift was detected as statistically significant only by epiGBS. As regards to loci-specific differential methylation induced by herbivory (cytosines in epiGBS and regions in WGBS), both techniques indicated the specificity of the response elicited by insect and artificial herbivory, together with higher frequency of hypo-methylation in CpG and hyper-methylation in CHH. Methylation changes were mainly found in gene bodies and intergenic regions when present at CpG and CHG and in transposable elements and intergenic regions at CHH context. Thus, epiGBS succeeded to characterize global, genome-wide methylation changes in response to herbivory in the Lombardy poplar. Our results support that epiGBS could be particularly useful in large experimental designs aimed to explore epigenetic changes of non-model plant species in response to multiple environmental factors.


Assuntos
Herbivoria , Populus , Populus/genética , Metilação de DNA , Citosina , DNA Intergênico
4.
Bull Math Biol ; 85(11): 104, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726494

RESUMO

We investigate biomass-herbivore-carnivore (top predator) interactions in terms of a tritrophic dynamical systems model. The harvesting rates of the herbivores and the top predators are described by means of a sigmoidal function of the herbivores density and the top predator density, respectively. The main focus in this study is on the dynamics as a function of the natural mortality and the maximal harvesting rate of the top predators. We identify parameter regimes for which we have non-existence of equilibrium points as well as necessary conditions for the existence of such states of the modelling framework. The system does not possess any finite equilibrium states in the regime of high herbivore mortality. In the regime of a high consumption rate of the herbivores and low mortality rates of the top predator, an asymptotically stable finite equilibrium state exists. For this positive equilibrium to exist the mortality of the top predator should not exceed a certain threshold level. We also detect regimes producing coexistence of equilibrium states and their respective stability properties. In the regime of negligible harvesting of the top predator level, we observe a finite window of the natural top predator mortality rates for which oscillations in the top predator-, the herbivore- and the biomass level take place. The lower and upper bound of this window correspond to two Hopf bifurcation points. We also identify a bifurcation diagram using the top predator harvesting rate as a control variable. Using this diagram we detect several saddle node- and Hopf bifurcation points as well as regimes for which we have coexistence of interior equilibrium states, bistability and relaxation type of oscillations.


Assuntos
Herbivoria , Conceitos Matemáticos , Modelos Biológicos , Biomassa
5.
Science ; 381(6664): 1294, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37733869
6.
Sci Adv ; 9(38): eadi4099, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738342

RESUMO

It has been proposed that climate change and the arrival of modern humans in Europe affected the disappearance of Neanderthals due to their impact on trophic resources; however, it has remained challenging to quantify the effect of these factors. By using Bayesian age models to derive the chronology of the European Middle to Upper Paleolithic transition, followed by a dynamic vegetation model that provides the Net Primary Productivity, and a macroecological model to compute herbivore abundance, we show that in continental regions where the ecosystem productivity was low or unstable, Neanderthals disappeared before or just after the arrival of Homo sapiens. In contrast, regions with high and stable productivity witnessed a prolonged coexistence between both species. The temporal overlap between Neanderthals and H. sapiens is significantly correlated with the carrying capacity of small- and medium-sized herbivores. These results suggest that herbivore abundance released the trophic pressure of the secondary consumers guild, which affected the coexistence likelihood between both human species.


Assuntos
Homem de Neandertal , Humanos , Animais , Herbivoria , Teorema de Bayes , Conservação dos Recursos Naturais , Ecossistema , Europa (Continente)
7.
J Agric Food Chem ; 71(38): 13979-13987, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698370

RESUMO

Plants activate direct and indirect defense mechanisms in response to perceived herbivore invasion, which results in negative consequences for herbivores. Tetranychus cinnabarinus is a polyphagous generalist herbivore that inflicts substantial agricultural and horticultural damage. Our study revealed that mite feeding significantly increased jasmonic acid (JA) in the eggplant. The damage inflicted by the mites decreased considerably following the artificial application of JA, thereby indicating that JA initiated the defense response of the eggplant against mites. The transcriptomic and metabolomic analyses demonstrated the activation of the JA-coumarin pathway in response to mite feeding. This pathway protects the eggplant by suppressing the reproductive capacity and population size of the mites. The JA and coumarin treatments suppressed the vitellogenin gene (TcVg6) expression level. Additionally, RNA interference with TcVg6 significantly reduced the egg production and hatching rate of mites. In conclusion, the JA-coumarin pathway in the eggplant decreases the egg-hatching rate of mites through suppression of TcVg6.


Assuntos
Ácaros , Solanum melongena , Tetranychidae , Animais , Ácaros/fisiologia , Solanum melongena/genética , Vitelogeninas/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Reprodução , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Transcriptoma , Herbivoria , Cumarínicos/farmacologia
8.
Proc Biol Sci ; 290(2004): 20230987, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37554038

RESUMO

Plant toxicity shapes the dietary choices of herbivores. Especially when herbivores sequester plant toxins, they may experience a trade-off between gaining protection from natural enemies and avoiding toxicity. The availability of toxins for sequestration may additionally trade off with the nutritional quality of a potential food source for sequestering herbivores. We hypothesized that diet mixing might allow a sequestering herbivore to balance nutrition and defence (via sequestration of plant toxins). Accordingly, here we address diet mixing and sequestration of large milkweed bugs (Oncopeltus fasciatus) when they have differential access to toxins (cardenolides) in their diet. In the absence of toxins from a preferred food (milkweed seeds), large milkweed bugs fed on nutritionally adequate non-toxic seeds, but supplemented their diet by feeding on nutritionally poor, but cardenolide-rich milkweed leaf and stem tissues. This dietary shift corresponded to reduced insect growth but facilitated sequestration of defensive toxins. Plant production of cardenolides was also substantially induced by bug feeding on leaf and stem tissues, perhaps benefitting this cardenolide-resistant herbivore. Thus, sequestration appears to drive diet mixing in this toxic plant generalist, even at the cost of feeding on nutritionally poor plant tissue.


Assuntos
Asclepias , Plantas Tóxicas , Herbivoria , Dieta , Cardenolídeos
9.
PLoS One ; 18(8): e0289103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37535621

RESUMO

The structure of macroinvertebrate communities in agroecosystems has been assumed to be modular and organized around key herbivore pests. We characterized the macroinvertebrate community in the annual organic brassica agroecosystem in tropical central Brazil to determine if the community was a random assemblage of independent populations or was organized into repeatable multi-species components. We sampled 36 macroinvertebrate taxa associated with six organic brassica farms at biweekly intervals during the dry season during two years in the Distrito Federal, Brazil. We used an unconstrained ordination based on latent variable modeling (boral) with negative binomial population counts to analyze community composition independent of variation in sample abundance. We evaluated observed community structure by comparing it with randomized alternatives. We found that the community was not a random assemblage and consistently organized itself into two modules based around the major herbivores; one with lepidoptera and whiteflies and their associated natural enemies which was gradually replaced during the season by one with brassica aphids, aphid parasitoids and coccinellids. This analysis suggests that the historical and present-day focus on pest herbivores and their associated species in agroecosystems may be justified based on community structure.


Assuntos
Afídeos , Brassica , Lepidópteros , Animais , Herbivoria , Brasil
10.
PLoS One ; 18(8): e0289205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531339

RESUMO

Insect herbivores frequently encounter plant defense molecules, but the physiological and ecological consequences for their immune systems are not fully understood. The majority of studies attempting to relate levels of plant defensive chemistry to herbivore immune responses have used natural population or species-level variation in plant defensive chemistry. Yet, this potentially confounds the effects of plant defense chemistry with other potential plant trait differences that may affect the expression of herbivore immunity. We used an artificial diet containing known quantities of a plant toxin (4-methylsulfinylbutyl isothiocyanate; 4MSOB-ITC or ITC, a breakdown product of the glucosinolate glucoraphanin upon herbivory) to explicitly explore the effects of a plant toxin on the cellular and humoral immune responses of the generalist herbivore Trichoplusia ni (Lepidoptera: Noctuidae) that frequently feeds on glucosinolate-containing plants. Caterpillars feeding on diets with high concentrations of ITC experienced reduced survivorship and growth rates. High concentrations of ITC suppressed the appearance of several types of hemocytes and melanization activity, which are critical defenses against parasitic Hymenoptera and microbial pathogens. In terms of T. ni humoral immunity, only the antimicrobial peptide (AMP) genes lebocin and gallerimycin were significantly upregulated in caterpillars fed on diets containing high levels of ITC relative to caterpillars that were provided with ITC-free diet. Surprisingly, challenging caterpillars with a non-pathogenic strain of Escherichia coli resulted in the upregulation of the AMP gene cecropin. Feeding on high concentrations of plant toxins hindered caterpillar development, decreased cellular immunity, but conferred mixed effects on humoral immunity. Our findings provide novel insights into the effects of herbivore diet composition on insect performance demonstrating the role of specific plant defense toxins that shape herbivore immunity and trophic interactions.


Assuntos
Alcaloides , Mariposas , Animais , Herbivoria , Larva/fisiologia , Glucosinolatos , Imunidade Humoral , Mariposas/fisiologia , Plantas , Alcaloides/farmacologia , Isotiocianatos/farmacologia
11.
PLoS One ; 18(8): e0285731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37594962

RESUMO

Protective structures in the epidermis are essential for land plants to defend themselves against herbivores. In this study, we investigated the effect of different types of trichomes of three orchids, Calanthe triplicata, Dendrochilum pallidiflavens and Trichotosia ferox, on attachment of herbivorous land snails, using histochemistry and centrifuge experiments. Size, ornamentation and histochemistry of epicuticular trichomes on the orchid leaves were assessed with light microscopy, scanning electron microscopy and transmission electron microscopy. Total forces needed to detach two differently shaped snail species, Subulina octona and Pleurodonte isabella, were measured using a turntable equipped with a synchronized strobe. Snails were placed in two positions, either perpendicular or parallel to the main veins on the orchid leaves, both on the adaxial (= upper) or abaxial (= lower) side. The results obtained provided three new insights. First, a perpendicular or parallel position of the snails to the main veins did not significantly affect the attachment performance of either species tested. Secondly, snails detached significantly easier on leaf sides covered with a high density of lignin filled epicuticular trichomes. Thirdly, the removal of glandular trichomes did not affect the attachment forces; however, the absence of lignified trichomes increased the attachment of the snails. Our study highlights the importance of studying micro-ornamentation in combination with performance for obtaining a better understanding of the defense mechanisms employed by different species of orchids to deter herbivorous snails.


Assuntos
Herbivoria , Orchidaceae , Animais , Tricomas , Microscopia Eletrônica de Varredura , Folhas de Planta , Caramujos
12.
Mar Environ Res ; 190: 106122, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37549560

RESUMO

Herbivores strongly affect the ecological structure and functioning in seagrass bed ecosystems, but may exhibit density-dependent effects on primary producers and carbon sequestration. This study examined the effects of herbivorous snail (Cerithidea rhizophorarum) density on snail intraspecific competition and diet, dominant seagrass (Thalassia hemprichii) and epiphyte growth metrics, and sediment organic carbon (SOC). The growth rates of the herbivorous snail under low density (421 ind m-2) and mid density (842 ind m-2) were almost two times of those at extremely high density (1684 ind m-2), indicating strong intraspecific competition at high density. Herbivorous snails markedly reduced the epiphyte biomass on seagrass leaves. Additionally, the seagrass contribution to herbivorous snail as food source under high density was about 1.5 times of that under low density, while the epiphyte contribution under low density was 3 times of that under high density. A moderate density of herbivorous snails enhanced leaf length, carbon, nitrogen, total phenol and flavonoid contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and ß-glucosidase. However, high density of herbivorous snails decreased leaf glucose, fructose, detritus carbon, and total phenols contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and ß-glucosidase. Therefore, the effects of herbivorous snail on seagrass, epiphyte and SOC were density-dependent, and moderate density of herbivorous snail could be beneficial for seagrasses to increase productivity. This provided theoretical guidance for enhancing carbon sink in seagrass bed and its better conservation.


Assuntos
Celulases , Ecossistema , Sequestro de Carbono , Sedimentos Geológicos/química , Herbivoria , Carbono , Catecol Oxidase
13.
Nat Commun ; 14(1): 4990, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591878

RESUMO

The role, magnitude, and molecular nature of trans-driven expression variation underlying the upregulation of detoxification genes in pesticide resistant arthropod populations has remained enigmatic. In this study, we performed expression quantitative trait locus (eQTL) mapping (n = 458) between a pesticide resistant and a susceptible strain of the generalist herbivore and crop pest Tetranychus urticae. We found that a single trans eQTL hotspot controlled large differences in the expression of a subset of genes in different detoxification gene families, as well as other genes associated with host plant use. As established by additional genetic approaches including RNAi gene knockdown, a duplicated gene with a nuclear hormone receptor HR96-related ligand-binding domain was identified as causal for the expression differences between strains. The presence of a large family of HR96-related genes in T. urticae may enable modular control of detoxification and host plant use genes, facilitating this species' known and rapid evolution to diverse pesticides and host plants.


Assuntos
Artrópodes , Praguicidas , Animais , Herbivoria , Locos de Características Quantitativas/genética , Expressão Gênica
14.
Curr Biol ; 33(17): 3679-3689.e3, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37597519

RESUMO

Plants perceive herbivory-induced volatiles and respond to them by upregulating their defenses. To date, the organs responsible for volatile perception remain poorly described. Here, we show that responsiveness to the herbivory-induced green leaf volatile (Z)-3-hexenyl acetate (HAC) in terms of volatile emission, transcriptional regulation, and jasmonate defense hormone activation is largely constrained to younger maize leaves. Older leaves are much less sensitive to HAC. In a given leaf, responsiveness to HAC is high at immature developmental stages and drops off rapidly during maturation. Responsiveness to the non-volatile elicitor ZmPep3 shows an opposite pattern, demonstrating that this form of hyposmia (i.e., decreased sense of smell) is not due to a general defect in jasmonate defense signaling in mature leaves. Neither stomatal conductance nor leaf cuticle composition explains the unresponsiveness of older leaves to HAC, suggesting perception mechanisms upstream of jasmonate signaling as driving factors. Finally, we show that hyposmia in older leaves is not restricted to HAC and extends to the full blend of herbivory-induced volatiles. In conclusion, our work identifies immature maize leaves as dominant stress volatile-sensing organs. The tight spatiotemporal control of volatile perception may facilitate within plant defense signaling to protect young leaves and may allow plants with complex architectures to explore the dynamic odor landscapes at the outer periphery of their shoots.


Assuntos
Anosmia , Zea mays , Zea mays/genética , Ciclopentanos , Herbivoria
15.
Sci Adv ; 9(34): eadc8724, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37611108

RESUMO

Although detrimental genetic processes are known to adversely affect the viability of populations, little is known about how detrimental genetic processes in a keystone species can affect the functioning of ecosystems. Here, we assessed how changes in the genetic characteristics of a keystone predator, grey wolves, affected the ecosystem of Isle Royale National Park over two decades. Changes in the genetic characteristic of the wolf population associated with a genetic rescue event, followed by high levels of inbreeding, led to a rise and then fall in predation rates on moose, the primary prey of wolves and dominant mammalian herbivore in this system. Those changes in predation rate led to large fluctuations in moose abundance, which in turn affected browse rates on balsam fir, the dominant forage for moose during winter and an important boreal forest species. Thus, forest dynamics can be traced back to changes in the genetic characteristics of a predator population.


Assuntos
Fenômenos Genéticos , Lobos , Animais , Ecossistema , Lobos/genética , Florestas , Herbivoria
16.
Oecologia ; 202(4): 783-794, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37596431

RESUMO

Discovering how organisms respond to the combinations of stressors they face in their environment is an enduring challenge for ecologists. A particular focus has been how natural enemies and abiotic stressors faced by plants may interact in their effect on the ecology and evolution of plant defense strategies. Here, we report on the results of an experiment measuring how reproduction in the clonal herbaceous plant horsenettle (Solanum carolinense) is affected by damage by leaf-feeding and by flower-feeding herbivores-as well as how horsenettle's tolerance of these different types of herbivory may be altered by nutrient stress. Leaf herbivory by lace bugs reduced horsenettle's seed production and root growth, and the relative impacts were greater in fertilized than in nutrient-stressed plants. In contrast, simulated-floral herbivory reduced seed production to a similar degree in fertilized and nutrient-stressed plants. However, compensation for floral herbivory through increased root growth occurred to a much greater extent in the fertilized than in the nutrient-stressed plants. These results can be explained in terms of the limiting resource model of plant tolerance, with leaf damage interpreted as exacerbating carbon limitation in the fertilized plants and floral damage ameliorating carbon limitation in the fertilized plants. These results can be extended to predicting patterns in the field: Although plants in a nutrient-poor environment may have overall low fitness, they are likely to be more tolerant of leaf herbivores-though this benefit may be countered by lower tolerance of any floral herbivores that share the environment.


Assuntos
Herbivoria , Sementes , Carbono , Nutrientes , Plantas
17.
Oecologia ; 202(4): 819-830, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37640888

RESUMO

The decline of most caribou (Rangifer tarandus) populations underlines the need to understand the determinants of key demographic parameters. In migratory caribou, we have limited information on rates and drivers of pre-weaning mortality. We fitted 60 pregnant females of the Rivière-aux-Feuilles caribou herd with GPS camera collars to track the survival of calves from birth to weaning in 2016-2018. Over the three years, calf survival rate before weaning, i.e. to 01-Sep, approximately three months of age, was 0.63 (CI 0.50-0.77). Summer mortality risk was mainly influenced by calf birth date, with calves born earlier in the calving season having a lower mortality risk than those born later. Mortality also increased when calves experienced low or high temperature during calving. This study provides the first estimates of pre-weaning survival of migratory caribou calves in this herd, illustrating the value of new technologies to collect data otherwise difficult to obtain in widely distributed migratory populations. This approach can easily be extended to other large herbivores and predators. Our study brings new insights on how climate change may affect summer juvenile survival given the increased temperatures and faster changes in plant phenology expected in the future.


Assuntos
Rena , Feminino , Gravidez , Animais , Bovinos , Mudança Climática , Herbivoria , Estações do Ano
19.
Nat Commun ; 14(1): 5040, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598205

RESUMO

Grazing by domestic herbivores is the most widespread land use on the planet, and also a major global change driver in grasslands. Yet, experimental evidence on the long-term impacts of livestock grazing on biodiversity and function is largely lacking. Here, we report results from a network of 10 experimental sites from paired grazed and ungrazed grasslands across an aridity gradient, including some of the largest remaining native grasslands on the planet. We show that aridity partly explains the responses of biodiversity and multifunctionality to long-term livestock grazing. Grazing greatly reduced biodiversity and multifunctionality in steppes with higher aridity, while had no effects in steppes with relatively lower aridity. Moreover, we found that long-term grazing further changed the capacity of above- and below-ground biodiversity to explain multifunctionality. Thus, while plant diversity was positively correlated with multifunctionality across grasslands with excluded livestock, soil biodiversity was positively correlated with multifunctionality across grazed grasslands. Together, our cross-site experiment reveals that the impacts of long-term grazing on biodiversity and function depend on aridity levels, with the more arid sites experiencing more negative impacts on biodiversity and ecosystem multifunctionality. We also highlight the fundamental importance of conserving soil biodiversity for protecting multifunctionality in widespread grazed grasslands.


Assuntos
Ecossistema , Pradaria , Animais , Biodiversidade , Herbivoria , Gado , Solo
20.
Proc Natl Acad Sci U S A ; 120(35): e2308500120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607232

RESUMO

When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.


Assuntos
Redes Reguladoras de Genes , Herbivoria , Herbivoria/genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...