Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69.084
Filtrar
1.
Bioresour Technol ; 316: 123884, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32889386

RESUMO

Timber industry generates large amounts of residues such as sawdust. Softwoods have a significant economic value for timber production and the Pinus genus is widely utilized. Thus, the aim of this work was to study the hemicellulose extraction and lignin recovery from pine (Pinus spp.) residual sawdust (PRS) by sequential acid-alkaline treatment, generating a cellulose-rich solid fraction. The hemicellulose removed was 87.11% (wt·wt-1) after dilute acid treatment at 130 °C, 4.5% (wt·wt-1) of H2SO4 for 20 min at 120 rpm. Three temperatures were evaluated for recovering the lignin and the highest yield, 93.97% (wt·wt-1), was achieved at 170 °C, 10% (wt·wt-1) of NaOH for 90 min at 120 rpm. Lignin was characterized by Fourier-transform infrared spectroscopy, nuclear magnetic resonance and thermogravimetry. The resulting cellulose-rich fraction exhibited polymorphic transformation. The results demonstrated that PRS is a promising lignocellulosic residue whose lignin and carbohydrates can be readily obtained.


Assuntos
Lignina , Pinus , Celulose , Hidrólise , Termogravimetria , Madeira
2.
J Environ Sci (China) ; 97: 11-18, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933725

RESUMO

It is known that many kinds of fermentative antibiotics can be removed by temperature-enhanced hydrolysis from production wastewater based on their easy-to-hydrolyze characteristics. However, a few aminoglycosides are hard to hydrolyze below 100°C because of their stability expressed by high molecular energy gap (ΔE). Herein, removal of hard-to-hydrolyze kanamycin residue from production wastewater by hydrothermal treatment at subcritical temperatures was investigated. The results showed the reaction temperature had a significant impact on kanamycin degradation. The degradation half-life (t1/2) was shortened by 87.17-fold when the hydrothermal treatment temperature was increased from 100°C to 180°C. The t1/2 of kanamycin in the N2 process was extended by 1.08-1.34-fold compared to that of the corresponding air process at reaction temperatures of 140-180°C, indicating that the reactions during hydrothermal treatment process mainly include oxidation and hydrolysis. However, the contribution of hydrolysis was calculated as 75%-98%, which showed hydrolysis played a major role during the process, providing possibilities for the removal of kanamycin from production wastewaters with high-concentration organic matrices. Five transformation products with lower antibacterial activity than kanamycin were identified using UPLC-QTOF-MS analysis. More importantly, hydrothermal treatment could remove 97.9% of antibacterial activity (kanamycin EQ, 1,109 mg/L) from actual production wastewater with CODCr around 100,000 mg/L. Furthermore, the methane production yield in anaerobic inhibition tests could be increased about 2.3 times by adopting the hydrothermal pretreatment. Therefore, it is concluded that hydrothermal treatment as a pretreatment technology is an efficient method for removing high-concentration hard-to-hydrolyze antibiotic residues from wastewater with high-concentration organic matrices.


Assuntos
Canamicina , Águas Residuárias , Anaerobiose , Hidrólise , Metano , Oxirredução , Temperatura
3.
PLoS Comput Biol ; 16(9): e1008132, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32877399

RESUMO

Tubulin dimers associate longitudinally and laterally to form metastable microtubules (MTs). MT disassembly is preceded by subtle structural changes in tubulin fueled by GTP hydrolysis. These changes render the MT lattice unstable, but it is unclear exactly how they affect lattice energetics and strain. We performed long-time atomistic simulations to interrogate the impacts of GTP hydrolysis on tubulin lattice conformation, lateral inter-dimer interactions, and (non-)local lateral coordination of dimer motions. The simulations suggest that most of the hydrolysis energy is stored in the lattice in the form of longitudinal strain. While not significantly affecting lateral bond stability, the stored elastic energy results in more strongly confined and correlated dynamics of GDP-tubulins, thereby entropically destabilizing the MT lattice.


Assuntos
Microtúbulos , Tubulina (Proteína) , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Microtúbulos/química , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/fisiologia
4.
Waste Manag ; 118: 45-54, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32889233

RESUMO

Co-processing of lignocellulosic wastes, e.g., garden and paper wastes, and the organic matters fraction of municipal solid waste (OMSW) in an integrated bioprocess is a possible approach to realize the potential of wastes for biobutanol production. Dilute acid pretreatment is a multi-functional stage for breaking the recalcitrant lignocellulose's structure, hydrolyzing hemicellulose, and hydrolyzing/solubilizing starch, leading to a pretreated solid and a rich hydrolysate. In this study, dilute-acid pretreatment of the combination of wastepaper and OMSW, composite I, as well as garden waste and OMSW, composite II, at severe conditions resulted in "pretreatment hydrolysates" containing 33.7 and 19.4 g/L sugar along with 18.9 and 33.2 g/L soluble starch, respectively. In addition, the hydrolysis of solid remained after the pretreatment of composite I and II resulted in "enzymatic hydrolysates" comprising 19.4 and 33 g/L sugar, respectively. The fermentation of the pretreatment hydrolysates and enzymatic hydrolysates resulted in 3.5 and 6.4 g/L ABE from composite I and 15 and 5.2 g/L ABE from composite II, respectively. In this process, 148 and 173 g ABE (60 and 100 g gasoline equivalent/kg) was obtained from each kg composite I and composite II, respectively, where co-processing of OMSW with lignocellulosic wastes resulted in 10 and 49% higher ABE than that produced from the individual substrates.


Assuntos
Butanóis , Resíduos Sólidos , Fermentação , Hidrólise , Lignina/metabolismo
5.
Waste Manag ; 118: 341-349, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32927387

RESUMO

This research assessed the impact of volatile fatty acids (VFA) recovery and biomethane potential in an integrated fermentation-digestion process with a single stage digestion of primary and rotating belt filtration (RBF) sludges. Implementing semi-continuous fermentation at 1, 2, and 4 days solids retention time (SRT) showed a direct impact on the hydrolysis and VFA recovery which increased as SRT increased, while also improving the dewaterability by reducing the concentrated sludge volume index of the processed sludge. pH-controlled fermentation was effective improving the VFA yields by up to 93% and 72% at pH 9 (relative to no pH control), for RBF and primary sludges, respectively; although fermentation at pH 6 (optimum) showed promise for enhancing VFAs while lowering the required chemicals significantly. Although cellulose constituted only 21.0% and 29.5% of the TSS in primary and RBF sludges, it contributed 38-41% of the methane production for the two sludges, respectively. Experimental results of integrated fermentation-digestion and single stage digestion processes were incorporated in techno-economic analysis. Results confirmed the economic viability of fermentation with payback periods of 2.7 ± 1.1 years (RBF), and 3.6 ± 2.7 years (PS), while also revealed that VFA recovery could save up to 7.2 ± 2.0% (RBF), and 7.6 ± 2.7% (PS) of the respective total sludge handling and disposal costs, despite an average of 12.7% and 8.4% decrease in biogas production due to VFA extraction in the integrated systems of RBF and primary sludges, respectively. Overall, the integrated fermentation-digestion system economically outperformed the single stage digestion for both sludge types under all studied scenarios.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Reatores Biológicos , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise
6.
Int J Nanomedicine ; 15: 6451-6468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922011

RESUMO

Background: Non-small cell lung cancer (NSCLC) is one of the most lethal types of cancer with highly infiltrating. Chemotherapy is far from satisfactory, vasculogenic mimicry (VM) and angiogenesis results in invasion, migration and relapse. Purpose: The objective of this study was to construct a novel CPP (mmp) modified vinorelbine and dioscin liposomes by two new functional materials, DSPE-PEG2000-MAL and CPP-PVGLIG-PEG5000, to destroy VM channels, angiogenesis, EMT and inhibit invasion and migration. Methods and Results: The targeting liposomes could be enriched in tumor sites through passive targeting, and the positively charged CPP was exposed and enhanced active targeting via electrostatic adsorption after being hydrolyzed by MMP2 enzymes overexpressed in the tumor microenvironment. We found that CPP (mmp) modified vinorelbine and dioscin liposomes with the ideal physicochemical properties and exhibited enhanced cellular uptake. In vitro and in vivo results showed that CPP (mmp) modified vinorelbine and dioscin liposomes could inhibit migration and invasion of A549 cells, destroy VM channels formation and angiogenesis, and block the EMT process. Pharmacodynamic studies showed that the targeting liposomes had obvious accumulations in tumor sites and magnificent antitumor efficiency. Conclusion: CPP (mmp) modified vinorelbine plus dioscin liposomes could provide a new strategy for NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral , Células A549 , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Galinhas , Endocitose/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Hidrólise , Lipossomos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Microambiente Tumoral/efeitos dos fármacos , Vinorelbina/farmacologia , Vinorelbina/uso terapêutico
7.
Waste Manag ; 116: 40-48, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32784120

RESUMO

Municipal solid waste is an environmental threat worldwide; however, the organic fraction of municipal solid waste (OF-MSW) has a great potential for the generation of fuels and high-value products. In the current study, OF-MSW was utilized for the production of ethanol, hydrogen, as well as 2,3-butanediol, an octane booster, by using Enterobacter aerogenes. Furthermore, a promising alternative to non-biodegradable petrochemical-based polymers, polyhydroxyalkanoates (PHAs), was produced. The OF-MSW was first pretreated by an acetic acid catalyzed ethanol organosolv pretreatment at 120 and 160 °C followed by enzymatic hydrolysis of the residual solids. The residual unhydrolyzed solids resulting from enzymatic hydrolysis were further anaerobically digested for methane production. The enzymatic hydrolysis of the solids prepared at 120 °C for 60 min led to the production of hydrolysate with the highest glucose production yield of 498.5 g/kg dry untreated OF-MSW, which was fermented to 139.1 g 2,3-butanediol, 98.3 g ethanol, 28.6 g acetic acid, 71.4 L biohydrogen, and 40 g PHAs. Moreover, 23.1 L biomethane was produced through the anaerobic digestion of the enzymatic hydrolysis residue solids. Thus, appreciable amounts of energy (8236.9 kJ) and an eco-friendly bioplastic were produced by the valorization of carbon sources available in OF-MSW.


Assuntos
Biocombustíveis , Resíduos Sólidos , Anaerobiose , Etanol , Hidrogênio , Hidrólise , Metano
8.
J Med Microbiol ; 69(8): 1062-1078, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32773005

RESUMO

Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics.Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data.Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA).Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii, OXA-51, had a binding energy value of -40.984 kcal mol-1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol-1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups.Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml-1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.


Assuntos
Acinetobacter baumannii/enzimologia , Carbapenêmicos/química , beta-Lactamases/química , Ampicilina/química , Carbapenêmicos/farmacologia , Domínio Catalítico , Simulação por Computador , Doripenem/química , Ertapenem/química , Hidrólise , Meropeném/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , beta-Lactamases/metabolismo
9.
J Environ Manage ; 274: 111189, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801104

RESUMO

Centrifugation of anaerobically digested sewage sludge gives rise to a solid phase, which could be employed as a fertilizer, and a liquid fraction (ADL), which should be treated before being spilled out. This is not an easy task because this liquor is characterized for presenting high COD (~16000 mg O2/L), high ammonium content (~4000 mg/L) and low biodegradability (BOD5/COD ~0.2). With the objective to pre-treat this aqueous waste before its treatment by means of more traditional aerobic processes, different physico-chemical methods (ultrasound, ozonation, hydrolysis and wet air oxidation) were assessed in this work. Ultrasound and thermal hydrolysis gave solubilizations around 47% and 68% respectively. The best results in terms of total COD removal were obtained when wet air oxidation (8 h, 160 C-200 °C and 6.0 MPa) and ozonation (8 h, 25 °C, 12 g/h O3) techniques were employed achieving COD degradations of 71% and 38%, respectively. The pre-treatment of ADL with the four assayed techniques improved considerably the biodegradability (BOD5/COD) of the effluent, with values around 0.3-0.4, depending on the treatment. The experimental data were successfully fitted by kinetic models and the kinetic constants for the solubilization and degradation steps were obtained. Application of the proposed models can be of interest for the optimization and selection of the most suitable techniques and operational conditions, in each particular case.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Hidrólise , Oxirredução
10.
J Environ Sci (China) ; 96: 44-54, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819698

RESUMO

The sol-gel method was used to synthesize a series of metal oxides-supported activated carbon fiber (ACF) and the simultaneous catalytic hydrolysis activity of carbonyl sulfide (COS) and carbon disulfide (CS2) at relatively low temperatures of 60°C was tested. The effects of preparation conditions on the catalyst properties were investigated, including the kinds and amount of metal oxides and calcination temperatures. The activity tests indicated that catalysts with 5 wt.% Ni after calcining at 400°C (Ni(5)/ACF(400)) had the best performance for the simultaneous catalytic hydrolysis of COS and CS2. The surface and structure properties of prepared ACF were characterized by scanning electron microscope-energy disperse spectroscopy (SEM-EDS), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), carbon dioxide-temperature programmed desorption (CO2-TPD) and diffuse reflectance Fourier transform infrared reflection (DRFTIR). And the metal cation defects were researched by electron paramagnetic resonance (EPR) method. The characterization results showed that the supporting of Ni on the ACF made the ACF catalyst show alkaline and increased the specific surface area and the number of micropores, then improved catalytic hydrolysis activity. The DRFTIR results revealed that -OH species could facilitate the hydrolysis of COS and CS2; -COO and -C-O species could facilitate the oxidation of catalytic hydrolysate H2S. And the EPR results showed that high calcination temperature conditions provide more active reaction center for the COS and CS2 adsorption.


Assuntos
Dissulfeto de Carbono , Fibra de Carbono , Catálise , Carvão Vegetal , Hidrólise , Metais , Óxidos , Óxidos de Enxofre
11.
Nat Commun ; 11(1): 4263, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32848132

RESUMO

Eukaryotic DNA replication initiation relies on the origin recognition complex (ORC), a DNA-binding ATPase that loads the Mcm2-7 replicative helicase onto replication origins. Here, we report cryo-electron microscopy (cryo-EM) structures of DNA-bound Drosophila ORC with and without the co-loader Cdc6. These structures reveal that Orc1 and Orc4 constitute the primary DNA binding site in the ORC ring and cooperate with the winged-helix domains to stabilize DNA bending. A loop region near the catalytic Walker B motif of Orc1 directly contacts DNA, allosterically coupling DNA binding to ORC's ATPase site. Correlating structural and biochemical data show that DNA sequence modulates DNA binding and remodeling by ORC, and that DNA bending promotes Mcm2-7 loading in vitro. Together, these findings explain the distinct DNA sequence-dependencies of metazoan and S. cerevisiae initiators in origin recognition and support a model in which DNA geometry and bendability contribute to Mcm2-7 loading site selection in metazoans.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Domínio AAA , Trifosfato de Adenosina/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Hidrólise , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Complexo de Reconhecimento de Origem/genética , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Environ Pollut ; 266(Pt 2): 115287, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32805595

RESUMO

Strict emission control measures have been implemented in the North China Plain (NCP) to improve air quality since 2013. However, heavy particulate matter (PM) pollution still frequently occurs in the region especially during wintertime, and the nitrate contribution to fine PM (PM2.5) has substantially increased in recent several years. Nitrate aerosols, which are formed via nitric acid (HNO3) to balance inorganic cations in the particle phase, have become a major fraction of PM2.5 during wintertime haze events in the NCP. HNO3 is mainly produced through homogeneous (NO2+OH, NO3+VOCs) and heterogeneous pathways (N2O5 heterogeneous hydrolysis) in the atmosphere, but the contribution of the two pathways to the nitrate formation remains elusive. In this study, the Weather Research and Forecasting model with Chemistry (WRF-Chem) was applied to simulate a heavy haze episode from 16 to December 31, 2016 in the North China Plain, and the source-oriented method (SOM) and brute force method (BFM) were both used to evaluate contributions of the heterogeneous pathway to the nitrate formation. The results demonstrated that the near-surface nitrate contributions of the heterogeneous pathway were about 30.8% based on the BFM, and 51.6% based on the SOM, indicating that the BFM might be subject to underestimating importance of the heterogeneous pathway to the nitrate formation. The SOM simulations further showed that the heterogeneous pathway dominated the nighttime HNO3 production in the planetary boundary layer, with an average contribution of 83.0%. Although N2O5 was photolytically liable during daytime, the heterogeneous N2O5 hydrolysis still contributed 10.1% of HNO3, which was caused by substantial attenuation of incident solar radiation by clouds and high PM2.5 mass loading. Our study highlighted the significantly important role of N2O5 heterogeneous hydrolysis in the nitrate formation during wintertime haze days.


Assuntos
Poluentes Atmosféricos/análise , Aerossóis/análise , China , Monitoramento Ambiental , Hidrólise , Material Particulado/análise , Estações do Ano
13.
PLoS One ; 15(8): e0238253, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32857812

RESUMO

The origins of life on Earth have been the subject of inquiry since the early days of philosophical thought and are still intensively investigated by the researchers around the world. One of the theories explaining the life emergence, that gained the most attention recently is the RNA World hypothesis, which assumes that life on Earth was sparked by replicating RNA chains. Since wet lab analysis is time-consuming, many mathematical and computational approaches have been proposed that try to explain the origins of life. Recently proposed one, based on the work by Takeuchi and Hogeweg, addresses the problem of interplay between RNA replicases and RNA parasitic species, which is crucial for understanding the first steps of prebiotic evolution. In this paper, the aforementioned model has been extended and modified by introducing RNA sequence (structure) information and mutation rate close to real one. It allowed to observe the simple evolution mechanisms, which could have led to the more complicated systems and eventually, to the formation of the first cells. The main goal of this study was to determine the conditions that allowed the spontaneous emergence and evolution of the prebiotic replicases equipped with simple functional domains within a large population. Here we show that polymerase ribozymes could have appeared randomly and then quickly started to copy themselves in order for the system to reach equilibrium. It has been shown that evolutionary selection works even in the simplest systems.


Assuntos
Sequência de Bases , Simulação por Computador , Modelos Teóricos , Conformação de Ácido Nucleico , Origem da Vida , RNA , Algoritmos , Difusão , Hidrólise , Mutação , RNA/química , RNA Replicase/química , RNA Replicase/genética
14.
Bioresour Technol ; 317: 123984, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32827974

RESUMO

A novel carboxylesterase AcEst1 was identified from Acinetobacter sp. JNU9335 with high efficiency in the biosynthesis of chiral precursor of Edoxaban through kinetic resolution of methyl 3-cyclohexene-1-carboxylate (CHCM). Sequence analysis revealed AcEst1 belongs to family IV of esterolytic enzymes and exhibits <40% identities with known carboxylesterases. The optimum pH and temperature of recombinant AcEst1 are 8.0 and 40 °C. Substrate spectrum analysis indicated that AcEst1 prefers substrates with short acyl and alcohol groups. AcEst1 was highly active in the hydrolysis of CHCM with kcat of 1153 s-1 and displayed high substrate tolerance. As much as 2.0 M (280 g·L-1) CHCM could be enantioselectively hydrolyzed into (S)-CHCM by merely 0.08 g·L-1AcEst1 with ees of >99% (S) and substrate to catalyst ratio (S/C) of 3500 g·g-1. These results indicate that the novel AcEst1 is a promising biocatalyst in the synthesis of chiral carboxylic acids.


Assuntos
Acinetobacter , Carboxilesterase , Acinetobacter/genética , Carboxilesterase/genética , Hidrolases de Éster Carboxílico , Hidrólise , Piridinas , Especificidade por Substrato , Tiazóis
15.
Sci Total Environ ; 745: 141140, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32736114

RESUMO

Polychlorinated biphenyls (PCBs) have been reported to pose a severe risk towards human health, and hydroxylated polychlorinated biphenyls (OH-PCBs) were potential substances basis for PCBs' toxicity. This study aims to determine the inhibition of OH-PCBs towards human carboxylesterases (CESs), including CES1 and CES2. For phenotypic analysis of CES1 and CES2 activity, we used the hydrolysis metabolism of 2-(2-benzoyl3-methoxyphenyl) benzothiazole (BMBT) and fluorescein diacetate (FD) catalyzed by human liver microsomes (HLMs) as the probe reactions. Preliminary inhibition screening showed that the inhibition potential of OH-PCBs towards CES1 and CES2 increased with the increased numbers of chlorine atoms in OH-PCBs. Both 2'-OH-PCB61 and 2'-OH-PCB65 showed concentration-dependent inhibition towards both CES1 and CES2. Lineweaver-Burk plots showed that 2'-OH-PCB61 and 2'-OH-PCB65 exerted non-competitive inhibition towards CES1 and competitive inhibition towards CES2. The inhibition kinetics parameters (Ki) were 6.8 µM and 7.0 µM for 2'-OH-PCB61 and 2'-OH-PCB65 towards CES1, respectively. The inhibition kinetics parameters (Ki) were 1.4 µM and 1.0 µM for 2'-OH-PCB61 and 2'-OH-PCB65 towards CES2, respectively. In silico docking methods elucidate the contribution of hydrogen bonds and hydrophobic contacts towards the binding of 2'-OH-PCB61 and 2'-OH-PCB65 with CES1 and CES2. All these results will provide a new perspective for elucidation of toxicity mechanism of PCBs and OH-PCBs.


Assuntos
Hidrolases de Éster Carboxílico , Bifenilos Policlorados/toxicidade , Carboxilesterase , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Hidroxilação , Microssomos Hepáticos
16.
Sci Total Environ ; 745: 141010, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738689

RESUMO

The rate of urea hydrolysis in nonwater urinals is influenced by the volume of urination events and the frequency of urinal use. Inhibition of urea hydrolysis with acetic acid addition has been demonstrated at the laboratory scale but it was not able to fully represent the conditions of a real restroom with real urine collection. The goal of this study was to understand the effects of acid addition for control of urea hydrolysis on nutrient concentrations and bacterial communities in human urine during collection and storage. Three control logics were used to determine the schedule of acid addition: (i) acid addition after every urination event, (ii) acid addition during periods of high building occupancy, and (iii) acid addition during periods of low building occupancy. Wifi logins were used to approximate building occupancy and to create the control logics used in the study. All three control logics were able to inhibit urea hydrolysis. The bacterial communities were identified to determine the impact of acid addition on the community structure. The collection of urine by nonwater urinals alone did not reduce the presence of enteric bacteria commonly found when collecting urine with urine-diverting toilets. Acid addition reduced the community diversity and created conditions for higher relative abundances of the order Enterobacteriales. Finally, results from stored acidified urine showed that urea hydrolysis inhibition is reversible and is influenced by the amount of acid added at the urinal. The amount of acid added can influence the rate of hydrolysis in the storage tanks and can be used to select for urea- or ammonia-nitrogen for nutrient recovery. This study is the first of its kind to inhibit urea hydrolysis in nonwater urinals in a real restroom with real urine, and is the first to identify the bacterial communities in urine collected solely with nonwater urinals.


Assuntos
Ácido Acético , Nitrogênio , Humanos , Hidrólise , Ureia , Urina , Coleta de Urina
17.
Bioresour Technol ; 316: 123882, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739576

RESUMO

Lignocellulosic biomass fractionaion into its three major components is critically important for efficient feedstock utilization. The hydrothermal-ethanol method has broad application as its first step, hydrothermal treatment, provides high hemicellulose separation efficiency. However, it severely inhibits the delignification on the subsequent ethanol extraction. In this study, the second step, ethanol extraction, was facilitated by the addition of 3% NaOH and 3% H2O2, resulting in a significant improvement of lignin separation (by 48.2%). SEM, AFM, XPS, and XRD were used to characterize the surface composition of the remaining solids (crude cellulose) while the structure of isolated lignin was characterized by FT-IR, CP/MAS 13C NMR, GPC and TGA. The lignin samples isolated with both facilitated and non-facilitated ethanol extraction were compared to elucidate the lignin removal mechanism. The results showed that lignin degradation and crosslinking/polymerization occur in parallel during both the hydrothermal treatment and ethanol extraction.


Assuntos
Etanol , Triticum , Peróxido de Hidrogênio , Hidrólise , Lignina , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Bioresour Technol ; 316: 123866, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32745999

RESUMO

Centrifugation is very common in the production and treatment of lignocellulose for applications like pretreatment for enzymatic hydrolysis, but it is not certain whether it affects applications of lignocellulose and almost no one realizes this problem. This study investigated the effects of centrifugation on the characteristics and enzymatic hydrolysis of poplar fibers with high lignin content. The results showed that centrifugation inhibited the enzymatic hydrolysis of fiber, but fiber characteristics and enzymatic digestibility fluctuated with increasing centrifugation time. Centrifugation for about 15 min had the least effect on fiber properties while centrifugation for 30 min had the least effect on enzymatic hydrolysis. The water retention value was closely related to the enzymatic digestibility, but the pore characteristics and crystallinity index could not reflect the enzymatic accessibility of the fiber. This article will provide useful references for the enzymatic hydrolysis of lignocellulose and other high-value applications to improve production efficiency furtherly.


Assuntos
Celulose , Lignina , Centrifugação , Hidrólise , Xilanos
19.
Bioresour Technol ; 316: 123918, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763802

RESUMO

Cello-oligosaccharides (COS) are oligomers with 2 to 6 ß-1,4-linked glucose units, with potential applications in the food/feed and bioenergy industrial sectors. In this study, the combination of five heterologous expressed endoglucanases varying the temperature and pH conditions were evaluated by design of experiments for COS production. Afterwards, the best combination was tested to produce COS from different pretreated sugarcane straws: ionic liquid, diluted acid, hydrothermal and steam-explosion. The results showed that steam explosion pretreated sugarcane straw treated with CtCel9R enzyme at 50 °C and pH 5.0 yielded 13.4 mg COS g biomass-1, 5-18-fold higher compared to the other pretreated straws. Under the conditions evaluated, the removal of hemicellulose and decrease in the cellulose crystallinity can benefits the enzymatic hydrolysis. This is the first study that combined the evaluation of different enzymes, conditions, and sugarcane straw pretreatments to optimize COS production in a single step without glucose formation.


Assuntos
Celulase , Saccharum , Celulose , Hidrólise , Oligossacarídeos
20.
Bioresour Technol ; 316: 123920, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32763803

RESUMO

The combination of different pretreatment methods can effectively overcome recalcitrance of lignocellulosic biomass to ensure its highly efficient conversion into bio-based products. In this study, the combined pretreatments of chemical methods (hydrothermal treatment and Fenton treatment) with mechanical refining were used to improve the enzymatic hydrolysis efficiency of poplar branches. The results indicated that hydrothermal pretreatment and Fenton pretreatment can effectively improve the enzymatic hydrolysis of poplar substrates, e.g., the maximum glucose conversion yield and glucose concentration reached 92.4% and 20.8 g/L, respectively. The pre-hydrolysates contained some valuable components such as monosaccharides, oligosaccharides, acetic acid, furfural, and hydroxymethylfurfural. The main characteristics (specific surface area, water retention value, fines content, and surface lignin concentration) of poplar substrates were obviously changed by the combined pretreatment, which benefit the enzymatic hydrolysis.


Assuntos
Populus , Ácido Acético , Biomassa , Hidrólise , Lignina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA