Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.671
Filtrar
1.
Chemosphere ; 262: 127772, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32799140

RESUMO

This study utilized the freshwater amphipod (Hyalella azteca) for the indication of contamination risk levels of sediment-associated contaminants in the Erren (ER1∼ER10) and Sanye Rivers (SY1∼SY5) which were contaminated by metal scrap and smelting industries for decades. Toxicity identification evaluations involving the manipulation of pore water and whole-sediment samples were conducted to identify causative pollutants. Impacts on the aquatic environment were then evaluated in order to explore how industrial development led to contaminant accumulation in sediments and resulted in biological effects. A whole-sediment TIE indicated that the major toxicant at sampling sites ER8 and SY5 was ammonia and that its toxicity was significantly reduced by the addition of zeolite. Toxicity at sampling sites ER4 and ER9 was induced by ammonia and heavy metals (Zn, Cd, Cr, As), whereas Cr was at toxic levels at ER6. ∑PAHs was another major class of contaminants at site ER2. Metals (Zn, Ni, Pb, Cd, Cr, and As) were identified as major toxic contaminants at three sites (ER3, SY1, and SY3). The application of TIEs confirmed that a causative toxicant can be identified and that its measured toxicity correlated with its concentration. In conclusion, a TIE approach was successful in demarcating most effective contaminant groups (ammonia, heavy metals, and non-polar organic compounds) in whole-sediment cores, their porewaters and potential toxicities from a highly polluted river after remediation in southern Taiwan to an invertebrate animal model H. azteca.


Assuntos
Anfípodes/efeitos dos fármacos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Rios/química , Poluentes Químicos da Água/toxicidade , Amônia/análise , Amônia/toxicidade , Animais , Água Doce/química , Metais Pesados/análise , Metais Pesados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Taiwan , Clima Tropical , Poluentes Químicos da Água/análise , Zeolitas/química
2.
Sci Total Environ ; 753: 141980, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207456

RESUMO

The algae biological pump (ABP) effect for hydrophobic organic contaminants in deep oligotrophic lakes and oceans has been well studied. Suspended particulate matter (SPM) plays a connective role in ABP processes. However, little is known about the impacts of ABP effect on the occurrence, source apportionment and toxicity of SPM-bound polycyclic aromatic hydrocarbons (PAHs) in a typically shallow eutrophic lake under strong anthropogenic emissions of PAHs. In this study, we study this gap knowledge on the eutrophic Lake Chaohu, China. SPM-bound PAHs in Lake Chaohu were controlled by anthropogenic emissions in all seasons. Apparent ABP effect only occurred in spring and summer in lake area. Algae blooms in spring and summer significantly increased 46.5% ± 7.9% (mean ± standard deviation) and 19.8% ± 2.4% of Σ21 SPM-bound PAHs, and greatly enhanced their toxicity (1.98 ± 0.46 times in spring and 32.9% ± 4.2% in summer). Therefore, there need more attentions focusing on the coupling effect of persistent toxic substances such as PAHs and harmful algae blooms in aquatic environment for sustainable development. The apparent ABP effect had little influence on their source apportionment. However, it may cause a regime shift for the source apportionment on a short-term scale. Further study could pay more attentions on in-depth and short-term studies on ABP effect.


Assuntos
Proteínas de Membrana Transportadoras , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Lagos/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 752: 142156, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207514

RESUMO

Following the 2010 Deepwater Horizon oil spill, extensive research has been conducted on the toxicity of oil and polycyclic aromatic hydrocarbons (PAHs) in the aquatic environment. Many studies have identified the toxicological effects of PAHs in estuarine and marine fishes, however, only recently has work begun to identify the combinatorial effect of PAHs and abiotic environmental factors such as hypoxia, salinity, and temperature. This study aims to characterize the combined effects of abiotic stressors and PAH exposure on the cardiac transcriptomes of developing Fundulus grandis larvae. In this study, F. grandis larvae were exposed to varying environmental conditions (dissolved oxygen (DO) 2, 6 ppm; temperature 20, 30 °C; and salinity 3, 30 ppt) as well as to a single concentration of high energy water accommodated fraction (HEWAF) (∑PAHs 15 ppb). Whole larvae were sampled for RNA and transcriptional changes were quantified using RNA-Seq followed by qPCR for a set of target genes. Analysis revealed that exposure to oil and abiotic stressors impacts signaling pathways associated with cardiovascular function. Specifically, combined exposures appear to reduce development of the systemic vasculature as well as strongly impact the cardiac musculature through cardiomyocyte proliferation resulting in inhibited cardiac function and modulated blood pressure maintenance. Results of this study provide a holistic view of impacts of PAHs and common environmental stressors on the cardiac system in early life stage estuarine species. To our knowledge, this study is one of the first to simultaneously manipulate oil exposure with abiotic factors (DO, salinity, temperature) and the first to analyze cardiac transcriptional responses under these co-exposures.


Assuntos
Fundulidae , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Fundulidae/genética , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Transcriptoma , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Sci Total Environ ; 751: 141264, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32871308

RESUMO

Arctic sea ice has alarmingly high concentrations of microplastics (MPs). Additionally, sea ice reduction in the Arctic is opening new opportunities for the oil and maritime industries, which could increase oil pollution in the region. Yet knowledge of the effects of co-exposure to MPs and crude oil on Arctic zooplankton is lacking. We tested the influence of MPs (polyethylene, 20.7 µm) on polycyclic aromatic hydrocarbon (PAH) bioaccumulation and oil toxicity in the key arctic copepod Calanus hyperboreus after exposure to oil with and without dispersant. Up to 30% of the copepods stopped feeding and fecal pellet production rates were reduced after co-exposure to oil (1 µL L-1) and MPs (20 MPs mL-1). The PAH body burden was ~3 times higher in feeding than in non-feeding copepods. Copepods ingested both MPs and crude oil droplets. MPs did not influence bioaccumulation of PAHs in copepods or their fecal pellets, but chemical dispersant increased bioaccumulation, especially of ≥4 ring-PAHs. Our results suggest that MPs do not act as vectors of PAHs in Arctic marine food webs after oil spills, but, at high concentrations (20 MPs mL-1), MPs can trigger behavioral stress responses (e.g., feeding suppression) to oil pollution in zooplankton.


Assuntos
Copépodes , Poluição por Petróleo , Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Regiões Árticas , Bioacumulação , Microplásticos , Petróleo/toxicidade , Plásticos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Zooplâncton
5.
Arch Environ Contam Toxicol ; 79(3): 321-332, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32897393

RESUMO

The purpose of this study was to investigate the association among polycyclic aromatic hydrocarbons (PAHs) exposure and air pollutants and the diversity of microbiota. Daily average concentrations of six common air pollutants were obtained from China National Environmental Monitoring Centre. The PAHs exposure levels were evaluated by external and internal exposure detection methods, including monitoring atmospheric PAHs and urinary hydroxyl-polycyclic aromatic hydrocarbon (OH-PAH) metabolite levels. We analyzed the diversity of environmental and commensal bacterial communities with 16S rRNA gene sequencing and performed functional enrichment with Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Correlation analysis and logistic regression modeling were conducted to evaluate the relationship of PAHs levels with air pollutants and microbial diversity. Correlation analysis found that the concentrations of atmospheric PAHs were significantly positively correlated with those of PM10, NO2, and SO2. There also was a positive correlation between the abundance of the genus Micrococcus (Actinobacteria) and high molecular weight PAHs, and Bacillus, such as genera and low molecular weight PAHs in the atmosphere. Logistic regression showed that the level of urinary 1-OHPyrene was associated with childhood asthma after sex and age adjustment. The level of urinary 1-OHPyrene was significantly positively correlated with that of PM2.5 and PM10. In addition, the level of 1-OHPyrene was positively correlated with oral Prevotella-7 abundance. Functional enrichment analysis demonstrated that PAHs exposure may disturb signaling pathways by the imbalance of commensal microbiota, such as purine metabolism, pyrimidine metabolites, lipid metabolism, and one carbon pool by folate, which may contribute to public health issues. Our results confirmed that atmospheric PAHs and urinary 1-OHPyrene were correlated with part of six common air pollutants and indicated that PAHs pollution may alter both environmental and commensal microbiota communities associated with health-related problems. The potential health and environmental impacts of PAHs should be further explored.


Assuntos
Actinobacteria/efeitos dos fármacos , Poluentes Atmosféricos/análise , Bacillus/efeitos dos fármacos , Monitoramento Ambiental/métodos , Microbiota/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Poluentes Atmosféricos/toxicidade , Atmosfera , Bacillus/genética , Bacillus/isolamento & purificação , Biodiversidade , Criança , China , Feminino , Humanos , Microbiota/genética , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , RNA Ribossômico 16S/genética
6.
Aquat Toxicol ; 227: 105590, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32891021

RESUMO

The aim of the present study was to investigate effects of defined mixtures of polycyclic aromatic hydrocarbons (PAHs) and perfluoroalkyl substances (PFASs), at low, environmentally relevant (1× = L), or high (20× = H) doses, on biological responses in Atlantic cod (Gadus morhua). To this end, farmed juvenile cod were exposed at day 0 and day 7 via intraperitoneal (i.p.) injections, in a two-week in vivo experiment. In total, there were 10 groups of fish (n = 21-22): two control groups, four separate exposure groups of PAH and PFAS mixtures (L, H), and four groups combining PAH and PFAS mixtures (L/L, H/L, L/H, H/H). Body burden analyses confirmed a dose-dependent accumulation of PFASs in cod liver and PAH metabolites in bile. The hepatosomatic index (HSI) was significantly reduced for three of the combined PAH/PFAS exposure groups (L-PAH/H-PFAS, H-PAH/L-PFAS, H-PAH/H-PFAS). Analysis of the hepatic proteome identified that pathways related to lipid degradation were significantly affected by PFAS exposure, including upregulation of enzymes in fatty acid degradation pathways, such as fatty acid ß-oxidation. The increased abundances of enzymes in lipid catabolic pathways paralleled with decreasing levels of triacylglycerols (TGs) in the H-PFAS exposure group, suggest that PFAS increase lipid catabolism in Atlantic cod. Markers of oxidative stress, including catalase and glutathione S-transferase activities were also induced by PFAS exposure. Only minor and non-significant differences between exposure groups and control were found for cyp1a and acox1 gene expressions, vitellogenin concentrations in plasma, Cyp1a protein synthesis and DNA fragmentation. In summary, our combined proteomics and lipidomics analyses indicate that PFAS may disrupt lipid homeostasis in Atlantic cod.


Assuntos
Fluorcarbonetos/toxicidade , Gadus morhua/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Bile/metabolismo , Biomarcadores/metabolismo , Fluorcarbonetos/análise , Lipidômica , Fígado/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Proteoma/metabolismo , Proteômica , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise
7.
Environ Sci Pollut Res Int ; 27(34): 42405-42423, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32875453

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic compounds which are emitted through incomplete combustion of organic materials, fossil fuels, consumption of processed meat, smoked food, and from various industrial activities. High molecular mass and mobility make PAHs widespread and lethal for human health. A cellular system in human detoxifies these toxicants through specialized enzymatic machinery called xenobiotic-metabolizing (CYP450) and phase-II (GSTs) enzymes (XMEs). These metabolizing enzymes include cytochromes P450 family (CYP1, CYP2), glutathione s-transferases, and ALDHs. Gene polymorphisms in XMEs encoding genes can compromise their metabolizing capacity to detoxify ingested carcinogens (PAHs etc.) that may lead to prolong and elevated exposure to ingested toxicants and may consequently lead to cancer. Moreover, PAHs can induce cancer through reprograming XMEs' gene functions by altering their epigenetic markers. This review article discusses possible interplay between individual's gene polymorphism in XMEs' genes, their altered epigenetic markers, and exposure to PAHs in cancer susceptibility in Pakistan.


Assuntos
Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Carcinógenos/análise , Carcinógenos/toxicidade , Exposição Ambiental , Monitoramento Ambiental , Humanos , Neoplasias/induzido quimicamente , Neoplasias/genética , Paquistão , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Polimorfismo Genético
8.
Aquat Toxicol ; 228: 105630, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32971354

RESUMO

Bitumen mined in the oil sands region of Northern Alberta, Canada, is diluted with natural gas condensates to form dilbit, which is transported through pipelines. Sections of these pipelines come close to freshwater ecosystems. If dilbit is spilled into or near an aquatic environment, environmental weathering processes, such as evaporation and sediment interaction, influence the fate and toxicity of dilbit to aquatic organisms. To date, most studies of the effects of dilbit on the health of aquatic organisms have not considered weathering processes. Thus, the goal of this study was to assess the toxicity of weathered sediment-bound dilbit (WSD) to an aquatic organism. Adult freshwater amphipods (Hyalella azteca) were exposed directly to WSD or the water-soluble fraction (WSF) of WSD. Direct exposure to WSD resulted in oil-mineral aggregates adhering to the appendages and gas exchange structures of amphipods, causing acute lethality. After a 10-min exposure to WSD, amphipods consumed half as much oxygen and their appendage movement was impaired. Exposure to the WSF, which contained a total PAH concentration of 1.08 µg/L, did not result in acute lethality, or significantly affect respiration, activity or acetylcholinesterase activity. Results of the present study indicate that physical interaction with oil-mineral aggregates after a spill of dilbit is a threat to benthic invertebrates, whereas the WSF does not cause acute adverse effects. As the transport of dilbit through pipelines increases in North America, studies must incorporate environmental weathering processes when determining the effects of dilbit on aquatic organisms.


Assuntos
Anfípodes/efeitos dos fármacos , Água Doce , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Alberta , Animais , Organismos Aquáticos/efeitos dos fármacos , Ecossistema , Consumo de Oxigênio/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Solubilidade , Água/química
9.
Mar Environ Res ; 162: 105155, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32992224

RESUMO

Produced water (PW), a large byproduct of offshore oil and gas extraction, is reinjected to formations or discharged to the sea after treatment. The discharges contain dispersed crude oil, polycyclic aromatic hydrocarbons (PAHs), alkylphenols (APs), metals, and many other constituents of environmental relevance. Risk-based regulation, greener offshore chemicals and improved cleaning systems have reduced environmental risks of PW discharges, but PW is still the largest operational source of oil pollution to the sea from the offshore petroleum industry. Monitoring surveys find detectable exposures in caged mussel and fish several km downstream from PW outfalls, but biomarkers indicate only mild acute effects in these sentinels. On the other hand, increased concentrations of DNA adducts are found repeatedly in benthic fish populations, especially in haddock. It is uncertain whether increased adducts could be a long-term effect of sediment contamination due to ongoing PW discharges, or earlier discharges of oil-containing drilling waste. Another concern is uncertainty regarding the possible effect of PW discharges in the sub-Arctic Southern Barents Sea. So far, research suggests that sub-arctic species are largely comparable to temperate species in their sensitivity to PW exposure. Larval deformities and cardiac toxicity in fish early life stages are among the biomarkers and adverse outcome pathways that currently receive much attention in PW effect research. Herein, we summarize the accumulated ecotoxicological knowledge of offshore PW discharges and highlight some key remaining knowledge needs.


Assuntos
Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Indústrias Extrativas e de Processamento , Noruega , Petróleo/análise , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
10.
Ecotoxicol Environ Saf ; 202: 110920, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800255

RESUMO

Advanced glycation end products (AGE) and the receptor for AGE (RAGE) have been found to be pivotal biomarkers to predict the risk of inflammation and oxidative stress. Limited evidence focuses on the influence of occupational exposure to polycyclic aromatic hydrocarbon (PAH) and metal fumes on AGE and RAGE in shipyard welders. Our aim was to determine the relationships among PAH, metal exposure, and inflammatory biomarkers. From September 1 to December 31, 2017, 53 welding workers (exposed group) and 29 office workers (control group) were enrolled in the study. Comprehensive workups included demographic characteristics, laboratory data, AGE, RAGE, Interleukin-6 (IL-6), tumor necrosis factor-α, PAH, and urinary metal concentrations. RAGE levels were measured by flow cytometric analysis. Urinary 1-hydroxypyrene (1-OHP) was used as a biomarker of exposure to PAH. Several metals were elevated in the personal fine particulate matter (PM2.5) samples, including Mn, Fe, V, Co, Zn, and Cu. The exposed group had significantly higher exposure to PM2.5 (p = 0.015), RAGE (p = 0.020), IL-6 (p = 0.008) than the control group. After adjusting for pertinent variables, there was still a significant and positive association between Ni level and AGE (ß = 0.101; 95% CI, 0.031-0.172). Significant relationship between Cr and Cd levels and RAGE was observed (ß = 0.173; 95% CI, 0.017-0.329; ß = 0.084; 95% CI, 0.011-0.157, respectively). Participants with elevated 1-OHP level had higher odds of high RAGE level in the model 1 (OR = 3.466, 95% CI, 1.053-11.412) and model 2 (OR = 3.454, 95% CI, 1.034-11.536). The RAGE expression of participants was significantly associated with IL-6 levels in the fully adjusted model (ß = 0.294; 95% CI, 0.083-0.732). Our findings highlighted that urinary metal levels and PAH were associated with increased AGE and RAGE formation in shipyard workers. Elevated serum RAGE might induce the production of proinflammatory cytokines and trigger ensuing inflammatory cascades.


Assuntos
Poluentes Ocupacionais do Ar/análise , Metais/análise , Exposição Ocupacional/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Poluentes Ocupacionais do Ar/toxicidade , Biomarcadores/urina , Gases/análise , Produtos Finais de Glicação Avançada/sangue , Humanos , Inflamação , Masculino , Metais/toxicidade , Estresse Oxidativo , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fator de Necrose Tumoral alfa , Soldagem
11.
Sci Total Environ ; 747: 141123, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32795789

RESUMO

Soils can be contaminated with polycyclic aromatic hydrocarbons (PAHs) when either sewage sludge (SSL) or biochar (BC) are used. There are no comparative studies regarding the effects of soil amendment with SSL or BC on the persistence, bioavailability and toxicity of PAHs. This research compared the persistence of PAHs (based on the extractable content, Ctot) and their bioavailability (freely dissolved, Cfree) as well as the toxicity (solid phase: Phytotoxkit F with Lepidium sativum and the Collembolan test with Folsomia candida; leachates: Phytotestkit F with L. sativum and Microtox® with Aliivibrio fischeri) of soil amended with SSL or with SSL-derived BCs. BCs were produced from three different sewage sludges at a temperature of 500 °C. SSLs or BCs were added to the soil at a rate of 1% (30 t/ha). Adding SSL to the soil increased more the PAH content in it than after BC application, which was associated with a higher content of PAHs in SSL. Losses of Σ16 Ctot and Cfree PAHs were higher than those observed for biochar only in the case of one SSL. In the other cases, PAH losses were either higher for biochar or did not differ significantly between SSL and BC. On the other hand, the analysis of the individual groups of PAHs showed significant differences between SSL and BC, both for Ctot and Cfree. Nonetheless, these differences were largely driven by the type of sewage sludge and biochar. Only in the case of root growth inhibition the toxicity higher was for the SSL-amended soils than for the BC-amended ones. In the other cases, varying results were observed which were determined by the type of sewage sludge/biochar, similarly to PAH losses.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Disponibilidade Biológica , Carvão Vegetal , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Esgotos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Chemosphere ; 261: 127779, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32736249

RESUMO

Rhizo-box experiments were conducted to analyze the phyto-microbial remediation potential of a grass (Lolium multiflorum L.) and a crop (Glycine max L.) combined with exogenous strain (Pseudomonas sp.) for polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The dynamics of bacterial community composition, abundances of 16 S rDNA and ring hydroxylating dioxygenases (RHDα) genes, and removal of PAHs were evaluated and compared on four culture stages (days 0, 10, 20, and 30). The results showed that 8.65%-47.42% of Σ12 PAHs were removed after 30 days of cultivation. Quantitative polymerase chain reaction (qPCR) analysis indicated that treatments with soybean and ryegrass rhizosphere markedly increased the abundances of total bacteria and PAH-degraders, especially facilitated the growth of gram-negative degrading bacteria. Flavobacterium sp. and Pseudomonas sp. were the main and active strains in the control soil. However, the presence of plants and/or exogenous Pseudomonas sp. changed the soil bacterial community structure and modified the bacterial diversity of PAH-degraders. On the whole, this study showed that the high molecular weight PAHs removal efficiency of phyto-microbial remediation with ryegrass was better than those of remediation with soybean. Furthermore, the removals of PAHs strongly coincided with the abundance of PAH-degraders and bacterial community structure.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Bactérias/metabolismo , Dioxigenases/genética , Lolium , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas , Rizosfera , Solo/química , Poluentes do Solo/metabolismo
13.
PLoS One ; 15(8): e0236708, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790684

RESUMO

BACKGROUND: Polycyclic aromatic hydrocarbons (PAHs) are a kind of endocrine disruptors, which can enter human body by the inhalation of PAH-containing matter and the ingestion of PAH-containing foodstuffs. Studies showed that PAHs can cross the placental barrier and might cause adverse effects on the fetus. OBJECTIVES: This meta-analysis aimed to estimate the associations between prenatal exposure to PAHs and birth weight. METHODS: Articles published in English until May 8, 2020 and reported the effects of prenatal exposure to PAHs on birth weight were searched in multiple electronic databases including PubMed, the Web of Science, EMBASE and the Cochrane Library. The included studies were divided into three groups in accordance with the measurement of PAHs exposure. Then coefficient was extracted, conversed and synthesized by random-effects meta-analysis. And risk of bias was assessed for each study. RESULTS: A total of 3488 citations were searched and only 11 studies were included finally after double assessment. We found that there were no association between PAH-DNA adducts in cord blood (low/high) (OR: 1.0, 95%CI: 0.97, 1.03), 1-hydroxy pyrene (1-HP) concentration in maternal urine (OR: 1.0, 95%CI: 0.97, 1.03) and prenatal maternal airborne PAHs exposure (OR: 0.97, 95%CI: 0.93, 1.01) and birth weight. However, we observed ethnicity may change the effects of PAHs exposure on birth weight. CONCLUSIONS: There is no significant relationship between prenatal exposure to PAHs and birth weight in our meta-analysis. Further studies are still needed for determining the effects of prenatal PAHs exposure on birth weight.


Assuntos
Peso ao Nascer/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Exposição Materna , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Atmosféricos/química , Poluentes Atmosféricos/toxicidade , Adutos de DNA/química , Bases de Dados Factuais , Disruptores Endócrinos/química , Feminino , Sangue Fetal/química , Humanos , Razão de Chances , Hidrocarbonetos Policíclicos Aromáticos/química , Gravidez , Pirenos/urina
14.
Sci Total Environ ; 745: 140639, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32758758

RESUMO

The Deepwater Horizon (DWH) oil spill marked the largest environmental oil spill in human history, where it was estimated a large amount of the polycyclic aromatic hydrocarbons (PAHs) were released with crude oil into the environment. In this study, common PAH compounds were quantitatively determined in crude oil from the DWH spill by gas chromatography-mass spectroscopy (GC-MS). Twelve PAH compounds were identified and quantified from a 100× dilution of DWH crude oil: naphthalene (7800 ng/mL), acenaphthylene (590 ng/mL), acenaphtehen (540 ng/mL), fluorene (2550 ng/mL), phenanthrene (2910 ng/mL), anthracene (840 ng/mL), fluoranthene (490 ng/mL), pyrene (290 ng/mL), benzo(k) fluoranthene (1050 ng/mL), benzo(b)fluoranthene (1360 ng/mL), dibenz(a,h)anthracene (2560 ng/mL), and benzo(g, h, i) perylene (630 ng/mL). Toxicity assays using the nematode, Caenorhabditis elegans (C. elegans), indicated a single PAH compound naphthalene, exposure increased C. elegans germ cell apoptosis which may adversely affect progeny reproduction. The number of apoptotic germ cells significantly increased from 1.4 to 2.5 when worms were treated with 10 µg/mL of naphthalene and from 1.3 to 2.5 and 3.5 cells in presence of 1 µg/mL and 5 µg/mL of benzo(a)pyrene, respectively. Five CYP450 genes (CYP14A3, CYP35A1, CYP35A2, CYP35A5, and CYP35C1) were significantly upregulated following 500× dilution of dispersed crude oil exposure (p < 0.05). These results suggest that CYP450s may play a role in bioactivation of PAHs in crude oil, resulting in DNA damage related germ cell apoptosis.


Assuntos
Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Apoptose , Caenorhabditis elegans , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Células Germinativas , Humanos , Regulação para Cima
15.
Environ Res ; 188: 109862, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32846646

RESUMO

The lower portion of Taquari River is influenced by compounds from anthropic activities causing concern about the drinking water supplied to cities in the region. The study objective was to investigate the presence of contaminants at drinking water abstraction sites, defining the mutagenic effects of these stressors as an ecosystem quality parameter and its possible effects on human health. Geographic Information System techniques were used to investigate sources of contamination and it was found that agricultural activities predominated with a few medium and high potential pollutant agricultural activities, besides a soil area that was contaminated and undergoing an intervention process. Mutagenic effects were evaluated by Salmonella/microsome assay using TA98, TA97a, TA100, YG1041 and YG1042 strains in the presence and absence of metabolic activation (S9). Mutagenesis found in organic sediment extracts and surface water samples showed the prevalence of direct-acting mutagens at the drinking water abstraction sites. Taquari (Ta032, the sampling points were named according to the initial letters of the river (Ta), followed by the number of kilometers from the mouth) showed the highest mutagenic potency in sediment, while Ta063, at Bom Retiro do Sul, presented it in the water sample. In the Triunfo region (Ta011) there were significant responses in sediment and in water samples. The samples at General Câmara (Ta006) showed the least presence of contaminants. The Allium cepa test applied to sediments in natura showed significant micronucleus induction in Ta032 in accordance with the Salmonella/microssome assay. The test performed on Danio rerio embryos (FET) in the in natura water samples did not present significant responses. Chemical analyses of polycyclic aromatic hydrocarbons and metals already identified as chemical markers in the area indicated a small contribution to the mutagenic potency, calling attention to the fact that other direct-acting pollutants may be present at the drinking water abstraction sites.


Assuntos
Água Potável , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Ecossistema , Humanos , Testes de Mutagenicidade , Mutagênicos/análise , Mutagênicos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Rios , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-32784849

RESUMO

This study aimed to evaluate the impact of co-inoculation Rhizobium sp. and Azospirillum sp. on plant (Trifolium pratense L.) growth in the presence of polycyclic aromatic hydrocarbon (PAH) contamination (anthracene, phenanthrene, and pyrene). Eight strains from the genus Rhizobium leguminosarum bv. trifolii were selected for biotest analysis. Two methods of inoculation were used in the chamber experiment: (1) R. leguminosarum alone and (2) a combined inoculant (R. leguminosarum and Azospirillum brasilense). For comparison, non-contaminated controls were also used. The results demonstrated that co-inoculation of plants with Rhizobium and Azospirillum resulted in more root and shoot biomass than in plants inoculated with R. leguminosarum alone. The results indicated that application of a co-inoculation of bacteria from Rhizobium and Azospirillum species had a positive effect on clover nodulation and growth under the condition of PAH contamination.


Assuntos
Azospirillum brasilense , Hidrocarbonetos Policíclicos Aromáticos , Rhizobium leguminosarum , Poluentes do Solo , Trifolium , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes do Solo/toxicidade , Trifolium/microbiologia
17.
Sci Total Environ ; 746: 141161, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750582

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are global contaminants of concern. Despite several decades of research, their mechanisms of toxicity are not very well understood. Early life stages of fish are particularly sensitive with the developing cardiac tissue being a main target of PAHs toxicity. The mechanisms of cardiotoxicity of the three widespread model polycyclic aromatic hydrocarbons (PAHs) retene, pyrene and phenanthrene were explored in rainbow trout (Oncorhynchus mykiss) early life stages. Newly hatched larvae were exposed to sublethal doses of each individual PAH causing no detectable morphometric alterations. Changes in the cardiac proteome and metabolome were assessed after 7 or 14 days of exposure to each PAH. Phase I and II enzymes regulated by the aryl hydrocarbon receptor were significantly induced by all PAHs, with retene being the most potent compound. Retene significantly altered the level of several proteins involved in key cardiac functions such as muscle contraction, cellular tight junctions or calcium homeostasis. Those findings were quite consistent with previous reports regarding the effects of retene on the cardiac transcriptome. Significant changes in proteins linked to iron and heme metabolism were observed following exposure to pyrene. While phenanthrene also altered the levels of several proteins in the cardiac tissue, no clear mechanisms or pathways could be highlighted. Due to high variability between samples, very few significant changes were detected in the cardiac metabolome overall. Slight but significant changes were still observed for pyrene and phenanthrene, suggesting possible effects on several energetic or signaling pathways. This study shows that early exposure to different PAHs can alter the expression of key proteins involved in the cardiac function, which could potentially affect negatively the fitness of the larvae and later of the juvenile fish.


Assuntos
Oncorhynchus mykiss , Fenantrenos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Larva , Metabolômica , Proteômica , Pirenos/toxicidade
18.
Ecotoxicol Environ Saf ; 203: 110931, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32684516

RESUMO

Numerous studies have enriched our knowledge of the microbial community composition and metabolic versatility of contaminated soil. However, there remains a substantial gap regarding the bioassembly patterns of the indigenous microbial community distribution in contaminated deep soils. Herein, the indigenous microbial community structure diversity, function, and co-occurrence relationships in aged PAH-contaminated deep soil collected from an abandoned chemical facility were investigated using high-throughput sequencing. The results showed that the dominant phyla in all samples were responsible for PAH degradation and included Proteobacteria (20.86%-81.37%), Chloroflexi (2.03%-28.44%), Firmicutes (3.06%-31.16%), Actinobacteria (2.92%-11.91%), Acidobacteria (0.41%-12.68%), and Nitrospirae (0.81%-9.21%). Eighty biomarkers were obtained by linear discriminant analysis of effect size (LEfSe), and most of these biomarkers were PAH degraders. Functional predictions using Tax4Fun indicated that the aged contaminated soil has the potential for PAH degradation. Statistical analysis showed that in contrast with the PAH concentration, edaphic properties (nutrients and pH) were significantly correlated (r > 0.25, P < 0.01) with the bacterial community and functional composition. Co-occurrence network analysis (modularity index of 0.781) revealed non-random assembly patterns of the bacterial communities in the PAH-contaminated soils. The modules in the network were mainly involved in carbon and nitrogen cycles, organic substance degradation, and biological electron transfer processes. Microbes from the same module had strong ecological linkages. Additionally, SAR202 clade, Thermoanaerobaculum, Nitrospira, and Xanthomonadales, which were identified as keystone species, played an irreplaceable role in the network. Overall, our results suggested that environmental factors such as nutrients and pH, together with ecological function, are the main factors driving the assembly of microbial communities in aged PAH-contaminated deep soils.


Assuntos
Microbiota/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Microbiologia do Solo , Poluentes do Solo/toxicidade , Solo/química , Actinobacteria/efeitos dos fármacos , Actinobacteria/metabolismo , Biodegradação Ambiental , Gammaproteobacteria/efeitos dos fármacos , Gammaproteobacteria/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise
19.
Chemosphere ; 259: 127487, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32650165

RESUMO

Polycyclic Aromatic Hydrocarbons (PAHs) have elicited increasing concern due to their ubiquitous occurrence in coastal marine environments and resultant toxicity in organisms. Due to their lipophilic nature, PAHs tend to accumulate in phytoplankton cells and thus subsequently transfer to other compartments of the marine ecosystem. The intrinsic fluorescence properties of PAHs in the ultraviolet (UV)/blue spectral range have recently been exploited to investigate their uptake modes, localization, and aggregation in various biological tissues. Here, we quantitatively evaluate the sorption of two model PAHs (phenanthrene and pyrene) in three marine phytoplankton species (Chaetoceros tenuissimus, Thalassiosira sp. and Proteomonas sp.) using a combined approach of UV excitation flow cytometry and fluorescence microscopy. Over a 48-h exposure to a gradient of PAHs, Thalassiosira sp. showed the highest proportion of PAH-sorbed cells (29% and 97% of total abundance for phenanthrene and pyrene, respectively), which may be attributed to its relatively high total lipid content (33.87 percent dry weight). Moreover, cell-specific pulse amplitude modulation (PAM) microscope fluorometry revealed that PAH sorption significantly reduced the photosynthetic quantum efficiency (Fv/Fm) of individual phytoplankton cells. We describe a rapid and precise hybrid method for the detection of sorption of PAHs on phytoplankton cells. Our results emphasize the ecologically relevant sub-lethal effects of PAHs in phytoplankton at the cellular level, even at concentrations where no growth inhibition was apparent. This work is the first study to address the cell-specific impacts of fluorescent toxicants in a more relevant toxicant-sorbed subpopulation; these cell-specific impacts have to date been unidentified in traditional population-based phytoplankton toxicity assays.


Assuntos
Fitoplâncton/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Análise de Célula Única/métodos , Absorção Fisico-Química , Ecossistema , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos , Fenantrenos/química , Fenantrenos/farmacocinética , Fitoplâncton/citologia , Fitoplâncton/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Pirenos/química , Pirenos/farmacocinética , Raios Ultravioleta
20.
Ecotoxicol Environ Saf ; 201: 110766, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32531572

RESUMO

Telomeres (TLs) are non-coding DNA sequences that are usually shortened with ageing and/or chemical exposure. Bioindicators such as the land snail can be used to assess the environmental risk of contaminated soils. As for most invertebrates, the evolution of TLs with ageing or exposure to contaminants is unknown in this mollusc. The aims of this study were to explore the relationships between ageing, contaminant exposure, sublethal effects and TL length in the terrestrial gastropod Cantareus aspersus. TL length was investigated in haemocytes from five age classes of C. aspersus. The impact of contaminants on sub-adult snails exposed to Cd, Hg or a mixture of polycyclic aromatic hydrocarbons (PAHs) in soils for one or two months was studied. Bioaccumulation, growth, sexual maturity and TLs were measured. TL attrition was significant for the juvenile and sub-adult stages, but not later. Exposure to Cd increased the mortality (around 30%). Exposure to polluted soils inhibited growth (19-40%) and sexual maturity (6-100%). Although the health of the snails exposed to Cd, Hg and PAHs was altered, TL length in haemocytes was not disturbed, suggesting a high capacity of this snail species to maintain its TLs in haemocytes under chemical stress. These results first address TL length in snails and reveal that the relationship commonly proposed for vertebrates between TL shortening and ageing or exposure to contaminants cannot be generalized.


Assuntos
Caramujos/fisiologia , Poluentes do Solo/toxicidade , Telômero/efeitos dos fármacos , Animais , Poluição Ambiental , Caracois Helix , Mercúrio , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Caramujos/efeitos dos fármacos , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA