Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.969
Filtrar
1.
J Environ Manage ; 304: 114313, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942548

RESUMO

Environmental pollution mitigation measure involving bioremediation technology is a sustainable intervention for a greener ecosystem biorecovery, especially the obnoxious hydrocarbons, xenobiotics, and other environmental pollutants induced by anthropogenic stressors. Several successful case studies have provided evidence to this paradigm including the putative adoption that the technology is eco-friendly, cost-effective, and shows a high tendency for total contaminants mineralization into innocuous bye-products. The present review reports advances in bioremediation, types, and strategies conventionally adopted in contaminant clean-up. It identified that natural attenuation and biostimulation are faced with notable limitations including the poor remedial outcome under the natural attenuation system and the residual contamination occasion following a biostimulation operation. It remarks that the use of genetically engineered microorganisms shows a potentially promising insight as a prudent remedial approach but is currently challenged by few ethical restrictions and the rural unavailability of the technology. It underscores that bioaugmentation, particularly the use of high cell density assemblages referred to as microbial consortia possess promising remedial prospects thus offers a more sustainable environmental security. The authors, therefore, recommend bioaugmentation for large scale contaminated sites in regions where environmental degradation is commonplace.


Assuntos
Recuperação e Remediação Ambiental , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Hidrocarbonetos , Microbiologia do Solo , Poluentes do Solo/análise , Tecnologia
2.
J Chromatogr A ; 1662: 462732, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-34910963

RESUMO

The analysis of mineral oil hydrocarbons in vegetable oils is challenging especially regarding the analysis of mineral oil aromatic hydrocarbons (MOAH) since native terpenes like squalene or ß-carotene are usually extracted along with the MOAH fraction and interfere their detection. When applying a recently developed screening method for the analysis of mineral oil saturated hydrocarbons (MOSH) and MOAH in paper and cardboard by planar solid phase extraction (pSPE) to vegetable oils, native terpenes expectably interfered with MOAH analysis. Thus, an adaption of pSPE employing silver ions, named silver ion-planar solid phase extraction (Ag-pSPE), was developed in this study. Impregnation of thin-layers with silver nitrate (AgNO3) was found to be very successful in retaining squalene and ß-carotene. MOAH analysis of vegetable oils after saponification showed good repeatability (relative standard deviation (%RSD) <10%) and recoveries of 73.4-112.4% at a spiking level of 4.5 mg/kg (n = 4). For MOSH analysis, a simple solid phase extraction (SPE) clean-up with aluminum oxide removed native n-alkanes prior to Ag-pSPE. Recoveries for MOSH were 55.3-84.5% with %RSD <11% at a spiking level of 45.5 mg/kg (n = 4). Limits of decision and quantitation were at 7.2 and 22.2 ng/zone for MOSH and 1.1 and 3.4 ng/zone for MOAH, respectively, which corresponded to the recently introduced pSPE method, thus showing that analytes were not affected by the impregnation of HPTLC plates with AgNO3. The method comparison with LC-GC showed similar results for MOSH, while the amounts for MOAH determined by Ag-pSPE were higher.


Assuntos
Óleo Mineral , Óleos Vegetais , Contaminação de Alimentos/análise , Hidrocarbonetos/análise , Íons , Óleo Mineral/análise , Extração em Fase Sólida
3.
Ecotoxicol Environ Saf ; 229: 113071, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34915220

RESUMO

Diluted bitumen (dilbit) is an unconventional crude petroleum increasingly being extracted and transported to market by pipeline and tanker. Despite the transport of dilbit through terrestrial, aquatic, and coastal habitat important to diverse bird fauna, toxicity data are currently only available for fish and invertebrates. We used the zebra finch (Taeniopygia guttata) as a tractable, avian model system to investigate exposure effects of lightly weathered Cold Lake blend dilbit on survival, tissue residue, and a range of physiological and behavioural endpoints. Birds were exposed via oral gavage over 14-days with dosages of 0, 2, 4, 6, 8, 10, or 12 mL dilbit/kg bw/day. We identified an LD50 of 9.4 mL/kg/d dilbit, with complete mortality at 12 mL/kg/d. Mortality was associated with mass loss, external oiling, decreased pectoral and heart mass, and increased liver mass. Hepatic ethoxyresorufin-O-deethylase activity (EROD) was elevated in all dilbit-dosed birds compared with controls but there was limited evidence of sublethal effects of dilbit on physiological endpoints at doses < 10 mL/kg/d (hematocrit, hemoglobin, total antioxidants, and reactive oxygen metabolites). Dilbit exposure affected behavior, with more dilbit-treated birds foraging away from the feeder, more birds sleeping or idle at low dilbit doses, and fewer birds huddling together at high dilbit doses. Naphthalene, dibenzothiophene, and their alkylated congeners in particular (e.g. C2-napthalene and C2-dibenzothiophene) accumulated in the liver at greater concentrations in dilbit-treated birds compared to controls. Although directly comparable studies in the zebra finch are limited, our mortality data suggest that dilbit is more toxic than the well-studied MC252 conventional light crude oil with this exposure regime. A lack of overt sublethal effects at lower doses, but effects on body mass and composition, behaviour, high mortality, and elevated PAC residue at doses ≥ 10 mL/kg/d suggest a threshold effect.


Assuntos
Tentilhões , Petróleo , Poluentes Químicos da Água , Animais , Hidrocarbonetos
4.
J Hazard Mater ; 421: 126699, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34330075

RESUMO

The present study employed an anoxic packed bed biofilm reactor (AnPBR) inoculated with in-situ biosurfactant-producing bacteria for the biodegradation of petroleum wastewater. Highly acclimated biomass decreased the start-up phase period and with increasing the initial total petroleum hydrocarbon (TPH) concentration from 1.5 to 4 g/L was accompanied by TPH and chemical oxygen demand (COD) removal efficiencies of above 99% and 96%, respectively. Decreasing hydraulic retention time (HRT) from 24 to 6 h caused an increase in the specific hydrocarbon utilization rate value from 0.45 to 1.66 gTPH/gbiomass.d. Moreover, dehydrogenase activity, surfactin, and rhamnolipid reached 31.8 µgTF/gbiomass.d, 95.1, and 27.1 mg/L, respectively. The biodegradation kinetic coefficients such as K, Ks, Kd, Y and µmax were 0.784 (d-1), 0.005 (g/L), 0.138 (d-1), 0.569 (gVSS/gCOD), and 0.446 (d-1), respectively. Dropping of bioreactor performance, especially TPH removal efficiency from 99% to 37.6% in the absence of nitrate after 10 days, indicates anoxic metabolism has been the dominant biodegradation pathway. The effluent chromatogram of gas chromatography/flame ionization detector (GC/FID) showed aliphatic, cyclic aliphatic, and aromatic hydrocarbons efficiently degraded. According to the high degradation rate of AnPBR in different operational parameters, it can be recommended for the treatment of oil-contaminated wastewater.


Assuntos
Petróleo , Bactérias , Biodegradação Ambiental , Biofilmes , Hidrocarbonetos
5.
Chemosphere ; 286(Pt 1): 131619, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346343

RESUMO

For wastewater treatment, sediment microbial fuel cells (SMFCs) have advantages over traditional microbial fuel cells in cost (due to their membrane-less structure) and operation (less intensive maintenance). Nevertheless, the technical obstacles of SMFCs include their high internal electrical resistance due to sediment in the anode chamber and slow oxygen reduction reaction (ORR) in the cathode chamber, which is responsible for their low power density (PD) (0.2-50 mW/m2). This study evaluated several SMFC improvements, including anode and cathode chamber amendment, electrode selection, and scaling the chamber size up to obtain optimally constructed single-chamber SMFCs to treat fat, oil, and grease (FOG) trap effluent. The chemical oxygen demand (COD) removal efficiency, PD, and electrical energy conversion efficiency concerning theoretically available chemical energy from FOG trap effluent treatment (%ECWW) were examined. Packing biochar in the anode chamber reduced its electrical resistance by 5.76 times, but the improvement in PD was trivial. Substantial improvement occurred when packing the cathode chamber with activated carbon (AC), which presumably catalyzed the ORR, yielding a maximum PD of 109.39 mW/m2, 959 times greater than without AC in the cathode chamber. This SMFC configuration resulted in a COD removal efficiency of 85.80 % and a %ECWW of 99.74 % in 30 days. Furthermore, using the most appropriate electrode pair and chamber volume increased the maximum PD to 1787.26 mW/m2, around 1.7 times greater than the maximum PD by SMFCs reported thus far. This optimally constructed SMFC is low cost and applicable for household wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Hidrocarbonetos
6.
Chemosphere ; 286(Pt 2): 131750, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352537

RESUMO

The remediation effects of hydrogen peroxide (H2O2) oxidation and surfactant-leaching alone or in combination on three typical oilfield sludges were studied. The removal efficiency of total petroleum hydrocarbons (TPHs) of Jidong, Liaohe and Jiangsu oil sludges by hydrogen peroxide oxidation alone was very poor (6.5, 6.8, and 3.4 %, respectively) but increased significantly (p < 0.05), especially of long-chain hydrocarbons, by combining the use of H2O2 with surfactants (80.0, 79.8 and 82.2 %, respectively). Oxidation combined with leaching may impair microbial activity and organic manure was therefore added to the treated sludges for biostimulation and the composition and function of the microbial community were studied. The addition of manure rapidly restored sludge microbial activity and significantly increased the relative abundance of some salt-tolerant and alkali-tolerant petroleum-degrading bacteria such as Corynebacterium, Pseudomonas, Dietzia and Jeotgalicoccus. Moreover, the relative abundance of two classic petroleum-degrading enzyme genes, alkane 1-monooxygenase and catechol 1, 2-dioxygenase, increased significantly.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Peróxido de Hidrogênio , Petróleo/análise , Esgotos , Microbiologia do Solo , Poluentes do Solo/análise , Tensoativos
7.
Chemosphere ; 286(Pt 2): 131663, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34371357

RESUMO

In this study, an immobilization method for forming and keeping dominant petroleum degradation bacteria was successfully developed by immobilizing Pseudomonas, Acinetobacter, and Sphingobacterium genus bacteria on wheat bran biochar pyrolyzed at 300, 500, and 700 °C. The removal efficiency indicated that the highest TPHs (total petroleum hydrocarbons) removal rate of BC500-4 B (biochar pyrolyzed at 500 °C with four kinds of petroleum bacteria) was 58.31%, which was higher than that of BC500 (36.91%) and 4 B (43.98%) used alone. The soil properties revealed that the application of biochar increased the content of organic matter, available phosphorus, and available potassium, but decreased pH and ammonium nitrogen content in soil. Bacterial community analysis suggested that the formation of dominant degrading community represented by Acinetobacter played key roles in TPHs removal. The removal rate of alkanes was similar to that of TPHs. Besides, biochar and immobilized material can also mediate greenhouse gas emission while removing petroleum, biochar used alone and immobilized all could improve CO2 emission, but decrease N2O emission and had no significant impact on CH4 emission. Furthermore, it was the first time to found the addition of Acinetobacter genus bacteria can accelerate the process of forming a dominant degrading community in wheat bran biochar consortium. This study focused on controlling greenhouse gas emission which provides a wider application of combining biochar and bacteria in petroleum soil remediation.


Assuntos
Gases de Efeito Estufa , Petróleo , Poluentes do Solo , Álcalis , Bactérias , Biodegradação Ambiental , Carvão Vegetal , Fibras na Dieta , Gases de Efeito Estufa/análise , Hidrocarbonetos , Petróleo/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
8.
Chemosphere ; 286(Pt 2): 131782, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34375825

RESUMO

The current study was dedicated to finding the effect of soil amendments (biochar and compost) on plants belonging to Poaceae and Fabaceae families. Plants selected for the phytoremediation experiment included wheat (Triticum aestivum), maize (Zea mays), white clover (Trifolium repens), alfalfa (Medicago sativa), and ryegrass (Lolium multiflorum). The physiological and microbial parameters of plants and soil were affected negatively by the 4 % TPHs soil contamination. The studied physiological parameters were fresh and dried biomass, root and shoot length, and chlorophyll content. Microbial parameters included root and shoot endophytic count. Soil parameters included rhizospheric CFUs and residual TPHs. Biochar with wheat, maize, and ryegrass (Fabaceae family) and compost with white clover and alfalfa (Poaceae family) improved plant growth parameters and showed better phytoremediation of TPHs. Among different plants, the highest TPH removal (68.5 %) was demonstrated by ryegrass with compost, followed by white clover with biochar (68 %). Without any soil amendment, ryegrass and alfalfa showed 59.55 and 35.21 % degradation of TPHs, respectively. Biochar and compost alone removed 27.24 % and 6.01 % TPHs, respectively. The interactive effect of soil amendment and plant type was also noted for studied parameters and TPHs degradation.


Assuntos
Compostagem , Lolium , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Humanos , Hidrocarbonetos , Medicago sativa , Poaceae , Solo , Poluentes do Solo/análise
9.
Chemosphere ; 286(Pt 3): 131751, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399257

RESUMO

Oil spills in Arctic marine environments are expected to increase concurrently with the expansion of shipping routes and petroleum exploitation into previously inaccessible ice-dominated regions. Most research on oil biodegradation focusses on the bulk oil, but the fate of the water-accommodated fraction (WAF), mainly composed of toxic aromatic compounds, is largely underexplored. To evaluate the bacterial degradation capacity of such dissolved aromatics in Greenlandic seawater, microcosms consisting of 0 °C seawater polluted with WAF were investigated over a 3-month period. With a half-life (t1/2) of 26 days, m-xylene was the fastest degraded compound, as measured by gas chromatography - mass spectrometry. Substantial slower degradation was observed for ethylbenzene, naphthalenes, phenanthrene, acenaphthylene, acenaphthene and fluorenes with t1/2 of 40-105 days. Colwellia, identified by 16S rRNA gene sequencing, was the main potential degrader of m-xylene. This genus occupied up to 47 % of the bacterial community until day 10 in the microcosms. Cycloclasticus and Zhongshania aliphaticivorans, potentially utilizing one-to three-ringed aromatics, replaced Colwellia between day 10 and 96 and occupied up to 6 % and 23 % of the community, respectively. Although most of the WAF can ultimately be eliminated in microcosms, our results suggest that the restoration of an oil-impacted Arctic environment may be slow as most analysed compounds had t1/2 of over 2-3 months and the detrimental effects of a spill towards the marine ecosystem likely persist during this time.


Assuntos
Poluição por Petróleo , Petróleo , Poluentes Químicos da Água , Regiões Árticas , Biodegradação Ambiental , Ecossistema , Gammaproteobacteria , Hidrocarbonetos , Poluição por Petróleo/análise , RNA Ribossômico 16S/genética , Água do Mar , Água , Poluentes Químicos da Água/análise
10.
Chemosphere ; 286(Pt 2): 131752, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34426136

RESUMO

Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.


Assuntos
Microbiota , Poluição por Petróleo , Petróleo , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo/análise , Microbiologia do Solo , Poluentes do Solo/análise
11.
J Hazard Mater ; 423(Pt A): 127092, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34488093

RESUMO

Tire and road wear particles may constitute the largest source of microplastic particles into the environment. Quantification of these particles are associated with large uncertainties which are in part due to inadequate analytical methods. New methodology is presented in this work to improve the analysis of tire and road wear particles using pyrolysis gas chromatography mass spectrometry. Pyrolysis gas chromatography mass spectrometry of styrene butadiene styrene, a component of polymer-modified bitumen used on road asphalt, produces pyrolysis products identical to those of styrene butadiene rubber and butadiene rubber, which are used in tires. The proposed method uses multiple marker compounds to measure the combined mass of these rubbers in samples and includes an improved step of calculating the amount of tire and road based on the measured rubber content and site-specific traffic data. The method provides good recoveries of 83-92% for a simple matrix (tire) and 88-104% for a complex matrix (road sediment). The validated method was applied to urban snow, road-side soil and gully-pot sediment samples. Concentrations of tire particles in these samples ranged from 0.1 to 17.7 mg/mL (snow) to 0.6-68.3 mg/g (soil/sediment). The concentration of polymer-modified bitumen ranged from 0.03 to 0.42 mg/mL (snow) to 1.3-18.1 mg/g (soil/sediment).


Assuntos
Plásticos , Polímeros , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos , Pirólise
12.
Sci Total Environ ; 806(Pt 2): 150619, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34592289

RESUMO

Bitumen is extracted from oil sands in the Athabasca Oil Sands region (AOSR) of Alberta, Canada. Much of the bitumen-derived toxicity in mine waste is attributable to naphthenic acid fraction compounds (NAFCs). Mines in the AOSR are required to be returned to a natural state after closure; thus, cost-effective strategies are needed to reduce toxicity from NAFCs. Previous studies have demonstrated the capability of constructed wetlands to attenuate NAFCs. However, the capacity of wetlands in the natural environment to degrade and transform NAFCs to less toxic components is poorly understood. To better understand the spatial distribution and fate of NAFCs in natural wetlands, samples were collected across the surfaces of two mature opportunistic wetlands near active oil sands mines. The first wetland has a well-defined surface flow pathway and inflows affected by overburden containing lean bitumen ore. The second wetland, in contrast, is a stagnant water body with raw bitumen visible along its edges. For the wetland with a well defined flow path, NAFCs decreased in concentration down gradient, while oxidized NAFCs constituted a greater proportion of NAFCs with increase in flow path. Likewise there was a decrease in the molecular weights of NAFCs, similar to trends observed in constructed wetland treatment systems. In comparison, NAFCs were more uniformly distributed across the relatively stagnant wetland. Overall, these data provide new evidence that mature opportunistic wetlands in the AOSR can promote the degradation and oxidation of bitumen-derived naphthenic acids into less toxic compounds.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Alberta , Ácidos Carboxílicos , Hidrocarbonetos , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
13.
Sci Total Environ ; 806(Pt 3): 150708, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600982

RESUMO

Contaminated marine sediments represent a critical threat towards human health and ecosystems, since they constitute a potential reservoir of toxic compounds release. In the present study, a bioslurry reactor was studied for the treatment of real marine sediments contaminated by petroleum hydrocarbons. The experimental campaign was divided in two periods: in the first period, microcosm trials were carried out to achieve useful indicators for biological hydrocarbon removal from sediments. The microcosm trials highlighted that the inoculum of halotolerant allochthonous bacteria provided the highest performance followed by autochthonous biomass. Based on the achieved results, in the second experimental period a bioslurry reactor was started up, based on a semisolid stirred tank reactor (STR) operated in batch mode. The process performances have been evaluated in terms of total petroleum hydrocarbon (TPH) removal, coupled with the characterization of microbial community through a Next Generation Sequencing (NGS) and phytotoxicity tests through the Germination Index (GI) with Lepidium Sativum seeds. The achieved results showed good hydrocarbons removal, equal to 40%, with a maximum removal rate of 220 mgTPH kg-1 d-1, but highlighting that high contaminant concentrations might affect negatively the overall removal performance. In general, the observed results were encouraging towards the feasibility of biological treatment of marine sediments contaminated by hydrocarbons. The microbiological analysis allowed the identification of taxa most involved in the degradation of TPH, highlighting after the treatment a shift in the microbial community from that of the raw sediment.


Assuntos
Ecossistema , Petróleo , Biodegradação Ambiental , Sedimentos Geológicos , Humanos , Hidrocarbonetos
14.
J Colloid Interface Sci ; 607(Pt 1): 401-411, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509114

RESUMO

HYPOTHESIS: Zeta-potential in the presence of brine has been studied for its application within hydrocarbon reservoirs. These studies have shown that sandstone's zeta-potential remains negatively charged, non-zero, and levels-off at salinities > 0.4 mol.dm-3, thus becoming independent of salinity when ionic strength is increased further. However, research conducted to date has not yet considered clay-rich (i.e. clay ≥ 5 wt%) sandstones. EXPERIMENTS: Firstly, streaming potential measurements were conducted on Bandera Gray sandstones (clay-rich and clay-poor) with 0.6 and 2 mol.dm-3 NaCl brine-saturated in pressurised environments (6.895 MPa overburden and 3.447 MPa back-pressure). Secondly, the streaming potential was determined at identical conditions for the effect of two surfactants, SDBS and CTAB, at concentrations of 0.01 and 0.1 wt% on the clay-poor sample in 0.6 mol.dm-3 NaCl. Thirdly, a comparison of zeta potentials determined via electrophoretic and streaming potential was conducted. Accordingly, this work analyses the effects of mineralogy and surfactants within this process. FINDINGS: Clay-rich sandstone possessed lower zeta-potentials than clay-poor sandstone at the two tested salinities. SDBS reduced zeta-potential and yielded higher repulsive forces rendering the rock more hydrophilic. Additionally, electrophoretic zeta-potentials were higher when compared to streaming zeta-potentials. Mechanisms for the observed phenomena are also provided.


Assuntos
Surfactantes Pulmonares , Tensoativos , Argila , Hidrocarbonetos , Interações Hidrofóbicas e Hidrofílicas
15.
Chemosphere ; 287(Pt 3): 132220, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34543895

RESUMO

The present study investigated the effects of metal loaded spent adsorbent as catalyst for the catalytic pyrolysis of pine needle biomass. Metal active sites (Ni, Fe, Cu, Zn and Mo) were introduced in alumina matrix by wet impregnation process. Non-catalytic and catalytic semi-batch pyrolysis study was carried out at conditions: 550 °C temperature, 50 °C min-1 heating rate and 200 mL min-1 N2 flow rate. Results indicated significant deoxygenation potential 3.33-35.57% of the applied catalysts towards oxygenated compounds by converting them into their corresponding hydrocarbon (27.70-36.41%) and phenolic (40.41-46.04%) derivatives. Among all the catalysts, Ni/Al and Fe/Al produced the highest quality bio-oil by enriching their carbon content to 62.93 and 60.14% and heating value to 31.41 and 26.86 MJ kg-1, respectively. Moreover, significant enhancement in their hydrocarbons (36.41 and 36.01% for Ni/Al and Fe/Al, respectively) and phenolic compounds (46.04 and 41.67% for Ni/Al and Fe/Al, respectively) from 9.15% hydrocarbons and 13.32% phenols in non-catalytic bio-oil had also been observed. Presence of CO and CO2 in the evolved gases also represented the occurrence of deoxygenation reactions during catalytic breakdown. Hydrocarbon and phenol-rich bio-oil can find its application either as a replacement for petroleum fuel or an industrial-grade chemical. Thus, catalysts derived from spent aluminum hydroxide nanoparticle adsorbent can act as an effective substitute for the currently utilized high-cost catalysts in catalytic pyrolysis of biomass.


Assuntos
Nanopartículas , Pirólise , Hidróxido de Alumínio , Biocombustíveis , Biomassa , Catálise , Temperatura Alta , Hidrocarbonetos , Fenóis , Óleos Vegetais , Polifenóis
16.
Sci Total Environ ; 806(Pt 1): 150316, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34555609

RESUMO

In the last decade, lignin has received much attention as a feedstock to produce bio-based products. This study investigates the potential benefits of using lignin to mitigate the environmental impact of the road construction sector. An environmental life cycle assessment (LCA) of various top-layer bio-based asphalts using kraft lignin was conducted. From a cradle-to-grave perspective, lignin-based asphalts were compared with conventional asphalts. The results of the LCA revealed that the climate change impact of lignin-based asphalts could be 30-75% lower than conventional asphalts. For the other ten impact categories, trade-offs were observed. Overall, two key factors to make the environmental impact of lignin-based asphalts lower than conventional asphalts are 1) increasing the amount of bitumen-substituted and 2) using low-grade biomass fuels for process steam in the pulp mill. The substitution of weak filler with lignin was beneficial only for climate change and could lead to a worse overall environmental performance than conventional asphalts. Similarly, higher environmental impacts for lignin-based asphalts could be obtained if the pulp mill consumed natural gas to complete the energy balance to replace the part of the black liquor from which lignin is extracted. This study also includes an in-depth discussion on methodological choices such as the allocation methods for lignin, functional units, and asphalt layers considered. We believe that such a methodological discussion could be helpful to support future Product Category Rules for asphalt mixtures.


Assuntos
Hidrocarbonetos , Lignina , Biomassa
17.
J Environ Manage ; 301: 113863, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610558

RESUMO

This study presents the thermo-chemical conversion by means of pyrolysis as a route to valorise end of life tyres (ELTs) in a sustainable manner whilst targeting produced pyrolysis oil (pyro-oil) to replace conventional fossil fuels. The work presented here compares the results of pyro-oil extracted from the pyrolysis of three tyre grades, namely fresh (new) tyres, car and lorry truck ELTs; and investigates the pyro-oil extracted for fuel properties and common fuel hydrocarbon range. A fixed bed reactor system was used to conduct the experimental runs between 500 and 800 °C. The results show that fresh tyres and car ELTs yield some 45% of pyro-oil at an average reactor bed temperature equal to 600 °C which promotes evolution of liquid hydrocarbons via primary route of tyres cracking, hence pyro-oil production to a maximum. Furthermore, and at a similar operating temperature; the diesel range hydrocarbons (C10-C19) were around 66% of the total fuel like chromatograph studied for the pyrolysis oils. The work in this study and based on properties of fuel investigated point towards blending the oil extracted with conventional fuels that could result in lowering dependency on fossil based ones. Further upgrading is also possible whereby desulphurisation could lead to renewable and sustainable fuel source utilising a solid waste feedstock such as ELTs.


Assuntos
Óleos , Pirólise , Temperatura Alta , Hidrocarbonetos , Resíduos Sólidos , Temperatura
18.
J Environ Manage ; 301: 113849, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619586

RESUMO

Engine oil consists of hazardous substances that adversely affect the environment and soil quality. Bioremediation (employing organisms) is an appropriate technique to mitigate engine oil pollution. In the present study, the earthworm species, Drawida modesta (epigeic) and Lampito mauritii (anecic) were used to restore the soil polluted with polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPHs) from used engine oil. Four treatments were set up in addition to positive and negative controls. A maximum of 68.6% PAHs and 34.3% TPHs removal in the treatment with soil (1 kg), cow dung (50 g), used engine oil (7.5 mL) and earthworms was recorded after 60 days. Undoubtedly, earthworms effectively removed PAHs and TPHs from the oil-contaminated soil. PAHs were more strongly accumulated in D. modesta (16.25 mg kg-1) than in L. mauritii (13.25 mg kg-1). Further, histological analysis revealed the epidermal surface irregularity, cellular disintegration, and cellular debris in earthworms. The pH (6.3%), electrical conductivity (12.7%), and total organic carbon (35.4%) were significantly (at P < 0.05) decreased after 60 days; while, total nitrogen (62%), total potassium (76.2%), and total phosphorus (19.2%) were substantially increased at the end of the experiment. The seed germination assay with fenugreek indicates that germination percentage (95%), and germination index (179), were dramatically increased in earthworm inoculated treatments when compared to the negative control (without earthworms). The results reveal that there is a great scope for utilizing the earthworms, D. modesta and L. mauritii for the bioremediation of soils contaminated with PAHs and TPHs.


Assuntos
Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Animais , Biodegradação Ambiental , Bovinos , Feminino , Hidrocarbonetos , Solo , Poluentes do Solo/análise
19.
J Environ Manage ; 301: 113826, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626942

RESUMO

The continuous growth of waste is generating worldwide more and more increasing related environmental concerns. Anything that is not recycled or recuperated from waste represents a loss of raw materials and other production factors used in the manufacture, transport and consumer phases of the product. This research explored the potential of three waste namely Construction and Demolition (CD) waste, Fly Ash (FA), and Jet Grouting (JG) waste as fillers in comparison to the traditional limestone one for making hot asphalt mastics for road pavement, through a rheological analysis and environmental compatibility tests towards the release of potentially toxic elements. A total of eight asphalt mastics were prepared by using two filler-to-binder weight ratios (f/b) of 0.5 and 1 for blending each filler with a neat bitumen 50/70 penetration grade. The Frequency Sweep test and the Multiple Stress Creep and Recovery (MSCR) test were carried out to investigate the rheological properties of the asphalt mastics. Asphalt mastics containing FA and JG fillers were found to be more mechanically and environmentally efficient than traditional limestone mastic in particular by adopting an f/b equal to 1 where it was observed higher complex shear modulus values, G*, (on average 50% compared to the traditional asphalt mastic) and lower non-recoverable creep compliance values, Jnr, (on average 35% compared to the traditional asphalt mastic) at all test temperatures investigated. Based on the suggested ranking methodology, CD emerged as the filler performing in the same way of the traditional one. All the waste containing mastics, showed up noticeable environmental compatibility, being the potentially toxic elements completely immobilized into the mastics' structure e practically not releasable into acidic water, highlighting the waste recycling for road pavements as primary strategy to immobilize hazardous wastes.


Assuntos
Materiais de Construção , Reciclagem , Cinza de Carvão , Hidrocarbonetos
20.
Environ Pollut ; 292(Pt A): 118271, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627963

RESUMO

Despite the economic benefits of the oil and gas industry in Northern Alberta, significant concerns exist regarding the impacts of increased oil production on the environment and human health. Several studies have highlighted increases in the concentrations of polycyclic aromatic compounds (PACs) and other hydrocarbons in the atmosphere, water, soil and sediments, plants, wildlife and fish in the Athabasca Oil Sands Region (AOSR) as a result of oil sands industrial activity. Sediment cores can provide information on the temporal trends of contaminants to the environment and provide important baseline information when monitoring data are absent. Here we combined analytical chemistry and a mammalian cell-based bioassay in dated lake sediment cores to assess paleotoxicity in freshwater systems in the AOSR. Sediment intervals were radiometrically dated and subsequently analysed for PACs. PAC extracts from select dated intervals were used in cell-based bioassays to evaluate their endocrine disrupting properties. We demonstrated spatial and temporal variability in the PAC composition of sediment cores around the AOSR with some of the highest concentrations of PACs detected near oil sands industrial activity north of Fort McMurray (AB) in La Saline Natural Area. Recent sediment had positive enrichment factors across most PAC analytes at this site with heavier pyrogenic compounds such as benz(a)anthracene/chrysene and benzofluoranthene/benzopyrene dominating. Our study is the first to link chemical analysis of sediment cores with biological effect assessments of endocrine activity showing feasibility of extending the usefulness of sediment cores in monitoring programs interested in complex mixture assessments. While we observed no spatial or temporal differences in ERα mediated signaling, AhR CALUX results mirrored those of the chemical analysis, demonstrating the utility of coupling biological effects assessments to historical reconstructions of contaminant inputs to the natural environment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Alberta , Animais , Monitoramento Ambiental , Humanos , Hidrocarbonetos , Campos de Petróleo e Gás , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...