Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.066
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445506

RESUMO

Hypoxia-regulated protein carbonic anhydrase IX (CA IX) is up-regulated in different tumor entities and correlated with poor prognosis in breast cancer patients. Due to the radio- and chemotherapy resistance of solid hypoxic tumors, derivatives of betulinic acid (BA), a natural compound with anticancer properties, seem to be promising to benefit these cancer patients. We synthesized new betulin sulfonamides and determined their cytotoxicity in different breast cancer cell lines. Additionally, we investigated their effects on clonogenic survival, cell death, extracellular pH, HIF-1α, CA IX and CA XII protein levels and radiosensitivity. Our study revealed that cytotoxicity increased after treatment with the betulin sulfonamides compared to BA or their precursors, especially in triple-negative breast cancer (TNBC) cells. CA IX activity as well as CA IX and CA XII protein levels were reduced by the betulin sulfonamides. We observed elevated inhibitory efficiency against protumorigenic processes such as proliferation and clonogenic survival and the promotion of cell death and radiosensitivity compared to the precursor derivatives. In particular, TNBC cells showed benefit from the addition of sulfonamides onto BA and revealed that betulin sulfonamides are promising compounds to treat more aggressive breast cancers, or are at the same level against less aggressive breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Triterpenos Pentacíclicos/química , Sulfonamidas/farmacologia , Neoplasias de Mama Triplo Negativas/metabolismo , Antígenos de Neoplasias/química , Antineoplásicos/síntese química , Antineoplásicos/química , Anidrase Carbônica IX/química , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Modelos Moleculares , Simulação de Acoplamento Molecular , Tolerância a Radiação , Sulfonamidas/síntese química , Sulfonamidas/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
2.
Zhongguo Zhong Yao Za Zhi ; 46(13): 3257-3269, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34396745

RESUMO

Cardiovascular diseases seriously endanger human health and life. The accompanying myocardial injury has been a focus of attention in society. Chinese medicine,serving as a natural and precious reservoir for the research and development of new drugs,is advantageous in resisting myocardial injury due to its multi-component,multi-pathway,and multi-target characteristics. In recent years,with the extensive application of culture method for isolated cardiomyocytes,a cost-effective,controllable in vitro model of cardiomyocyte injury with uniform samples is becoming a key tool for mechanism research on cardiomyocyte injury and drug development.A good in vitro model can reduce experimental and manpower cost,and also accurately stimulate clinical changes to reveal the mechanism. Therefore,the selection and establishment of in vitro model are crucial for the in-depth research. This study summarized the modeling principles,evaluation indicators,and application of more than ten models reflecting different clinical conditions,such as injuries induced by hypoxia-reoxygenation,hypertrophy,oxidative stress,inflammation,internal environmental disturbance,and toxicity. Furthermore,we analyzed advantages and technical difficulties,aiming to provide a reference for in-depth research on myocardial injury mechanism and drug development.


Assuntos
Apoptose , Miócitos Cardíacos , Hipóxia Celular , Humanos , Miocárdio , Estresse Oxidativo
3.
Int J Mol Sci ; 22(16)2021 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-34445747

RESUMO

SARS-CoV-2 primarily infects epithelial airway cells that express the host entry receptor angiotensin-converting enzyme 2 (ACE2), which binds to the S1 spike protein on the surface of the virus. To delineate the impact of S1 spike protein interaction with the ACE2 receptor, we incubated the S1 spike protein with human pulmonary arterial endothelial cells (HPAEC). HPAEC treatment with the S1 spike protein caused disruption of endothelial barrier function, increased levels of numerous inflammatory molecules (VCAM-1, ICAM-1, IL-1ß, CCL5, CXCL10), elevated mitochondrial reactive oxygen species (ROS), and a mild rise in glycolytic reserve capacity. Because low oxygen tension (hypoxia) is associated with severe cases of COVID-19, we also evaluated treatment with hemoglobin (HbA) as a potential countermeasure in hypoxic and normal oxygen environments in analyses with the S1 spike protein. We found hypoxia downregulated the expression of the ACE2 receptor and increased the critical oxygen homeostatic signaling protein, hypoxia-inducible factor (HIF-1α); however, treatment of the cells with HbA yielded no apparent change in the levels of ACE2 or HIF-1α. Use of quantitative proteomics revealed that S1 spike protein-treated cells have few differentially regulated proteins in hypoxic conditions, consistent with the finding that ACE2 serves as the host viral receptor and is reduced in hypoxia. However, in normoxic conditions, we found perturbed abundance of proteins in signaling pathways related to lysosomes, extracellular matrix receptor interaction, focal adhesion, and pyrimidine metabolism. We conclude that the spike protein alone without the rest of the viral components is sufficient to elicit cell signaling in HPAEC, and that treatment with HbA failed to reverse the vast majority of these spike protein-induced changes.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Células Endoteliais/metabolismo , Hemoglobinas/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Hipóxia Celular , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/virologia , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Humanos , Subunidades Proteicas/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
4.
Science ; 373(6556): 813-818, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34385401

RESUMO

A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates Escherichia coli choline catabolism by altering intestinal epithelial physiology. A high-fat diet impaired the bioenergetics of mitochondria in the colonic epithelium to increase the luminal bioavailability of oxygen and nitrate, thereby intensifying respiration-dependent choline catabolism of E. coli In turn, E. coli choline catabolism increased levels of circulating trimethlamine N-oxide, which is a potentially harmful metabolite generated by gut microbiota.


Assuntos
Colo/fisiologia , Dieta Hiperlipídica , Escherichia coli/metabolismo , Mucosa Intestinal/fisiologia , Metilaminas/metabolismo , Animais , Hipóxia Celular , Colina/administração & dosagem , Colina/metabolismo , Colo/citologia , Metabolismo Energético , Células Epiteliais/fisiologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Fezes/microbiologia , Microbioma Gastrointestinal , Inflamação , Mucosa Intestinal/metabolismo , Masculino , Metilaminas/sangue , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Nitratos/metabolismo , Obesidade , Consumo de Oxigênio
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360919

RESUMO

Hypoxia is characterized by an inadequate supply of oxygen to tissues, and hypoxic regions are commonly found in solid tumors. The cellular response to hypoxic conditions is mediated through the activation of hypoxia-inducible factors (HIFs) that control the expression of a large number of target genes. Recent studies have shown that the receptor for advanced glycation end products (RAGE) participates in hypoxia-dependent cellular adaptation. We review recent evidence on the role of RAGE signaling in tumor biology under hypoxic conditions.


Assuntos
Hipóxia Celular , Produtos Finais de Glicação Avançada/metabolismo , Neoplasias/metabolismo , Receptor para Produtos Finais de Glicação Avançada/fisiologia , Animais , Linhagem Celular Tumoral , Humanos
6.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360925

RESUMO

Mesenchymal stromal cell (MSC) therapy is making its way into clinical practice, accompanied by research into strategies improving their therapeutic potential. Preconditioning MSCs with hypoxia-inducible factors-α (HIFα) stabilizers is an alternative to hypoxic priming, but there remains insufficient data evaluating its transcriptomic effect. Herein, we determined the gene expression profile of 6 human bone marrow-derived MSCs preconditioned for 6 h in 2% O2 (hypoxia) or with 40 µM Vadadustat, compared to control cells and each other. RNA-Sequencing was performed using the Illumina platform, quality control with FastQC and adapter-trimming with BBDUK2. Transcripts were mapped to the Homo_sapiens. GRCh37 genome and converted to relative expression using Salmon. Differentially expressed genes (DEGs) were generated using DESeq2 while functional enrichment was performed in GSEA and g:Profiler. Comparison of hypoxia versus control resulted in 250 DEGs, Vadadustat versus control 1071, and Vadadustat versus hypoxia 1770. The terms enriched in both phenotypes referred mainly to metabolism, in Vadadustat additionally to vesicular transport, chromatin modifications and interaction with extracellular matrix. Compared with hypoxia, Vadadustat upregulated autophagic, phospholipid metabolism, and TLR cascade genes, downregulated those of cytoskeleton and GG-NER pathway and regulated 74 secretory factor genes. Our results provide valuable insight into the transcriptomic effects of these two methods of MSCs preconditioning.


Assuntos
Hipóxia Celular , Expressão Gênica , Glicina/análogos & derivados , Células-Tronco Mesenquimais , Ácidos Picolínicos/farmacologia , Adulto , Células Cultivadas , Feminino , Glicina/farmacologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Transcriptoma
7.
Gene ; 803: 145893, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34384864

RESUMO

Glycolysis and heat shock proteins (HSPs) play an important role in mediating the physiological response to hypoxia. The changes of glycolysis and HSPs with altitude would provide important information regarding ways to prevent hypoxia-related sickness in both animals and humans. In this study, the expression pattern of HIF1A, PDK4, HSP27 and HSP60, indexes activity and content of glucose metabolism were detected in heart, lung, brain, and quadriceps femoris taken from Tibetan sheep (Ovis aries) that were raised at different altitudes (2,500 m, 3,500 m and 4,500 m). The expression of HIF1A and PDK4 was increased with increasing altitude in all of the tissues. The lactate dehydrogenase (LDH) activities and adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NADH (redox state), NAD+), lactic acid (LA), pyruvic acid (PA) contents were all increased with increasing altitude in all of the tissues. The ratio of NADH/NAD+ and LA/PA were higher in sheep at an altitude of 4,500 m than of 3,500 m and 2,500 m in all tissues, except for the NADH/NAD+ ratio in lung and quadriceps femoris. An increase in the protein and mRNA expression of ATP-independent HSP27 during hypoxia condition was detected. The expression of ATP-dependent HSP60 mRNA and protein was increased in all of the tissues at an altitude of 3,500 m than of 2,500 m, but was decreased at an altitude of 4,500 m. These results suggest that glycolysis and HSPs are upregulated to ensure energy supply and proteostasis during hypoxia, but energy conservation may be prioritized over cytoprotective protein chaperoning in Tibetan sheep tissues during extreme hypoxia.


Assuntos
Aclimatação , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Altitude , Animais , Hipóxia Celular , Regulação da Expressão Gênica , Glicólise , Ovinos , Tibet , Regulação para Cima
8.
Int J Mol Sci ; 22(15)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34360716

RESUMO

Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.


Assuntos
Fator 1 Induzível por Hipóxia/metabolismo , Consumo de Oxigênio , Viroses/metabolismo , Replicação Viral , Vírus/metabolismo , Hipóxia Celular , Humanos , Viroses/patologia
9.
Nat Commun ; 12(1): 4700, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349124

RESUMO

During skin injury, immune response and repair mechanisms have to be coordinated for rapid skin regeneration and the prevention of microbial infections. Natural Killer (NK) cells infiltrate hypoxic skin lesions and Hypoxia-inducible transcription factors (HIFs) mediate adaptation to low oxygen. We demonstrate that mice lacking the Hypoxia-inducible factor (HIF)-1α isoform in NK cells show impaired release of the cytokines Interferon (IFN)-γ and Granulocyte Macrophage - Colony Stimulating Factor (GM-CSF) as part of a blunted immune response. This accelerates skin angiogenesis and wound healing. Despite rapid wound closure, bactericidal activity and the ability to restrict systemic bacterial infection are impaired. Conversely, forced activation of the HIF pathway supports cytokine release and NK cell-mediated antibacterial defence including direct killing of bacteria by NK cells despite delayed wound closure. Our results identify, HIF-1α in NK cells as a nexus that balances antimicrobial defence versus global repair in the skin.


Assuntos
Células Matadoras Naturais/imunologia , Pele/imunologia , Pele/microbiologia , Cicatrização , Animais , Hipóxia Celular , Citocinas/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Camundongos , Neovascularização Fisiológica , Pele/irrigação sanguínea , Dermatopatias Bacterianas/prevenção & controle
10.
World J Gastroenterol ; 27(28): 4582-4602, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34366624

RESUMO

In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.


Assuntos
Neoplasias Pancreáticas , Autofagia , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Hipóxia , Microambiente Tumoral
11.
Analyst ; 146(17): 5255-5263, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324622

RESUMO

In this article, we present a novel nitrocellulose-based microfluidic chip with 3-dimensional (3D) printing technology to study the effect of oxygen gradient on cells. Compared with conventional polydimethylsiloxane (PDMS) chips of oxygen gradient for cell cultures that can only rely on fluorescence microscope analysis, this hybrid nitrocellulose-based microfluidic platform can provide a variety of analysis methods for cells, including flow cytometry, western blot and RT-PCR, because the nitrocellulose-based chips with cells can be taken out from the growth chambers of 3D printed microfluidic chip and then used for cell collection or lysis. These advantages allow researchers to acquire more information and data on the basic biochemical and physiological processes of cell life. The effect of oxygen gradient on the zebrafish cells (ZF4) was used as a model to show the performance and application of our platform. Hypoxia caused the increase of intercellular reactive oxygen species (ROS) and accumulation of hypoxia-inducible factor 1α (HIF-1α). Hypoxia stimulated the transcription of hypoxia-responsive genes vascular endothelial growth factor (VEGF) and induced cell cycle arrest of ZF4 cells. The established platform is able to obtain more information from cells in response to different oxygen concentration, which has potential for analyzing the cells under a variety of pathological conditions.


Assuntos
Microfluídica , Oxigênio , Animais , Hipóxia Celular , Colódio , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Impressão Tridimensional , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/metabolismo
12.
Mol Med Rep ; 24(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34328190

RESUMO

Pulmonary microvascular endothelial cell (PMVEC) apoptosis is the initial stage of adult pulmonary hypertension (PH), which involves high pulmonary arterial pressure and pulmonary vascular remodeling. However, the mechanism regulating PMVEC apoptosis and its involvement in the early stages of neonatal hypoxic PH (HPH) pathogenesis are currently unclear. The present study aimed to investigate the effects of heat shock protein 70 (HSP70) on hypoxia­induced apoptosis in PMVECs. PMVECs isolated from neonatal Sprague­Dawley rats were transfected with lentivirus with or without HSP70, or treated with the synthetic HSP70 inhibitor N­formyl­3,4­methylenedioxy­benzylidene-g-butyrolactam under hypoxic conditions (5% O2) for 24, 48 or 72 h. PMVEC apoptosis was evaluated by performing flow cytometry and mitochondrial membrane potential (MMP) assays. The expression levels of HSP70, hypoxia­inducible factor­1α (HIF­1α) and apoptosis­associated proteins were determined by conducting reverse transcription­quantitative PCR and western blotting. Following 24, 48 or 72 h of hypoxia, the apoptotic rates of PMVECs were significantly elevated compared with cells under normoxic conditions. The MMP was significantly reduced, whereas the mRNA and protein expression levels of HIF­1α, cytochrome c (cyt C), caspase­3 and HSP70 were enhanced by hypoxia compared with those under normoxic conditions. Additionally, the mRNA and protein expression levels of B­cell lymphoma 2 (Bcl­2) were significantly downregulated in the hypoxia group compared with those in the normoxia group. In hypoxic PMVECs, HSP70 overexpression decreased the apoptotic rate and the expression levels of cyt C, downregulated the expression levels of caspase­3 and HIF­1α, and increased the MMP and the expression levels of Bcl­2. HSP70 inhibition resulted in the opposite outcomes compared with those of HSP70 overexpression. Therefore, the results of the present study suggested that HSP70 may inhibit mitochondrial pathway­mediated apoptosis in isolated neonatal rat PMVECs in early­stage hypoxia, which may be associated with HSP70­mediated HIF­1α downregulation. Overall, HSP70 may be protective against neonatal HPH through the HSP70/HIF­1α pathway.


Assuntos
Apoptose/genética , Células Endoteliais/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Hipertensão Pulmonar/metabolismo , Microvasos/metabolismo , Animais , Animais Recém-Nascidos , Caspase 3/genética , Caspase 3/metabolismo , Hipóxia Celular , Regulação para Baixo , Células Endoteliais/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metaloproteinases da Matriz/metabolismo , Microvasos/citologia , Mitocôndrias/metabolismo , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/genética , Regulação para Cima
13.
Arterioscler Thromb Vasc Biol ; 41(9): 2469-2482, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34320834

RESUMO

Objective: Critical limb ischemia is a major complication of diabetes characterized by insufficient collateral vessel development and proper growth factor signaling unresponsiveness. Although mainly deactivated by hypoxia, phosphatases are important players in the deregulation of proangiogenetic pathways. Previously, SHP-1 (Scr homology 2-containing phosphatase-1) was found to be associated with the downregulation of growth factor actions in the diabetic muscle. Thus, we aimed to gain further understanding of the impact of SHP-1 on smooth muscle cell (SMC) function under hypoxic and diabetic conditions. Approach and Results: Despite being inactivated under hypoxic conditions, high glucose level exposure sustained SHP-1 phosphatase activity in SMC and increased its interaction with PDGFR (platelet-derived growth factor receptor)-ß, thus reducing PDGF proangiogenic actions. Overexpression of an inactive form of SHP-1 fully restored PDGF-induced proliferation, migration, and signaling pathways in SMC exposed to high glucose and hypoxia. Nondiabetic and diabetic mice with deletion of SHP-1 specifically in SMC were generated. Ligation of the femoral artery was performed, and blood flow was measured for 4 weeks. Blood flow reperfusion, vascular density and maturation, and limb survival were all improved while vascular apoptosis was attenuated in diabetic SMC-specific SHP-1 null mice as compared to diabetic mice. Conclusions: Diabetes and high glucose level exposure maintained SHP-1 activity preventing hypoxia-induced PDGF actions in SMC. Specific deletion of SHP-1 in SMC partially restored blood flow reperfusion in the diabetic ischemic limb. Therefore, local modulation of SHP-1 activity in SMC could represent a potential therapeutic avenue to improve the proangiogenic properties of SMC under ischemia and diabetes.


Assuntos
Indutores da Angiogênese/farmacologia , Diabetes Mellitus Experimental/enzimologia , Angiopatias Diabéticas/enzimologia , Membro Posterior/irrigação sanguínea , Isquemia/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Animais , Glicemia/metabolismo , Estudos de Casos e Controles , Bovinos , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Ativação Enzimática , Humanos , Isquemia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Transdução de Sinais
14.
Med Glas (Zenica) ; 18(2): 398-403, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34212709

RESUMO

Aim To investigate the role of hypoxia-preconditioned mesenchymal stem cells (H-MSCs) in preventing peritoneal adhesion by regulating IL-6 at days 6 and 12. Methods Twenty-four PAs rat model weighing 250 g to 300 g were randomly allocated into 4 groups: sham (Sh), control (C), H-MSCs treatment group at dose 1.5 x 106(T1) and 3 x 106(T2). To induce H-MSCs, all MSCs population were incubated under hypoxia state (5% O2 ), 5% CO2, and 37oC for 24 hours. Expression level of IL-6 was performed using ELISA. Morphological appearance of adhesion was observed by visualizing the existence of adhesion formation in intestinal. Results In this study we found that there was a trend of decrease of IL-6 level on day 6 following MSCs treatments. Interestingly, there was a significant decrease of IL-6 level on day 12 in all treatment groups. Also, no adhesion occurred in T2 group. Conclusions H-MSCs prevent PA development by suppressing the prolonged release of IL-6 at proliferation phase.


Assuntos
Células-Tronco Mesenquimais , Animais , Hipóxia Celular , Células Cultivadas , Humanos , Hipóxia , Interleucina-6 , Ratos
15.
Nat Commun ; 12(1): 4308, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262028

RESUMO

Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-11/metabolismo , Fator de Transcrição MafF/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição MafF/genética , Camundongos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Nucleares/genética , Prognóstico , Transdução de Sinais , Transcrição Genética
16.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299186

RESUMO

Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs' survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.


Assuntos
Hipóxia Celular/fisiologia , Células Dendríticas/metabolismo , Monócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ribonucleases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose/fisiologia , Autofagia/fisiologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Monócitos/imunologia , Monócitos/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ribonucleases/biossíntese , Ribonucleases/imunologia , Transdução de Sinais , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/imunologia
17.
Nucleic Acids Res ; 49(13): 7492-7506, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197599

RESUMO

Tumor heterogeneity includes variable and fluctuating oxygen concentrations, which result in the accumulation of hypoxic regions in most solid tumors. Tumor hypoxia leads to increased therapy resistance and has been linked to genomic instability. Here, we tested the hypothesis that exposure to levels of hypoxia that cause replication stress could increase APOBEC activity and the accumulation of APOBEC-mediated mutations. APOBEC-dependent mutational signatures have been well-characterized, although the physiological conditions which underpin them have not been described. We demonstrate that fluctuating/cyclic hypoxic conditions which lead to replication catastrophe induce the expression and activity of APOBEC3B. In contrast, stable/chronic hypoxic conditions which induce replication stress in the absence of DNA damage are not sufficient to induce APOBEC3B. Most importantly, the number of APOBEC-mediated mutations in patient tumors correlated with a hypoxia signature. Together, our data support the conclusion that hypoxia-induced replication catastrophe drives genomic instability in tumors, specifically through increasing the activity of APOBEC3B.


Assuntos
Citidina Desaminase/metabolismo , Replicação do DNA , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/enzimologia , Desaminases APOBEC/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Desaminação , Humanos , Hidroxiureia/toxicidade , Estresse Fisiológico/genética
18.
FASEB J ; 35(8): e21829, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34314069

RESUMO

Retinal ischemia is a leading cause of irreversible blindness worldwide. Inner retinal dysfunction including loss of retinal ganglion cells is encountered in a number of retinal ischemic disorders. We previously reported administration of two different hypoxia-inducible factor (HIF) inhibitors exerted neuroprotective effects in a murine model of retinal ischemia/reperfusion (I/R) which mimics these disorders, as inner retinal degeneration could be involved in pathological HIF induction. However, this notion needs further investigation. Therefore, in this study, we attempted to use retina-specific Hif-1α conditional knockout (cKO) mice to uncover this notion more clearly under the same condition. Hif-1α cKO mice showed inner retinal neurodegeneration to a lesser extent than control mice. Hif-1α depletion in a murine 661W retinal cell line reduced cell death under pseudohypoxic and hypoxic conditions. Among hypoxia-related genes, the expression of BCL2 19 kDa protein-interacting protein 3 (Bnip3) was substantially upregulated in the inner retinal layer after retinal I/R. In this regard, we further examined Bnip3 depletion in retinal neurons in vitro and in vivo and found the similar neuroprotective effects. Our results support the notion that the HIF-1α/BNIP3 pathway may have a critical role in inner retinal neurodegeneration, which can be linked with the development of new promising therapeutics for inner retinal ischemic disorders.


Assuntos
Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas de Membrana/fisiologia , Proteínas Mitocondriais/fisiologia , Neuroproteção , Retina , Degeneração Retiniana/metabolismo , Animais , Linhagem Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Retina/metabolismo , Retina/patologia
19.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281205

RESUMO

The placental tissue, due to its angiogenic, anti-inflammatory, antioxidative, antimicrobial, and anti-fibrotic properties, has become a compelling source towards a solution for several indications in regenerative medicine. However, methods to enhance and capture the therapeutic properties with formulations that can further the applications of viable placental tissue have not been explored. In this study, we investigated the regenerative effects of a hypoxia primed flowable placental formulation (FPF), composed of amnion/chorion and umbilical tissue, in two in vivo injury models. Laser Doppler data from rodent ischemia hindlimbs treated with FPF revealed significant tissue perfusion improvements compared to control ischemic hindlimbs. To further corroborate FPF's effects, we used a rodent ischemic bipedicle skin flap wound model. FPF treatment significantly increased the rate of wound closure and the quality of wound healing. FPF-treated wounds displayed reduced inflammation and an increase in angiogenesis. Furthermore, quantitative PCR and next-generation sequencing analysis confirmed these changes in the FPF-treated group at both the gene and transcriptional level. The observed modulation in miRNAs was associated with angiogenesis, regulation of inflammatory microenvironment, cell migration and apoptosis, reactive oxygen species generation, and restoring epithelial barrier function, all processes involved in impaired tissue healing. Taken together, these data validate the tissue regenerative properties of the flowable placental formulation configuration tested.


Assuntos
Hipóxia Celular/fisiologia , Regeneração Tecidual Guiada/métodos , Placenta/metabolismo , Placenta/transplante , Âmnio/metabolismo , Animais , Córion/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Precondicionamento Isquêmico/métodos , Gravidez , Pele/lesões , Cicatrização/fisiologia
20.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299017

RESUMO

Oxygen deficiency in cells, tissues, and organs can not only prevent the proper development of biological functions but it can also lead to several diseases and disorders. In this sense, the kidney deserves special attention since hypoxia can be considered an important factor in the pathophysiology of both acute kidney injury and chronic kidney disease. To provide better knowledge to unveil the molecular mechanisms involved, new studies are necessary. In this sense, this work aims to study, for the first time, an in vitro model of hypoxia-induced metabolic alterations in human proximal tubular HK-2 cells because renal proximal tubules are particularly susceptible to hypoxia. Different groups of cells, cultivated under control and hypoxia conditions at 0.5, 5, 24, and 48 h, were investigated using untargeted metabolomic approaches based on reversed-phase liquid chromatography-mass spectrometry. Both intracellular and extracellular fluids were studied to obtain a large metabolite coverage. On the other hand, multivariate and univariate analyses were carried out to find the differences among the cell groups and to select the most relevant variables. The molecular features identified as affected metabolites were mainly amino acids and Amadori compounds. Insights about their biological relevance are also provided.


Assuntos
Hipóxia Celular , Cromatografia de Fase Reversa/métodos , Células Epiteliais/metabolismo , Túbulos Renais Proximais/metabolismo , Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Ativação Metabólica/genética , Ativação Metabólica/fisiologia , Hipóxia Celular/genética , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Rim/citologia , Rim/metabolismo , Rim/patologia , Metaboloma/genética , Análise Multivariada , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...