Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 843
Filtrar
1.
Int J Nanomedicine ; 14: 5215-5228, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371957

RESUMO

Background: Resveratrol (RSV) has attracted interest as an alternative drug for the treatment of acute lung injury (ALI) and other pulmonary diseases, but its poor oral bioavailability is a limitation. In this study, we employed drug delivery nanotechnology to improve the stability, lung localization and efficacy of orally administered resveratrol to control lung damage leading to ALI. Methods and materials: RSV-loaded lipid-core nanocapsules (RSV-LNCs), prepared by interfacial deposition of biodegradable polymers, were given orally to A/J mice prior to lipopolysaccharide (LPS) intranasal instillation. Inflammatory changes, oxidative stress and lung tissue elastance were assessed 24 h after LPS challenge. Results: RSV-LNCs (5 mg/kg), given 1, 4, 6 or 12 h but not 24 h before provocation, inhibited LPS-induced leukocyte accumulation in the bronchoalveolar fluid (BALF), whereas unloaded nanocapsules (ULNCs) or free RSV (5 mg/kg) were ineffective. RSV-LNCs (2.5-10 mg/kg) but not ULNCs or RSV improved lung function and prevented total leukocyte and neutrophil accumulation equally in both BALF and lung tissue when given 4 h before LPS challenge. Similar findings were seen concerning the generation of a range of pro-inflammatory cytokines such as IL-6, KC, MIP-1α, MIP-2, MCP-1 and RANTES in lung tissue. In addition, only RSV-LNCs inhibited MDA levels and SOD activity in parallel with blockade of the ERK and PI3K/Akt pathways following LPS provocation. Conclusion: Nanoformulation of RSV in biodegradable oil-core polymers is an effective strategy to improve the anti-ALI activity of RSV, suggesting that the modified-release formulation of this plant polyphenol may be of great value in clinical conditions associated with ALI and respiratory failure.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Nanocápsulas/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Resveratrol/administração & dosagem , Resveratrol/uso terapêutico , Transdução de Sinais , Lesão Pulmonar Aguda/complicações , Administração Oral , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Pulmão/efeitos dos fármacos , Masculino , Camundongos Endogâmicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Hipersensibilidade Respiratória/complicações , Hipersensibilidade Respiratória/patologia , Resveratrol/farmacologia
2.
Int Immunopharmacol ; 73: 435-441, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31154288

RESUMO

Studies suggest that hydrogen sulfide (H2S) plays a relevant and beneficial role in the pathophysiology of pulmonary allergic diseases, such as asthma. These diseases may be triggered by changes in airway epithelium caused by repeated exposure to environmental allergens. This study aimed to investigate whether H2S protects against bronchial epithelium apoptosis in allergic inflammation in mice. The effects of H2S on the production of Th2 cytokines and on the infiltration of pulmonary inflammatory cells were also studied. Female BALB/c mice previously sensitized with ovalbumin (OVA) were treated with H2S donor (sodium hydrosulfide [NaHS]) 30 min prior to OVA challenge. After euthanasia (48 h post challenge), the right lung was homogenized to study apoptosis protein expression and to analyze cytokine levels in lung tissue. The left lobe was fixed in formalin for morphological analysis of lung tissue and verification of apoptosis in situ by the TUNEL assay. Histological results showed that NaHS reduced the airway inflammatory infiltrate and prevented an increase in the IL-4, IL-5 and IL-25 levels caused by OVA challenge. Activation of caspase 3 and FasL in response to the allergen was also fully prevented by NaHS treatment. TUNEL staining showed that the challenge from OVA significantly increased the rate of apoptosis in the bronchiolar epithelium, and that this incremental apoptosis was abolished by NaHS treatment. In conclusion, our results showed that H2S donor has a protective effect against airway epithelium damage caused by an allergic reaction, and represents a potential agent in treating allergic lung disorders, such as asthma.


Assuntos
Citocinas/imunologia , Epitélio/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Hipersensibilidade Respiratória/imunologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Epitélio/imunologia , Epitélio/patologia , Feminino , Sulfeto de Hidrogênio , Pulmão/imunologia , Pulmão/patologia , Camundongos Endogâmicos BALB C , Ovalbumina , Hipersensibilidade Respiratória/patologia , Sulfetos/farmacologia
3.
Int Arch Allergy Immunol ; 180(1): 1-9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242493

RESUMO

BACKGROUND: An inverse relation between Helicobacter pylori infection and asthma has been shown in epidemiological studies. Infection with H. pylori, or application of an extract of it before or after sensitization, inhibits allergic airway disease in mice. OBJECTIVES: The aim of this study was to investigate the effect of an extract of H. pylori on allergic airway disease induced by repeated allergen exposure in mice that were sensitized and challenged prior to extract application. METHOD: C57BL/6 mice were intranasally (i.n.) sensitized and challenged with house dust mite (HDM). After a minimum of 4 weeks, mice received the H. pylori extract intraperitoneally and were rechallenged i.n. with HDM. Allergen-specific antibodies were measured by ELISA. Cells present in the bronchoalveolar lavage fluid and dendritic cell (DC) subsets in the lung tissue were analyzed by flow cytometry. Tissue inflammation and goblet cell hyperplasia were assessed by histology. Cells of the mediastinal lymph node (mLN) were isolated and in vitro restimulated with HDM or H. pylori extract. RESULTS: Treatment with H. pylori extract before rechallenge reduced allergen-specific IgE, the DC numbers in the tissue, and goblet cell hyperplasia. Cells isolated from mLN of mice treated with the extract produced significantly more IL-10 and IL-17 after in vitro restimulation with HDM. mLN cells of H. pylori-treated mice that were re-exposed to the H. pylori extract produced significantly more interferon gamma. CONCLUSIONS: An extract of H. pylori is effective in reducing mucus production and various features of inflammation in HDM rechallenged mice.


Assuntos
Alérgenos/imunologia , Antígenos de Bactérias/imunologia , Células Caliciformes/patologia , Infecções por Helicobacter/complicações , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/patologia , Animais , Biomarcadores , Biópsia , Citocinas/metabolismo , Exposição Ambiental , Feminino , Infecções por Helicobacter/microbiologia , Hiperplasia , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Imunofenotipagem , Camundongos , Pyroglyphidae/imunologia
4.
J Biosci ; 44(2)2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180054

RESUMO

This study was conducted to determine whether exposure to particulate matter 2.5 (PM2.5) affects the immune tolerance of neonatal mice via the regulation of PD-L1 expression. One-week-old BALB/c mice were exposed to PM2.5 for 8 days. From day 8 to day 18, the mice were treated with 5 µg house dust mite (HDM) (i. n.) every two days. Adenovirus-carried PD-L1 overexpression vectors were infected into mice via nasal inhalation 6 days after exposure to PM2.5. Airway hyperresponsiveness (AHR) was examined in mice 19 days after exposure to PM2.5, and the related parameters of airway inflammation were studied on day 22. Co-exposure to PM2.5 and HDM reduced PD-L1 expression but greatly increased infiltration of inflammatory cells, which was reversed by PD-L1 overexpression. Co-exposure to PM2.5 and HDM also elevated serum IL-4, IL-5 and IL-13 levels and reduced TGF-ß level. Exposure to PM2.5 alone slightly increased the numbers of dendritic cells (DCs) but reduced the numbers of antigen-presenting cells expressing PD-L1 and Treg cells. Therefore, early exposure to PM2.5 reduced PD-L1 expression in the lungs of neonatal mice, which interfered with immune tolerance establishment and subsequently resulted in allergic airway inflammation.


Assuntos
Antígeno B7-H1/imunologia , Células Dendríticas/efeitos dos fármacos , Tolerância Imunológica/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Material Particulado/administração & dosagem , Hipersensibilidade Respiratória/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Administração por Inalação , Animais , Animais Recém-Nascidos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Células Dendríticas/imunologia , Células Dendríticas/patologia , Regulação da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Vetores Genéticos/imunologia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Pulmão/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pyroglyphidae/química , Pyroglyphidae/imunologia , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Transdução de Sinais , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/imunologia
5.
Environ Toxicol Pharmacol ; 68: 155-163, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30986632

RESUMO

OBJECTIVE: To observe the effects of prolonged exposure to high concentrations of PM2.5 on the trachea and lungs of mice and to determine whether the damages to the trachea and lung are induced by necroptosis. METHODS: Six- to eight-week-old female Balb/C mice of PM group were restrained in an animal restraining device using a nose-only "PM2.5 online enrichment system" for 8 weeks, in Shijiazhuang, Hebei, China. Anti -Fas group was exposed to PM2.5 inhalation and anti-Fas treatment via intranasal instillation. The mice in the control group inhaled filtered clean air. PM2.5 sample was collected and analyzed. Airway Hyperresponsiveness (AHR) was tested. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for Hematoxylin and eosin (HE) staining, electron microscopy, cellular inflammation, cytokines, Tunel, Fas, RIPK3 and MLKL expression. RESULTS: Compared to the other two groups, PM group displayed significantly increased AHR, neutrophils in BALF, significant bronchitis and alveolar epithelial hyperplasia and inflammation and necroptosis which were indicated by increased TUNEL, Fas, RIPK3 and MLKL measure. CONCLUSION: Our findings suggest that PM2.5 can enhance AHR and these changes are induced by necroptosis-related inflammation.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Hipersensibilidade Respiratória/induzido quimicamente , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiologia , Pulmão/ultraestrutura , Camundongos Endogâmicos BALB C , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia , Necrose/fisiopatologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia , Traqueia/efeitos dos fármacos , Traqueia/patologia , Traqueia/fisiologia , Traqueia/ultraestrutura
6.
Am J Pathol ; 189(4): 762-772, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30711489

RESUMO

Increased angiogenesis is a characteristic feature of remodeling in asthmatic airways and stems from the imbalance between pro-angiogenic and anti-angiogenic factors. Surprisingly, the factors regulating this process in allergic asthma are poorly defined. Previously, we showed an important role of semaphorins 3E (Sema3E) in growth factor-induced airway smooth muscle proliferation and migration in vitro, and in down-regulating airway inflammation, T helper 2/T helper 17 cytokine response, mucus cell hyperplasia, and airway hyperresponsiveness in vivo. However, the role of Sema3E in airway angiogenesis is not fully understood. Here, we investigated the role of Sema3E in airway angiogenesis using a house dust mite (HDM) murine model of allergic asthma. Intranasal treatment with recombinant Sema3E significantly reduced the expression of angiogenesis markers within the airways of HDM-challenged mice compared with untreated mice. HDM-induced expression of vascular endothelial growth factor (VEGF) and VEGF receptor 2 protein were diminished substantially on Sema3E treatment. Interestingly, Sema3E-treated mice showed an enhanced expression of the negative regulator of angiogenesis, soluble VEGF receptor 1, compared with the untreated mice. These events were reversed in Sema3E-deficient mice at baseline or on HDM challenge. Taken together, this study provides the first evidence that Sema3E modulates angiogenesis in allergic asthmatic airways via modulating pro- and anti-angiogenic factors.


Assuntos
Asma/prevenção & controle , Proteínas do Citoesqueleto/fisiologia , Modelos Animais de Doenças , Inflamação/prevenção & controle , Proteínas de Membrana/fisiologia , Neovascularização Patológica/prevenção & controle , Pyroglyphidae/patogenicidade , Hipersensibilidade Respiratória/prevenção & controle , Remodelação das Vias Aéreas , Alérgenos/imunologia , Indutores da Angiogênese/imunologia , Indutores da Angiogênese/metabolismo , Animais , Asma/etiologia , Asma/patologia , Feminino , Inflamação/etiologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Neovascularização Patológica/etiologia , Neovascularização Patológica/patologia , Hipersensibilidade Respiratória/etiologia , Hipersensibilidade Respiratória/patologia
7.
Biomed Res Int ; 2019: 1948519, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723734

RESUMO

Our previous study showed that neonatal S. pneumoniae infection aggravated airway inflammation and airway hyperresponsiveness (AHR) in an OVA-induced allergic asthma model. As airway smooth muscle (ASM) plays a pivotal role in AHR development, we aim to investigate the effects of neonatal S. pneumoniae pneumonia on ASM structure and AHR development. Non-lethal neonatal pneumonia was established by intranasally infecting 1-week-old BALB/C mice with the S. pneumoniae strain D39. Five weeks after infection, the lungs were collected to assess the levels of α-SMA and the contractile proteins of ASM. Our results indicate that neonatal S. pneumoniae pneumonia significantly increased adulthood lung α-SMA and SMMHC proteins production and aggravated airway inflammatory cells infiltration and cytokines release. In addition, the neonatal S. pneumoniae pneumonia group had significantly higher Penh values compared to the uninfected controls. These data suggest that neonatal S. pneumoniae pneumonia promoted an aberrant ASM phenotype and AHR development in mice model.


Assuntos
Pulmão/metabolismo , Músculo Liso/metabolismo , Pneumonia/genética , Hipersensibilidade Respiratória/genética , Actinas/genética , Animais , Animais Recém-Nascidos , Líquido da Lavagem Broncoalveolar/microbiologia , Modelos Animais de Doenças , Humanos , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Músculo Liso/microbiologia , Músculo Liso/patologia , Fenótipo , Pneumonia/complicações , Pneumonia/microbiologia , Pneumonia/patologia , Hipersensibilidade Respiratória/complicações , Hipersensibilidade Respiratória/microbiologia , Hipersensibilidade Respiratória/patologia , Streptococcus pneumoniae/patogenicidade
8.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L537-L546, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30628486

RESUMO

The direct relationship between pulmonary structural changes and airway hyperresponsiveness (AHR) in chronic obstructive pulmonary disease (COPD) is unclear. We investigated AHR in relation to airway and parenchymal structural changes in a guinea pig model of COPD and in COPD patients. Precision-cut lung slices (PCLS) were prepared from guinea pigs challenged with lipopolysaccharide or saline two times weekly for 12 wk. Peripheral PCLS were obtained from patients with mild to moderate COPD and non-COPD controls. AHR to methacholine was measured in large and small airways using video-assisted microscopy. Airway smooth muscle mass and alveolar airspace size were determined in the same slices. A mathematical model was used to identify potential changes in biomechanical properties underlying AHR. In guinea pigs, lipopolysaccharide increased the sensitivity of large (>150 µm) airways toward methacholine by 4.4-fold and the maximal constriction of small airways (<150 µm) by 1.5-fold. Similarly increased small airway responsiveness was found in COPD patients. In both lipopolysaccharide-challenged guinea pigs and patients, airway smooth muscle mass was unaltered, whereas increased alveolar airspace correlated with small airway hyperresponsiveness in guinea pigs. Fitting the parameters of the model indicated that COPD weakens matrix mechanical properties and enhances stiffness differences between the airway and the parenchyma, in both species. In conclusion, this study demonstrates small airway hyperresponsiveness in PCLS from COPD patients. These changes may be related to reduced parenchymal retraction forces and biomechanical changes in the airway wall. PCLS from lipopolysaccharide-exposed guinea pigs may be useful to study mechanisms of small airway hyperresponsiveness in COPD.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Músculo Liso/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Animais , Asma/patologia , Asma/fisiopatologia , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Músculo Liso/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Hipersensibilidade Respiratória/induzido quimicamente , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia
9.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L407-L417, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30604629

RESUMO

Neuropeptide Y (NPY) is a neurotransmitter that is widely expressed in the brain and peripheral nervous system. Various immune cells express the NPY Y1 receptor. NPY modulates these cells via its Y1 receptor; however, involvement of NPY in the pathophysiology of bronchial asthma, particularly airway hyperresponsiveness (AHR), has not been defined. NPY-deficient and wild-type mice were intranasally sensitized and challenged to house dust mite (HDM) extract, and airway responses were monitored. After sensitization and challenge, NPY-deficient mice showed significantly lower AHR than wild-type mice, and numbers of eosinophils and levels of type 2 cytokines [interleukin (IL)-4, IL-5, and IL-13] in bronchoalveolar lavage fluid were significantly lower. Type 2 cytokine production from splenic mononuclear cells of HDM-sensitized mice was also significantly lower in NPY-deficient mice. Flow cytometry analysis showed that the number of CD4 T cells and CD11c+ antigen-presenting cells (APCs) was significantly lower in the lungs of NPY-deficient mice than in wild-type mice following sensitization and challenge. Significantly fewer CD11c+ APCs phagocytosed HDM in the mediastinal lymph nodes of NPY-deficient mice than in those of wild-type mice. Treatment with BIBO-3304, a NPY receptor antagonist, significantly suppressed development of HDM-induced AHR and inflammation in wild-type mice. These data identify an important contribution of NPY to allergen-induced AHR and inflammation through accumulation of dendritic cells in the airway and promotion of the type 2 immune response. Thus, manipulating NPY represents a novel therapeutic target to control allergic airway responses.


Assuntos
Células Dendríticas/metabolismo , Inflamação/patologia , Pulmão/patologia , Neuropeptídeo Y/metabolismo , Hipersensibilidade Respiratória/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Eosinófilos/imunologia , Hipersensibilidade/patologia , Inflamação/genética , Camundongos Transgênicos , Neuropeptídeo Y/genética , Hipersensibilidade Respiratória/patologia
10.
Methods Mol Biol ; 1916: 297-301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30535706

RESUMO

Asthma is a worldwide public health issue, affecting the sufferer's quality of life. Many researchers are extensively studying the cellular processes involved in the affected airways. Experimental asthma using animals has been performed for a long time, mainly applying murine models due to well-known advantages. The aim of this study is to present an allergic airway inflammation protocol in mice. Basically, the allergic airway inflammation is induced by intraperitoneal sensitization and intratracheal challenge with ovalbumin (OVA). The model provided here mimics acute asthma characteristics including excessive mucus production, airway hyperresponsiveness, and eosinophilic airway inflammation.


Assuntos
Asma/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Hipersensibilidade Respiratória/imunologia , Alérgenos/imunologia , Animais , Asma/genética , Asma/patologia , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/efeitos adversos , Ovalbumina/imunologia , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia
11.
Am J Respir Cell Mol Biol ; 60(4): 399-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30335467

RESUMO

The asthma candidate gene inositol polyphosphate 4-phosphatase type I A (INPP4A) is a lipid phosphatase that negatively regulates the PI3K/Akt pathway. Destabilizing genetic variants of INPP4A increase the risk of asthma, and lung-specific INPP4A knockdown induces asthma-like features. INPP4A is known to localize intracellularly, and its extracellular presence has not been reported yet. Here we show for the first time that INPP4A is secreted by airway epithelial cells and that extracellular INPP4A critically inhibits airway inflammation and remodeling. INPP4A was present in blood and BAL fluid, and this extracellular INPP4A was reduced in patients with asthma and mice with allergic airway inflammation. In both naive mice and mice with allergic airway inflammation, antibody-mediated neutralization of extracellular INPP4A potentiated PI3K/Akt signaling and induced airway hyperresponsiveness, with prominent airway remodeling, subepithelial fibroblast proliferation, and collagen deposition. The link between extracellular INPP4A and fibroblasts was investigated in vitro. Cultured airway epithelial cells secreted enzymatically active INPP4A in extracellular vesicles and in a free form. Extracellular vesicle-mediated transfer of labeled INPP4A, from epithelial cells to fibroblasts, was observed. Inhibition of such transfer by anti-INPP4A antibody increased fibroblast proliferation. We propose that secretory INPP4A is a novel "paracrine" layer of the intricate regulation of lung homeostasis, by which airway epithelium dampens PI3K/Akt signaling in inflammatory cells or local fibroblasts, thereby limiting inflammation and remodeling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Hipersensibilidade Respiratória/patologia , Remodelação das Vias Aéreas/genética , Animais , Asma/sangue , Asma/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Monoéster Fosfórico Hidrolases/sangue , Monoéster Fosfórico Hidrolases/genética , Hipersensibilidade Respiratória/genética , Transdução de Sinais/genética
12.
Int J Environ Health Res ; 29(4): 414-429, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30450953

RESUMO

An attempt has been made to detect airborne pollen of Lagerstroemia speciosa (LS) and Spathodea campanulata (SC) - two common avenue trees of India as potential sources of aeroallergens and also to identify the major IgE-reactive components present in them. The airborne pollen concentration was assessed using a Burkard sampler. A detailed questionnaire on clinical data of 1490 patients was recorded based on hospital data. We assessed the allergenicity of pollen by in vivo and in vitro tests. The correlation among meteorological factors, pollen seasons and allergenic potency of patients was assessed by multiple regression analysis. The sensitivity of patients to pollen antigens was highly correlated with pollen seasons. In SDS-PAGE, 15 protein bands were detected from LS pollen, while 14 bands from SC. The IgE-specific immunoblotting with patients' sera allergic to LS displayed five major allergens, while four major allergens were detected from SC. This would be the first report from India to prove the allergenic potentiality of airborne pollen of these two common avenue trees of India.


Assuntos
Poluentes Atmosféricos/imunologia , Alérgenos/imunologia , Pólen/imunologia , Hipersensibilidade Respiratória/imunologia , Árvores , Adolescente , Adulto , Poluentes Atmosféricos/análise , Alérgenos/análise , Feminino , Humanos , Immunoblotting , Imunoglobulina E/sangue , Índia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Hipersensibilidade Respiratória/sangue , Hipersensibilidade Respiratória/patologia , Estações do Ano , Testes Cutâneos , Adulto Jovem
13.
Toxicology ; 411: 93-100, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445053

RESUMO

Recent studies have shown that the estrogen receptor α (ERα), but not ERß, is involved in the proinflammatory and propruritic responses in cutaneous allergy. In addition, results from our recent study showed that while oral administration of the rather ERß-selective agonist bisphenol A exacerbated the respiratory allergic inflammation, the potential inflammatory reaction in the skin was decreased after administration of bisphenol A. This study aimed to elucidate whether ERα and ERß are involved in the progression of an allergic airway inflammation. We performed an in vivo experiment using an animal model of allergic airway inflammation using male BALB/c mice to confirm an increase in the proinflammatory response induced by propylpyrazoletriol (PPT), an ERα agonist, and diarylpropionitrile (DPN), an ERß agonist. Oral administration of PPT or DPN showed a significant increase in the inflammation of the lung and infiltration of eosinophils. While the expression of Th2 cytokines such as interleukin 4 (IL-4) and IL-13 was not affected by exposure to PPT or DPN, administration of these agonists significantly increased the expression of IL-33. The mechanism underlying the development of such allergic inflammatory responses was determined by an in vitro study using the human bronchial epithelial cell line (BEAS-2B) and the human eosinophilic leukemia cell line (EoL-1). Activated cells were exposed to PPT or DPN for 24 h, and the cytokine levels were measured. The IL-33 levels in BEAS-2B cells increased significantly after exposure to PPT or DPN. In addition, pretreatment with PPT or DPN increased the expression of IL-8 in activated EoL-1 cells. Our findings indicate that ERα and ERß are involved in the proinflammatory response in respiratory allergy, and their effects may be mediated by an increase in the expression of IL-33 and infiltration of eosinophils.


Assuntos
Eosinófilos/patologia , Receptor alfa de Estrogênio/biossíntese , Receptor beta de Estrogênio/biossíntese , Interleucina-33/genética , Hipersensibilidade Respiratória/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Linhagem Celular , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Humanos , Inflamação/patologia , Interleucinas/biossíntese , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nitrilos/toxicidade , Fenóis/toxicidade , Propionatos/toxicidade , Pirazóis/toxicidade
14.
Am J Respir Cell Mol Biol ; 60(4): 434-444, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359078

RESUMO

Cystic fibrosis (CF) is an autosomal-recessive disease caused by mutations in the CF transmembrane conductance regulator gene. Many patients with CF have asthma-like symptoms and airway hyperresponsiveness, which are potentially associated with altered airway smooth muscle (ASM) contractility. Our goal in this study was to assess the contractility of the CF intrapulmonary ASM. ASM strips were dissected from human control and CF intrapulmonary airways, and assessed for methacholine-induced shortening velocity, maximal force, and stress. We also assessed isoproterenol responses in maximally methacholine-contracted ASM. ASM strips were then incubated for 16 hours with IL-13 and measurements were repeated. Myosin light chain kinase (MLCK) expression was assessed by Western blotting. Airways were immunostained for morphometry. ASM mass was increased in CF airways, which likely contributes to airway hyperresponsiveness. Although ASM contractile properties were not intrinsically different between patients with CF and control subjects, CF ASM responded differently in the presence of the inflammatory mediator IL-13, showing impairment in ß-adrenergic-induced relaxation. Indeed, the percentage of relaxation measured at maximal isoproterenol concentrations in the CF ASM was significantly lower after incubation with IL-13 (46.0% ± 6.7% relaxation) than without IL-13 (74.0% ± 7.7% relaxation, P = 0.018). It was also significantly lower than that observed in control ASM incubated with IL-13 (68.8% ± 4.9% relaxation, P = 0.048) and without IL-13 (82.4% ± 9.9%, P = 0.0035). CF ASM incubated with IL-13 also expressed greater levels of MLCK. Thus, our data suggest that the combination of an increase in ASM mass, increased MLCK expression, and inflammation-induced ß-adrenergic hyporesponsiveness may contribute to airway dysfunction in CF.


Assuntos
Asma/patologia , Fibrose Cística/patologia , Contração Muscular/fisiologia , Músculo Liso/patologia , Hipersensibilidade Respiratória/patologia , Adulto , Broncoconstritores/farmacologia , Broncodilatadores/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Interleucina-13/farmacologia , Isoproterenol/farmacologia , Masculino , Cloreto de Metacolina/farmacologia , Pessoa de Meia-Idade , Quinase de Cadeia Leve de Miosina/biossíntese , Sistema Respiratório/patologia , Adulto Jovem
15.
Am J Respir Cell Mol Biol ; 60(4): 420-433, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30359079

RESUMO

A positive link between persistent cellular motion and a defective tight junction barrier allows increased antigenic penetration and contact between ligand-receptor pairs, leading to exacerbated allergic airway inflammation and remodeling. Given that collective cell migration involves cell-cell and cell-extracellular matrix adhesions, and given that IL-4 induces epithelial barrier dysfunction and decreases cell-extracellular matrix adhesions, we hypothesized that IL-4 may induce collective migration in the well-differentiated primary human nasal epithelial cells (HNECs). Well-differentiated HNECs were treated with IL-4, and the effects of IL-4 on cell migration were investigated using genetic and pharmacological approaches, live-cell imaging, a vertex model, and immunostaining. IL-4 disrupted the expression and localization of the tight junction proteins zonula occludens 1 and occludin, and it induced the cleavage and asymmetric distribution of E-cadherin in the HNEC layers. It also induced collective epithelial migration and cell shape changes driven by actin cytoskeleton reorganization. In addition, the effect of IL-4 on collective HNEC migration was reversed by pharmacologic and genetic inhibition of the αv-integrin-activating enzyme furin, and function-blocking antibodies for αvß5 or αvß6. In IL-4-stimulated cells, both anti-αvß5 and anti-αvß6 inhibited the phosphorylation of focal adhesion kinase. Furthermore, both ß5- and ß6-integrins were enriched in basal cells in the injured airway epithelium with allergic rhinitis. These findings suggest that αvß5 and αvß6 serve as critical mechanoreceptors in IL-4-induced collective HNEC migration through the focal adhesion kinase signaling pathway. These results have implications for targeting treatment of exacerbation of respiratory allergic diseases.


Assuntos
Antígenos de Neoplasias/metabolismo , Movimento Celular/fisiologia , Células Epiteliais/metabolismo , Integrinas/metabolismo , Interleucina-4/metabolismo , Receptores de Vitronectina/metabolismo , Hipersensibilidade Respiratória/patologia , Caderinas/metabolismo , Adesão Celular , Forma Celular/fisiologia , Matriz Extracelular/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Furina/genética , Humanos , Ocludina/metabolismo , Hipersensibilidade Respiratória/imunologia , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo , Rinite Alérgica/patologia , Junções Íntimas/patologia , Proteína da Zônula de Oclusão-1/metabolismo
16.
Am J Respir Cell Mol Biol ; 60(1): 68-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30153047

RESUMO

NF-κB/RelA triggers innate inflammation by binding to bromodomain-containing protein 4 (BRD4), an atypical histone acetyltransferase (HAT). Although RelA·BRD4 HAT mediates acute neutrophilic inflammation, its role in chronic and functional airway remodeling is not known. We observed that BRD4 is required for Toll-like receptor 3 (TLR3)-mediated mesenchymal transition, a cell-state change that is characteristic of remodeling. We therefore tested two novel highly selective BRD4 inhibitors, ZL0420 and ZL0454, for their effects on chronic airway remodeling produced by repetitive TLR3 agonist challenges, and compared their efficacy with that of two nonselective bromodomain and extraterminal (BET) protein inhibitors, JQ1 and RVX208. We observed that ZL0420 and ZL0454 more potently reduced polyinosinic:polycytidylic acid-induced weight loss and fibrosis as assessed by microcomputed tomography and second harmonic generation microscopy. These measures correlated with the collagen deposition observed in histopathology. Importantly, the ZL inhibitors were more effective than the nonselective BET inhibitors at equivalent doses. The ZL inhibitors had significant effects on lung physiology, reversing TLR3-associated airway hyperresponsiveness and increasing lung compliance in vivo. At the molecular level, ZL inhibitors reduced elaboration of the transforming growth factor-ß-induced growth program, thereby preventing mucosal mesenchymal transition and disrupting BRD4 HAT activity and complex formation with RelA. We also observed that ZL0454 treatment blocked polyinosinic:polycytidylic acid-associated expansion of the α-SMA1+/COL1A+ myofibroblast population and prevented myofibroblast transition in a coculture system. We conclude that 1) BRD4 is a central effector of the mesenchymal transition that results in paracrine activation of myofibroblasts, mechanistically linking innate inflammation to airway hyperresponsiveness and fibrosis, and 2) highly selective BRD4 inhibitors may be effective in reversing the effects of repetitive airway viral infections on innate inflammation-mediated remodeling.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Inflamação/fisiopatologia , Proteínas Nucleares/antagonistas & inibidores , Fibrose Pulmonar/tratamento farmacológico , Mucosa Respiratória/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Remodelação das Vias Aéreas/fisiologia , Animais , Proteínas de Ciclo Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Humanos , Imunidade Inata/imunologia , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , RNA Interferente Pequeno/genética , Hipersensibilidade Respiratória/tratamento farmacológico , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo , Hipersensibilidade Respiratória/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais , Receptor 3 Toll-Like/metabolismo
17.
Histol Histopathol ; 34(5): 537-552, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30407608

RESUMO

INTRODUCTION: Proteinase inhibitors have been associated with anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment for asthma. PURPOSE: The aim of the present study was to evaluate the effects of Enterolobium contortisiliquum trypsin inhibitor (EcTI) on pulmonary mechanical function, eosinophilic recruitment, inflammatory cytokines, remodeling and oxidative stress in an experimental model of chronic allergic pulmonary inflammation. METHODS: BALB/c mice were divided into 4 groups: C (saline i.p and inhalations with saline), OVA (ovalbumin i.p and inhalations with ovalbumin); C+EC (saline i.p, inhalations with s aline and treatment with EcTI); OVA+EC (ovalbumin i.p, inhalations with ovalbumin and treatment with EcTI). On day 29, we performed the following tests: resistance (Rrs) and elastance (Ers) of the respiratory system; (b) quantify eosinophils, 8-ISO-PGF2α, collagen and elastic fiber volume fractions; (c) IFN-γ, IL-4, IL-5, IL-13, MMP-9, TIMP-1, TGF-ß, iNOS and p65-NFκB-positive cells in the airway and alveolar walls. RESULTS: In OVA+EC group, there was an attenuation of the Rrs and Ers, reduction of eosinophils, IL-4, IL-5, IL-13, IFN-γ, iNOS and p65-NFκB-positive cells compared to OVA group. The 8-ISO-PGF2α, elastic and collagen fibers volume fractions as well as the positive cells for MMP-9, TIMP-1 and TGF-ß positive cells were decreased in OVA+EC compared to the OVA group. CONCLUSION: EcTI attenuates bronchial hyperresponsiveness, inflammation, remodeling and oxidative stress activation in this experimental mouse model of asthma.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/patologia , Extratos Vegetais/farmacologia , Inibidores de Proteases/farmacologia , Animais , Modelos Animais de Doenças , Fabaceae , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Plantas/farmacologia , Hipersensibilidade Respiratória/patologia
19.
Int Immunol ; 30(9): 429-434, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30169732

RESUMO

Although airway hyperresponsiveness (AHR) is a prominent feature of asthma, how it is regulated remains incompletely understood. Allergin-1, an inhibitory immunoglobulin-like receptor containing an immunoreceptor tyrosine-based inhibitory motif (ITIM), is expressed on human and mouse mast cells (MCs) and inhibits high-affinity receptor for IgE (FcεRI)-mediated signaling. Using MC-deficient KitW-sh/W-sh mice and Mas-TRECK mice, which carries a diphtheria toxin (DT)-induced MC deletion system based on il4 enhancer elements, we demonstrate here that MCs are involved in the induction of house dust mite (HDM)-induced AHR. Further, we show that MCs deficient in Allergin-1 exacerbated HDM-induced AHR, but had no effect on airway inflammation. In vitro analysis demonstrated that Allergin-1 inhibited anti-HDM allergen antibody-dependent HDM allergen-mediated degranulation by MCs. Thus, Allergin-1 on MCs plays an important role in the regulation of HDM-induced AHR.


Assuntos
Mastócitos/imunologia , Pyroglyphidae/imunologia , Receptores Imunológicos/imunologia , Hipersensibilidade Respiratória/imunologia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Hipersensibilidade Respiratória/patologia
20.
Sci Transl Med ; 10(457)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185653

RESUMO

In asthma, airway nerve dysfunction leads to excessive bronchoconstriction and cough. It is well established that eosinophils alter nerve function and that airway eosinophilia is present in 50 to 60% of asthmatics. However, the effects of eosinophils on airway nerve structure have not been established. We tested whether eosinophils alter airway nerve structure and measured the physiological consequences of those changes. Our results in humans with and without eosinophilic asthma showed that airway innervation and substance P expression were increased in moderate persistent asthmatics compared to mild intermittent asthmatics and healthy subjects. Increased innervation was associated with a lack of bronchodilator responsiveness and increased irritant sensitivity. In a mouse model of eosinophilic airway inflammation, the increase in nerve density and airway hyperresponsiveness were mediated by eosinophils. Our results implicate airway nerve remodeling as a key mechanism for increased irritant sensitivity and exaggerated airway responsiveness in eosinophilic asthma.


Assuntos
Asma/patologia , Eosinófilos/patologia , Pulmão/inervação , Adulto , Idoso , Animais , Asma/sangue , Asma/complicações , Asma/fisiopatologia , Broncoconstrição/efeitos dos fármacos , Broncodilatadores/farmacologia , Eosinófilos/efeitos dos fármacos , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Qualidade de Vida , Reflexo/efeitos dos fármacos , Hipersensibilidade Respiratória/complicações , Hipersensibilidade Respiratória/patologia , Hipersensibilidade Respiratória/fisiopatologia , Substância P/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA