Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.395
Filtrar
1.
PLoS One ; 15(8): e0237237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32790701

RESUMO

BACKGROUND: The pathophysiology of arterial stiffness is not completely understood. Pulse wave velocity (PWV) is an established marker for arterial stiffness. We compare genetics of three PWV modes, namely carotid-femoral PWV (cfPWV), brachial-ankle (baPWV) and brachial-femoral (bfPWV), reflecting different vascular segments to analyse association with genetic variants, heritability and genetic correlation with other biological traits. Furthermore we searched for shared genetic architecture concerning PWV, blood pressure (BP) and coronary artery disease (CAD) and examined the causal relationship between PWV and BP. METHODS AND RESULTS: We performed a genome-wide association study (GWAS) for cfPWV, baPWV and bfPWV in LIFE-Adult (N = 3,643-6,734). We analysed the overlap of detected genetic loci with those of BP and CAD and performed genetic correlation analyses. By bidirectional Mendelian Randomization, we assessed the causal relationships between PWV and BP. For cfPWV we identified a new locus with genome-wide significance near SLC4A7 on cytoband 3p24.1 (lead SNP rs939834: p = 2.05x10-8). We replicated a known PWV locus on cytoband 14q32.2 near RP11-61O1.1 (lead SNPs: rs17773233, p = 1.38x10-4; rs1381289, p = 1.91x10-4) For baPWV we estimated a heritability of 28% and significant genetic correlation with hypertension (rg = 0.27, p = 6.65x10-8). We showed a positive causal effect of systolic blood pressure on PWV modes (cfPWV: p = 1.51x10-4; bfPWV: p = 1.45x10-3; baPWV: p = 6.82x10-15). CONCLUSIONS: We identified a new locus for arterial stiffness and successfully replicated an earlier proposed locus. PWV shares common genetic architecture with BP and CAD. BP causally affects PWV. Larger studies are required to further unravel the genetic determinants and effects of PWV.


Assuntos
Pressão Sanguínea , Hipertensão/genética , Rigidez Vascular , Idoso , Feminino , Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Análise de Onda de Pulso , Simportadores de Sódio-Bicarbonato/genética
2.
Nat Commun ; 11(1): 3865, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737319

RESUMO

Polygenic scores (PGS) have been widely used to predict disease risk using variants identified from genome-wide association studies (GWAS). To date, most GWAS have been conducted in populations of European ancestry, which limits the use of GWAS-derived PGS in non-European ancestry populations. Here, we derive a theoretical model of the relative accuracy (RA) of PGS across ancestries. We show through extensive simulations that the RA of PGS based on genome-wide significant SNPs can be predicted accurately from modelling linkage disequilibrium (LD), minor allele frequencies (MAF), cross-population correlations of causal SNP effects and heritability. We find that LD and MAF differences between ancestries can explain between 70 and 80% of the loss of RA of European-based PGS in African ancestry for traits like body mass index and type 2 diabetes. Our results suggest that causal variants underlying common genetic variation identified in European ancestry GWAS are mostly shared across continents.


Assuntos
Asma/genética , Diabetes Mellitus Tipo 2/genética , Hipertensão/genética , Modelos Genéticos , Herança Multifatorial , Polimorfismo de Nucleotídeo Único , Adulto , África/epidemiologia , Idoso , Alelos , Ásia/epidemiologia , Asma/diagnóstico , Asma/epidemiologia , Asma/etnologia , Índice de Massa Corporal , Colesterol/sangue , Simulação por Computador , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/etnologia , Europa (Continente)/epidemiologia , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Hipertensão/etnologia , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Prognóstico , Característica Quantitativa Herdável , Risco
3.
Neurology ; 95(4): e353-e361, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32611631

RESUMO

OBJECTIVE: We employed Mendelian randomization to explore whether the effects of blood pressure (BP) and BP-lowering through different antihypertensive drug classes on stroke risk vary by stroke etiology. METHODS: We selected genetic variants associated with systolic and diastolic BP and BP-lowering variants in genes encoding antihypertensive drug targets from genome-wide association studies (GWAS) on 757,601 individuals. Applying 2-sample Mendelian randomization, we examined associations with any stroke (67,162 cases; 454,450 controls), ischemic stroke and its subtypes (large artery, cardioembolic, small vessel stroke), intracerebral hemorrhage (ICH, deep and lobar), and the related small vessel disease phenotype of white matter hyperintensities (WMH). RESULTS: Genetic predisposition to higher systolic and diastolic BP was associated with higher risk of any stroke, ischemic stroke, and ICH. We found associations between genetically determined BP and all ischemic stroke subtypes with a higher risk of large artery and small vessel stroke compared to cardioembolic stroke, as well as associations with deep, but not lobar ICH. Genetic proxies for calcium channel blockers, but not ß-blockers, were associated with lower risk of any stroke and ischemic stroke. Proxies for calcium channel blockers showed particularly strong associations with small vessel stroke and the related radiologic phenotype of WMH. CONCLUSIONS: This study supports a causal role of hypertension in all major stroke subtypes except lobar ICH. We find differences in the effects of BP and BP-lowering through antihypertensive drug classes between stroke subtypes and identify calcium channel blockade as a promising strategy for preventing manifestations of cerebral small vessel disease.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/complicações , Hipertensão/genética , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/etiologia , Pressão Sanguínea/genética , Doenças de Pequenos Vasos Cerebrais/etiologia , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana
4.
Nat Commun ; 11(1): 3368, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632093

RESUMO

Blood pressure (BP) was inconsistently associated with migraine and the mechanisms of BP-lowering medications in migraine prophylaxis are unknown. Leveraging large-scale summary statistics for migraine (Ncases/Ncontrols = 59,674/316,078) and BP (N = 757,601), we find positive genetic correlations of migraine with diastolic BP (DBP, rg = 0.11, P = 3.56 × 10-06) and systolic BP (SBP, rg = 0.06, P = 0.01), but not pulse pressure (PP, rg = -0.01, P = 0.75). Cross-trait meta-analysis reveals 14 shared loci (P ≤ 5 × 10-08), nine of which replicate (P < 0.05) in the UK Biobank. Five shared loci (ITGB5, SMG6, ADRA2B, ANKDD1B, and KIAA0040) are reinforced in gene-level analysis and highlight potential mechanisms involving vascular development, endothelial function and calcium homeostasis. Mendelian randomization reveals stronger instrumental estimates of DBP (OR [95% CI] = 1.20 [1.15-1.25]/10 mmHg; P = 5.57 × 10-25) on migraine than SBP (1.05 [1.03-1.07]/10 mmHg; P = 2.60 × 10-07) and a corresponding opposite effect for PP (0.92 [0.88-0.95]/10 mmHg; P = 3.65 × 10-07). These findings support a critical role of DBP in migraine susceptibility and shared biology underlying BP and migraine.


Assuntos
Pressão Sanguínea/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Metanálise como Assunto , Transtornos de Enxaqueca/genética , Polimorfismo de Nucleotídeo Único , Humanos , Hipertensão/genética , Cadeias beta de Integrinas/genética , Análise da Randomização Mendeliana/métodos , Proteínas/genética , Receptores Adrenérgicos alfa 2/genética , Fatores de Risco , Telomerase/genética
5.
Arterioscler Thromb Vasc Biol ; 40(9): 2108-2113, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32640904

RESUMO

OBJECTIVE: Renin cleavage of angiotensinogen has species specificity. As the residues at positions 11 and 12 are different between human angiotensinogen and mouse angiotensinogen, we determined whether these 2 residues in angiotensinogen affect renin cleavage and angiotensin II-mediated blood pressure regulation and atherosclerosis using an adenoassociated viral approach for manipulating angiotensinogen in vivo. Approach and Results: Hepatocyte-specific angiotensinogen deficient (hepAGT-/-) mice in an LDL receptor-deficient background were infected with adenoassociated virals containing a null insert, human angiotensinogen, or mouse angiotensinogen expressing the same residues of the human protein at positions 11 and 12 (mouse angiotensinogen [L11V;Y12I]). Expression of human angiotensinogen in hepAGT-/- mice led to high plasma human angiotensinogen concentrations without changes in plasma endogenous mouse angiotensinogen, plasma renin concentrations, blood pressure, or atherosclerosis. This is consistent with human angiotensinogen not being cleaved by mouse renin. To determine whether the residues at positions 11 and 12 in human angiotensinogen lead to the inability of mouse renin to cleave human angiotensinogen, hepAGT-/- mice were injected with adenoassociated viral vector encoding mouse angiotensinogen (L11V;Y12I). Expression of mouse angiotensinogen (L11V;Y12I) in hepAGT-/- mice resulted in increased plasma mouse angiotensinogen concentrations, reduced renin concentrations, and increased renal AngII concentrations that were comparable to their concentrations in hepAGT+/+ mice. This mouse angiotensinogen variant increased blood pressure and atherosclerosis in hepAGT-/- mice to the magnitude of hepAGT+/+ mice. CONCLUSIONS: Replacement of L11 and Y12 to V11 and I12, respectively, in mouse angiotensinogen does not affect renin cleavage, blood pressure, and atherosclerosis in LDL receptor-deficient mice.


Assuntos
Angiotensina II/metabolismo , Angiotensinogênio/metabolismo , Aterosclerose/metabolismo , Pressão Sanguínea , Hepatócitos/metabolismo , Hipertensão/metabolismo , Renina/metabolismo , Substituição de Aminoácidos , Angiotensinogênio/deficiência , Angiotensinogênio/genética , Animais , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Especificidade da Espécie
6.
PLoS One ; 15(7): e0235756, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32702059

RESUMO

Genome-wide association studies (GWAS) have routinely detected human quantitative trait loci (QTLs) for complex traits. Viewing that most GWAS single nucleotide polymorphisms (SNPs) are found in non-coding regions unrelated to the physiology of a polygenic trait of interest, a vital question to answer is whether or not any of these SNPs can functionally alter the phenotype with which it is associated. The study of blood pressure (BP) is a case in point. Conserved mechanisms in controlling BP by modularity is now unifying differing mammalian orders in that understanding mechanisms in rodents is tantamount to revealing the same in humans, while overcoming experimental limitations imposed by human studies. As a proof of principle, we used BP QTLs from Dahl salt-sensitive rats (DSS) as substitutes to capture distinct human functional orthologs. 3 DSS BP QTLs are located into distinct genome regions and correspond to several human GWAS genes. Each of the QTLs independently exerted a major impact on BP in vivo. BP was functionally changed by normotensive alleles from each of these QTLs, and yet, the human GWAS SNPs do not exist in the rat. They cannot be responsible for physiological alterations in BP caused by these QTLs. These SNPs are genome emblems for QTLs nearby, rather than being QTLs per se, since they only emerged during primate evolution after BP-regulating mechanisms have been established. We then identified specific mutated coding domains that are conserved between rodents and humans and that may implicate different steps of a common pathway or separate pathways.


Assuntos
Pressão Sanguínea/genética , Estudo de Associação Genômica Ampla , Hipertensão/genética , Hipertensão/prevenção & controle , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Animais , Determinação da Pressão Arterial , Mapeamento Cromossômico , Humanos , Masculino , Fenótipo , Ratos , Ratos Endogâmicos Dahl
7.
Medicine (Baltimore) ; 99(28): e21195, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664164

RESUMO

INTRODUCTION: Hypertension occurs profoundly in the world, and left ventricular (LV) remodeling containing functional, structural, and mechanical changes induced by uncontrolled blood pressure is a well-known complication, however the underlying mechanism is still obscure. METHODS: To determine differences in gene expression profiles of hypertension and LV remodeling consequence to hypertension, Gene Expression Omnibus 2R online tool was used to identify differently expressed genes. Publicly available databases including GeneMANIA, database for annotation, visualization and integrated discovery, search tool for the retrieva predicting associated transcription factors (TF) from annotated affinities interacting genes, Predicting Associated TF from Annotated Affinities, JASPAR and Comparative Toxicogenomics Database (CTD) were accessed to perform an integrated bioinformatic analysis. RESULTS: Twenty-one genes (SEC14L3, EML7, PSMD7, PSMA1, GLRX, CNOT10, NBR1, DUSP12, STRAP, SMIM14, RBM8A, TMEM59, TMEM87A,PSMC1, CASP4, ITGB8, DNAJA1, PINK1, PRNP, SAP30L, and EIF3M) were found overexpression in both hypertension and hypertensive LV remodeling. Biological process analysis first revealed that enrichment of these target genes correlated with regulation of cellular amino acid metabolic process, antigen processing and presentation of exogenous peptide antigen via MHC class I, TAP-dependent and proteasome complex, 3 different expression genes (DEGs) participate significantly enriched in NFκB, WNT, and MAPK pathways, meanwhile, 47% DEGs displayed similar co-expression characteristics. Furthermore, the transcription factors associated with key DEGs were identified. Finally, the TF (HAND1, E4BP4, ESR1, VBP, ELK-1, POU3F2) associated with LV remodeling in hypertension were confirmed to act a crucial role in correlated heart diseases. CONCLUSION: The present study reveals the targeted genes probably associated with LV remodeling in hypertension by bioinformatics-based analyses, which provides clues for prognosis judgement and pharmacological therapies.


Assuntos
Hipertensão/genética , Fatores de Transcrição/genética , Transcriptoma , Remodelação Ventricular/genética , Biologia Computacional , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Prognóstico
8.
PLoS One ; 15(6): e0234357, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32516339

RESUMO

Congenital heart defects (CHDs) affect approximately 1% of newborns. Epidemiological studies have identified several genetically-mediated maternal phenotypes (e.g., pregestational diabetes, chronic hypertension) that are associated with the risk of CHDs in offspring. However, the role of the maternal genome in determining CHD risk has not been defined. We present findings from gene-level, genome-wide studies that link CHDs to maternal effect genes as well as to maternal genes related to hypertension and proteostasis. Maternal effect genes, which provide the mRNAs and proteins in the oocyte that guide early embryonic development before zygotic gene activation, have not previously been implicated in CHD risk. Our findings support a role for and suggest new pathways by which the maternal genome may contribute to the development of CHDs in offspring.


Assuntos
Cardiopatias Congênitas/genética , Herança Materna/genética , Adulto , Estudos de Casos e Controles , Pré-Escolar , Família , Feminino , Testes Genéticos/métodos , Cardiopatias Congênitas/etiologia , Humanos , Hipertensão/genética , Lactente , Recém-Nascido , Masculino , Exposição Materna/efeitos adversos , Pessoa de Meia-Idade , Oócitos/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Proteostase/genética , Fatores de Risco
9.
Medicine (Baltimore) ; 99(26): e20791, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590761

RESUMO

BACKGROUND: According to the relevant reports that single nucleotide polymorphisms (SNPs) may contribute to change of homocysteine (HCY) levels and increase the risk of hypertension (HTN). During the inconsistent results, this meta-analysis purpose is systematically review and synthesized relevant data on HCY levels and SNPs in HTN. METHODS: The systematic search database, from the following database to find out the association studies of SNPs and HTN publications up until March 2020 from the databases of PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure (CNKI), the Chinese Science and Technology Periodical Database (VIP) and Wan fang databases, and Chinese Biomedical Literature Database (CBM). Network meta-analysis and Thakkinstian's algorithm were used to select the most appropriate genetic model, along with false positive report probability (FPRP) for noteworthy associations. All statistical analyses were calculated with STATA software (version 14.0; StataCorp, College Station, TX). RESULTS: This meta-analysis will provide high-quality evidence to the effects of SNP on HTN and levels of HCY, and find between SNPs and HTN susceptibility on in all the genetic models, and choose the best one. CONCLUSIONS: This meta-analysis will research which SNP is the most correlated with HTN risk. REGISTRATION: INPLASY202050002.


Assuntos
Predisposição Genética para Doença , Homocisteína , Hipertensão , Correlação de Dados , Homocisteína/sangue , Homocisteína/genética , Humanos , Hipertensão/sangue , Hipertensão/diagnóstico , Hipertensão/genética , Metanálise em Rede , Polimorfismo de Nucleotídeo Único , Projetos de Pesquisa , Revisões Sistemáticas como Assunto
10.
J Infect Dis ; 222(4): 556-563, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32526012

RESUMO

Patients who died from COVID-19 often had comorbidities, such as hypertension, diabetes, and chronic obstructive lung disease. Although angiotensin-converting enzyme 2 (ACE2) is crucial for SARS-CoV-2 to bind and enter host cells, no study has systematically assessed the ACE2 expression in the lungs of patients with these diseases. Here, we analyzed over 700 lung transcriptome samples from patients with comorbidities associated with severe COVID-19 and found that ACE2 was highly expressed in these patients compared to control individuals. This finding suggests that patients with such comorbidities may have higher chances of developing severe COVID-19. Correlation and network analyses revealed many potential regulators of ACE2 in the human lung, including genes related to histone modifications, such as HAT1, HDAC2, and KDM5B. Our systems biology approach offers a possible explanation for increased COVID-19 severity in patients with certain comorbidities.


Assuntos
Infecções por Coronavirus/epidemiologia , Pulmão/enzimologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/epidemiologia , Estudos de Casos e Controles , Transtornos Cerebrovasculares/epidemiologia , Transtornos Cerebrovasculares/genética , Comorbidade , Doença das Coronárias/epidemiologia , Doença das Coronárias/genética , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/genética , Complicações do Diabetes/epidemiologia , Complicações do Diabetes/genética , Epigenômica , Feminino , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Masculino , Pandemias , Peptidil Dipeptidase A/genética , Pneumonia Viral/enzimologia , Pneumonia Viral/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Índice de Gravidade de Doença , Biologia de Sistemas , Transcriptoma
11.
PLoS One ; 15(6): e0234547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32555714

RESUMO

Estimating the prevalence of cardiovascular diseases (CVDs) and risk factors among the Roma population, the largest minority in Europe, and investigating the role of genetic or environmental/behavioral risk factors in CVD development are important issues in countries where they are significant minority. This study was designed to estimate the genetic susceptibility of the Hungarian Roma (HR) population to essential hypertension (EH) and compare it to that of the general (HG) population. Twenty EH associated SNPs (in AGT, FMO3, MTHFR-NPPB, NPPA, NPPA-AS1, AGTR1, ADD1, NPR3-C5orf23, NOS3, CACNB2, PLCE1, ATP2B1, GNB3, CYP1A1-ULK3, UMOD and GNAS-EDN3) were genotyped using DNA samples obtained from HR (N = 1176) and HG population (N = 1178) subjects assembled by cross-sectional studies. Allele frequencies and genetic risk scores (unweighted and weighted genetic risk scores (GRS and wGRS, respectively) were calculated for the study groups and compared to examine the joint effects of the SNPs. The susceptibility alleles were more frequent in the HG population, and both GRS and wGRS were found to be higher in the HG population than in the HR population (GRS: 18.98 ± 3.05 vs. 18.25 ± 2.97, p<0.001; wGRS: 1.4 [IQR: 0.93-1.89] vs. 1.52 [IQR: 0.99-2.00], p<0.01). Twenty-seven percent of subjects in the HR population were in the bottom fifth (GRS ≤ 16) of the risk allele count compared with 21% of those in the HG population. Thirteen percent of people in the HR group were in the top fifth (GRS ≥ 22) of the GRS compared with 21% of those in the HG population (p<0.001), i.e., the distribution of GRS was found to be left-shifted in the HR population compared to the HG population. The Roma population seems to be genetically less susceptible to EH than the general one. These results support preventive efforts to lower the risk of developing hypertension by encouraging a healthy lifestyle.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Hipertensão/genética , Adulto , Alelos , Biomarcadores/sangue , Feminino , Frequência do Gene/genética , Genótipo , Humanos , Hungria/epidemiologia , Hipertensão/sangue , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Roma/genética
13.
Am J Hum Genet ; 106(6): 846-858, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32470372

RESUMO

The burden of several common diseases including obesity, diabetes, hypertension, asthma, and depression is increasing in most world populations. However, the mechanisms underlying the numerous epidemiological and genetic correlations among these disorders remain largely unknown. We investigated whether common polymorphic inversions underlie the shared genetic influence of these disorders. We performed an inversion association analysis including 21 inversions and 25 obesity-related traits on a total of 408,898 Europeans and validated the results in 67,299 independent individuals. Seven inversions were associated with multiple diseases while inversions at 8p23.1, 16p11.2, and 11q13.2 were strongly associated with the co-occurrence of obesity with other common diseases. Transcriptome analysis across numerous tissues revealed strong candidate genes for obesity-related traits. Analyses in human pancreatic islets indicated the potential mechanism of inversions in the susceptibility of diabetes by disrupting the cis-regulatory effect of SNPs from their target genes. Our data underscore the role of inversions as major genetic contributors to the joint susceptibility to common complex diseases.


Assuntos
Inversão Cromossômica/genética , Diabetes Mellitus/genética , Predisposição Genética para Doença , Hipertensão/genética , Obesidade/complicações , Obesidade/genética , Polimorfismo Genético , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Cromossomos Humanos Par 16/genética , Cromossomos Humanos Par 8/genética , Conjuntos de Dados como Assunto/normas , Diabetes Mellitus/patologia , Europa (Continente)/etnologia , Feminino , Perfilação da Expressão Gênica , Haplótipos , Humanos , Hipertensão/complicações , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Adulto Jovem
14.
Stroke ; 51(6): 1835-1843, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32397936

RESUMO

Background and Purpose- oxLDL (oxidized low-density lipoprotein) has been known for its potential to induce endothelial dysfunction and used as a major serological marker of oxidative stress. Recently, LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1), a lectin-like receptor for oxLDL, has attracted attention in studies of neuronal apoptosis and stroke. We aim to investigate the impact of LOX-1-deficiency on spontaneous hypertension-related brain damage in the present study. Methods- We generated a LOX-1 deficient strain on the genetic background of stroke-prone spontaneously hypertensive rat (SHRSP), an animal model of severe hypertension and spontaneous stroke. In this new disease model with stroke-proneness, we monitored the occurrence of brain abnormalities with and without salt loading by multiple procedures including T2 weighted magnetic resonance imaging and also explored circulatory miRNAs as diagnostic biomarkers for cerebral ischemic injury by microarray analysis. Results- Both T2 weighted magnetic resonance imaging abnormalities and physiological parameter changes could be detected at significantly delayed timing in LOX-1 knockout rats compared with wild-type SHRSP, in either case of normal rat chow and salt loading (P<0.005 in all instances; n=11-20 for SHRSP and n=13-23 for LOX-1 knockout rats). There were no significant differences in the form of magnetic resonance imaging findings between the strains. A number of miRNAs expressed in the normal rat plasma, including rno-miR-150-5p and rno-miR-320-3p, showed significant changes after spontaneous brain damage in SHRSP, whereas the corresponding changes were modest or almost unnoticeable in LOX-1 knockout rats. There appeared to be the lessening of correlation of postischemic miRNA alterations between the injured brain tissue and plasma in LOX-1 knockout rats. Conclusions- Our data show that deficiency of LOX-1 has a protective effect on spontaneous brain damage in a newly generated LOX-1-deficient strain of SHRSP. Further, our analysis of miRNAs as biomarkers for ischemic brain damage supports a potential involvement of LOX-1 in blood brain barrier disruption after cerebral ischemia. Visual Overview- An online visual overview is available for this article.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Deleção de Genes , Hipertensão , Receptores Depuradores Classe E/deficiência , Acidente Vascular Cerebral , Animais , Barreira Hematoencefálica/lesões , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/sangue , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , MicroRNA Circulante , Hipertensão/sangue , Hipertensão/genética , Hipertensão/patologia , MicroRNAs/sangue , MicroRNAs/genética , Ratos , Ratos Endogâmicos SHR , Ratos Transgênicos , Receptores Depuradores Classe E/metabolismo , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
15.
Virus Res ; 286: 198034, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32445872

RESUMO

The angiotensin-converting enzyme 2 receptor (ACE2) is expressed in epithelial cells of many tissues including the kidney, and has been identified to interact with human pathogenic coronaviruses, including SARS-CoV-2. Although diffuse alveolar damage and acute respiratory failure are the main features of COVID-19 infection, two recent studies demonstrate that kidney impairment in hospitalized COVID-19 patients is common, and that kidney involvement is associated with high risk of in-hospital death. Interestingly, studies in rats have demonstrated that high dietary sodium intake results in down-regulation of the ACE2 expression in kidney tissue. We hypothesize that low sodium status makes kidney involvement during the course of COVID-19 infection more likely due to upregulation of membrane bound ACE2 in the kidneys. We propose that sodium intake and status should be monitored carefully during severe COVID-19 infections, and that low sodium intake be corrected early in its course, despite a potential conflict regarding common dietary recommendations to restrict dietary sodium intake in patients with hypertension, diabetes, and kidney disease.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/genética , Rim/efeitos dos fármacos , Peptidil Dipeptidase A/genética , Pneumonia Viral/genética , Sódio na Dieta/farmacologia , Glicoproteína da Espícula de Coronavírus/genética , Animais , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/virologia , Rim/metabolismo , Rim/patologia , Rim/virologia , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Ligação Proteica , Ratos , Ratos Endogâmicos SHR , Índice de Gravidade de Doença , Sódio na Dieta/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
16.
Zhonghua Liu Xing Bing Xue Za Zhi ; 41(5): 727-732, 2020 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-32447915

RESUMO

Objective: To explore the relationship of telomere length, mitochondrial DNA copy number of peripheral blood with hypertension and the interaction between telomere length and mtDNA-CN on hypertension in coal miners. Methods: A case control study was conducted in a coal mine of Shanxi province from July to December of 2013, in which 325 healthy workers were selected as the control group and 378 workers with hypertension as the case group. The information about general demographic characteristics and life behavior habits of the subjects were collected through questionnaire. Levels of telomere length and mtDNA-CN in peripheral blood were detected by real-time PCR. Unconditional logistic regression was used to examine the association between hypertension and telomere length, mtDNA-CN. The interaction test between telomere length and mtDNA-CN on hypertension was performed by adding the interaction term in the corresponding model. Results: The mean telomere length of the workers in the case group was (1.50±0.55) kb, and that of the control group was (2.01±0.62) kb, the difference between two groups was significant (t=11.68, P<0.001). The correlation analysis showed that telomere length was positively correlated with mtDNA-CN (r=0.157, P=0.002) in the case group. Multivariate analysis showed that telomere length (OR=4.408, 95%CI: 3.012-6.452), age (OR=0.417, 95%CI: 0.284-0.613), BMI (OR=1.357, 95%CI: 1.162-1.584), monthly household income level (OR=0.656, 95%CI: 0.553-0.778) and work duration (OR=1.249, 95%CI: 1.100-1.417) were influencing factors of hypertension. The multiply interaction between telomere length and mtDNA-CN was significant on hypertension (OR=1.267, 95%CI: 1.094-1.468). Conclusions: The results suggest shorter telomere length is a risk factor of hypertension. There is a multiply interaction between telomere length and mtDNA-CN on hypertension. However, the association between mtDNA-CN and hypertension was not found.


Assuntos
DNA Mitocondrial , Hipertensão , Estudos de Casos e Controles , Carvão Mineral , Variações do Número de Cópias de DNA , Humanos , Hipertensão/genética , Telômero
18.
Nat Med ; 26(4): 542-548, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32251405

RESUMO

While polygenic risk scores (PRSs) are poised to be translated into clinical practice through prediction of inborn health risks1, a strategy to utilize genetics to prioritize modifiable risk factors driving heath outcome is warranted2. To this end, we investigated the association of the genetic susceptibility to complex traits with human lifespan in collaboration with three worldwide biobanks (ntotal = 675,898; BioBank Japan (n = 179,066), UK Biobank (n = 361,194) and FinnGen (n = 135,638)). In contrast to observational studies, in which discerning the cause-and-effect can be difficult, PRSs could help to identify the driver biomarkers affecting human lifespan. A high systolic blood pressure PRS was trans-ethnically associated with a shorter lifespan (hazard ratio = 1.03[1.02-1.04], Pmeta = 3.9 × 10-13) and parental lifespan (hazard ratio = 1.06[1.06-1.07], P = 2.0 × 10-86). The obesity PRS showed distinct effects on lifespan in Japanese and European individuals (Pheterogeneity = 9.5 × 10-8 for BMI). The causal effect of blood pressure and obesity on lifespan was further supported by Mendelian randomization studies. Beyond genotype-phenotype associations, our trans-biobank study offers a new value of PRSs in prioritization of risk factors that could be potential targets of medical treatment to improve population health.


Assuntos
Bancos de Espécimes Biológicos/estatística & dados numéricos , Marcadores Genéticos , Estudo de Associação Genômica Ampla/métodos , Longevidade/genética , Herança Multifatorial/genética , Adulto , Fatores Etários , Idoso , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/mortalidade , Feminino , Finlândia/epidemiologia , Marcadores Genéticos/genética , Predisposição Genética para Doença/epidemiologia , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos , Hipertensão/genética , Hipertensão/mortalidade , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/mortalidade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Reino Unido/epidemiologia
19.
Clín. investig. arterioscler. (Ed. impr.) ; 32(2): 70-78, mar.-abr. 2020. ilus
Artigo em Inglês | IBECS | ID: ibc-187150

RESUMO

The elevation of blood pressure produces specific organic lesions, including kidney and cardiac damage. On the other hand, cardiovascular disease usually leads to the development of hypertension. Thus, hypertension could be both a cause and a consequence of cardiovascular disease. Previous studies linked the lack of nitric oxide to cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced endothelium-derived hyperpolarizing factor responses, with shorter survival. The lack of this gas also leads to renal/cardiac abnormalities.It is widely known that nephrogenic deficiency is a risk factor for kidney disease. Besides, recent evidence suggests that alterations in WT-1, a key nephrogenic factor, could contribute to the development of hypertension. Moreover, some genes involved in the development of hypertension depend on WT-1.This knowledge makes it essential to investigate and understand the mechanisms regulating the expression of these genes during renal/cardiac development, and hypertension. As a consequence, the most in-depth knowledge of the complex aetiopathogenic mechanism responsible for the hypertensive disease will allow us to propose novel therapeutic tools


La hipertensión produce lesiones orgánicas específicas como daño renal/cardíaco, mientras que la enfermedad cardiovascular generalmente conduce a la hipertensión. Por ello, la hipertensión sería tanto una causa como una consecuencia de la enfermedad cardiovascular. Estudios previos refieren falta de óxido nítrico con anomalías cardiovasculares como hipertensión y reducción de las respuestas del factor hiperpolarizante derivado del endotelio. La falta de este gas también conduce a anomalías renales/cardíacas. Además, la deficiencia nefrogénicaes un factor de riesgo para la enfermedad renal. Así, alteraciones en WT-1, un factor nefrógeno clave, podrían contribuir al desarrollo de hipertensión. Finalmente, el conocimiento más profundo del complejo mecanismo etiopatogénico responsable de la enfermedad hipertensiva nos permitirá proponer nuevas herramientas terapéuticas


Assuntos
Humanos , Hipertensão/genética , Expressão Gênica/genética , Proteínas WT1/genética , Nefropatias/genética , Doenças Cardiovasculares/genética , Óxido Nítrico/genética
20.
BMC Med Genet ; 21(1): 83, 2020 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32306916

RESUMO

BACKGROUND: The role of angiotensin II type 1 receptor (AT1R) as a key player in type 2 diabetes mellitus (T2DM) complicated with hypertension remains controversial. The present case-control study systematically investigated the association between gene the correct variation type in the angiotensin II type 1 receptor (AT1R) gene and type 2 diabetes mellitus complicated with hypertension in the Han population from the Inner Mongolia region, China. METHOD: Here, state which variants were analysis, including age, occupation, triglyceride, systolic, diastolic, sex, culture, marital status, smoking, alcohol, BMI (body mass index), SBP (systolic blood pressure), DBP (diastolic blood pressure), TG (triglyceride), TC (total cholesterol), HDL-C (high-density lipoprotein cholesterol), LDL-C (low-density lipoprotein cholesterol), FPG (fasting plasma glucose). Genomic DNA was extracted from samples from 202 type 2 diabetic patients with hypertension and 216 type 2 diabetic patients without hypertension. RESULTS: Non-conditional regression analysis showed that in comparison with the TT genotype, the presence of the CC genotype for the T573 site of the AT1R gene increased the risk for diabetes mellitus complicated with hypertension by 3.219-fold (OR = 3.219, 95% CI: 1.042-9.941, P = 0.042). The results from multivariate linear regression analysis suggested the rs5182 polymorphism in the AT1R gene to be associated with diastolic blood pressure (P = 0.032). No other associations were found between the incidence of disease and the correct variation type at other sites of the AT1R gene. CONCLUSIONS: Our results suggest that the rs5182 polymorphism in the AT1R gene is associated with diabetes complicated by hypertension in the Han population of Inner Mongolia.


Assuntos
Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Hipertensão/genética , Receptor Tipo 1 de Angiotensina/genética , Glicemia/genética , Pressão Sanguínea/genética , Índice de Massa Corporal , Estudos de Casos e Controles , China/epidemiologia , HDL-Colesterol/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/patologia , Feminino , Estudos de Associação Genética , Humanos , Hipertensão/etiologia , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Triglicerídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA