RESUMO
Alzheimer's disease (AD) is a typical cognitive disorder with an increasing incidence in recent years. AD is also one of the main causes of disability and death of the elderly in current aging society. One of the most common symptoms of AD is spatial memory impairment, which occurs in more than 60% of patients. This memory loss is closely related to the impairment of cognitive maps in the brain. The entorhinal grid cells and the hippocampal place cells are important cellular basis for spatial memory and navigation functions in the brain. Understanding the abnormal firing pattern of these neurons and their impaired coordination to neural oscillations in transgenic rodents is crucial for identifying the therapeutic targets for AD. In this article, we review recent studies on neural activity based on transgenic rodent models of AD, with a focus on the changes in the firing characteristics of neurons and the abnormal electroencephalogram (EEG) rhythm in the entorhinal cortex and hippocampus. We also discuss potential cell-network mechanism of spatial memory disorders caused by AD, so as to provide a scientific basis for the diagnosis and treatment of AD in the future.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Humanos , Idoso , Camundongos , Doença de Alzheimer/genética , Animais Geneticamente Modificados , Neurônios/fisiologia , Hipocampo/fisiologia , Transtornos da Memória , Cognição , Camundongos TransgênicosRESUMO
BACKGROUND: Wistar Kyoto (WKY) rats manifest abnormalities in the function of monoamine receptors and transporters, as well as levels of these neurotransmitters in the brain. The present study assessed alterations in the firing activity of serotonin (5-hydroxytryptamine [5-HT]), norepinephrine (NE), and dopamine (DA) neurons, as well as the activity of 5-HT and NE receptors and transporters in the hippocampus. METHODS: In vivo electrophysiological recordings were conducted in male WKY and Wistar rats. Extracellular single-unit recordings of 5-HT, NE, and DA neurons were performed. Recordings of pyramidal neurons were conducted in the medial prefrontal cortex (mPFC) and the hippocampus, where direct application of 5-HT and NE by iontophoresis was also carried out. RESULTS: The mean firing rate of 5-HT neurons was significantly decreased in WKY compared to Wistar rats. The burst activity of NE neurons was significantly increased in WKY, while their mean firing activity was not changed. There was no alteration in the firing, burst, and population activity of DA neurons in WKY animals. In the hippocampus, a decrease in sensitivity of α2-adrenoceptors, but not 5-HT receptors, was observed. There was, however, no change in the activity of 5-HT and NE transporters. The firing activity of mPFC pyramidal neurons was similar in WKY versus Wistar rats. CONCLUSION: In WKY rats, there was a decrease in the firing activity of 5-HT neurons. There was also an enhanced burst activity of NE neurons, accompanied by a reduction in sensitivity of the α2-adrenoceptor in the hippocampus, inferring a decrease in NE transmission.
Assuntos
Norepinefrina , Serotonina , Ratos , Animais , Masculino , Serotonina/fisiologia , Ratos Endogâmicos WKY , Ratos Wistar , Ratos Sprague-Dawley , Neurônios , Receptores Adrenérgicos , Hipocampo/fisiologiaRESUMO
Memory consolidation involves interactions between the hippocampus and other cortical areas. A new study identifies neurons in the medial entorhinal cortex that over learning increase their coordination with hippocampal replay events, suggesting a route for consolidation of spatial memories.
Assuntos
Córtex Entorrinal , Consolidação da Memória , Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Memória Espacial , Neurônios/fisiologiaRESUMO
Rather than a natural product, a computational analysis leads us to characterize déjà vu as a failure of memory retrieval, linked to the activation in neocortex of familiar items from a compositional memory in the absence of hippocampal input, and to a misappropriation by the self of what is of others.
Assuntos
Hipocampo , Memória , Humanos , Memória/fisiologia , Hipocampo/fisiologiaRESUMO
Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.
Assuntos
Concussão Encefálica , Humanos , Animais , Suínos , Porco Miniatura , Hipocampo/fisiologia , Interneurônios/fisiologia , Células Piramidais/fisiologiaRESUMO
Memory formation is typically divided into phases associated with encoding, storage, consolidation, and retrieval. The neural determinants of these phases are thought to differ. This study first investigated the impact of the experience of novelty in rats incurred at a different time, before or after, the precise moment of memory encoding. Memory retention was enhanced. Optogenetic activation of the locus coeruleus mimicked this enhancement induced by novelty, both when given before and after the moment of encoding. Optogenetic activation of the locus coeruleus also induced a slow-onset potentiation of field potentials in area CA1 of the hippocampus evoked by CA3 stimulation. Despite the locus coeruleus being considered a primarily noradrenergic area, both effects of such stimulation were blocked by the dopamine D1/D5 receptor antagonist SCH 23390. These findings substantiate and enrich the evidence implicating the locus coeruleus in cellular aspects of memory consolidation in hippocampus.
Assuntos
Locus Cerúleo , Optogenética , Ratos , Animais , Locus Cerúleo/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Norepinefrina/farmacologia , Potenciação de Longa Duração/fisiologiaRESUMO
A critical feature of episodic memory formation is to associate temporally segregated events as an episode, called temporal association learning. The medial entorhinal cortical-hippocampal (EC-HPC) networks is essential for temporal association learning. We have previously demonstrated that pyramidal cells in the medial EC (MEC) layer III project to the hippocampal CA1 pyramidal cells and are necessary for trace fear conditioning (TFC), which is an associative learning between tone and aversive shock with the temporal gap. On the other hand, Island cells in MECII, project to GABAergic neurons in hippocampal CA1, suppress the MECIII input into the CA1 pyramidal cells through the feed-forward inhibition, and inhibit TFC. However, it remains unknown about how Island cells activity is regulated during TFC. In this study, we report that dopamine D1 receptor is preferentially expressed in Island cells in the MEC. Optogenetic activation of dopamine D1 receptors in Island cells facilitate the Island cell activity and inhibited hippocampal CA1 pyramidal cell activity during TFC. The optogenetic activation caused the impairment of TFC memory recall without affecting contextual fear memory recall. These results suggest that dopamine D1 receptor in Island cells have a crucial role for the regulation of temporal association learning.
Assuntos
Aprendizagem por Associação , Córtex Entorrinal , Córtex Entorrinal/fisiologia , Aprendizagem por Associação/fisiologia , Optogenética , Hipocampo/fisiologia , Receptores de Dopamina D1RESUMO
Episodic memories comprise diverse attributes of experience distributed across neocortical areas. The hippocampus is integral to rapidly binding these diffuse representations, as they occur, to be later reinstated. However, the nature of the information exchanged during this hippocampal-cortical dialogue remains poorly understood. A recent study has shown that the secondary motor cortex carries two types of representations: place cell-like activity, which were impaired by hippocampal lesions, and responses tied to visuo-tactile cues, which became more pronounced following hippocampal lesions. Using two-photon Ca2+ imaging to record neuronal activities in the secondary motor cortex of male Thy1-GCaMP6s mice, we assessed the cortical retrieval of spatial and non-spatial attributes from previous explorations in a virtual environment. We show that, following navigation, spontaneous resting state reactivations convey varying degrees of spatial (trajectory sequences) and non-spatial (visuo-tactile attributes) information, while reactivations of non-spatial attributes tend to precede reactivations of spatial representations surrounding hippocampal sharp-wave ripples.
Assuntos
Memória Episódica , Células de Lugar , Masculino , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologia , Sinais (Psicologia)RESUMO
A brain-machine interface demonstrates volitional control of hippocampal activity.
Assuntos
Interfaces Cérebro-Computador , Hipocampo , Navegação Espacial , Volição , Animais , Ratos , Hipocampo/fisiologia , Volição/fisiologiaRESUMO
Mutations of large conductance Ca2+- and voltage-activated K+ channels (BK) are associated with cognitive impairment. Here we report that CA1 pyramidal neuron-specific conditional BK knock-out (cKO) mice display normal locomotor and anxiety behavior. They do, however, exhibit impaired memory acquisition and retrieval in the Morris Water Maze (MWM) when compared to littermate controls (CTRL). In line with cognitive impairment in vivo, electrical and chemical long-term potentiation (LTP) in cKO brain slices were impaired in vitro. We further used a genetically encoded fluorescent K+ biosensor and a Ca2+-sensitive probe to observe cultured hippocampal neurons during chemical LTP (cLTP) induction. cLTP massively reduced intracellular K+ concentration ([K+]i) while elevating L-Type Ca2+ channel- and NMDA receptor-dependent Ca2+ oscillation frequencies. Both, [K+]i decrease and Ca2+ oscillation frequency increase were absent after pharmacological BK inhibition or in cells lacking BK. Our data suggest that L-Type- and NMDAR-dependent BK-mediated K+ outflow significantly contributes to hippocampal LTP, as well as learning and memory.
Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta , Potenciação de Longa Duração , Camundongos , Animais , Potenciação de Longa Duração/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologia , Neurônios , Camundongos KnockoutRESUMO
Homing based on path integration (H-PI) is a form of navigation in which an animal uses self-motion cues to keep track of its position and return to a starting point. Despite evidence for a role of the hippocampus in homing behavior, the hippocampal spatial representations associated with H-PI are largely unknown. Here we developed a homing task (AutoPI task) that required a mouse to find a randomly placed lever on an arena before returning to its home base. Recordings from the CA1 area in male mice showed that hippocampal neurons remap between random foraging and AutoPI task, between trials in light and dark conditions, and between search and homing behavior. During the AutoPI task, approximately 25% of the firing fields were anchored to the lever position. The activity of 24% of the cells with a lever-anchored field predicted the homing direction of the animal on each trial. Our results demonstrate that the activity of hippocampal neurons with object-anchored firing fields predicts homing behavior.
Assuntos
Hipocampo , Comportamento de Retorno ao Território Vital , Masculino , Camundongos , Animais , Hipocampo/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Sinais (Psicologia) , Neurônios/fisiologia , Percepção Espacial/fisiologiaRESUMO
The hippocampus is critical for recollecting and imagining experiences. This is believed to involve voluntarily drawing from hippocampal memory representations of people, events, and places, including maplike representations of familiar environments. However, whether representations in such "cognitive maps" can be volitionally accessed is unknown. We developed a brain-machine interface to test whether rats can do so by controlling their hippocampal activity in a flexible, goal-directed, and model-based manner. We found that rats can efficiently navigate or direct objects to arbitrary goal locations within a virtual reality arena solely by activating and sustaining appropriate hippocampal representations of remote places. This provides insight into the mechanisms underlying episodic memory recall, mental simulation and planning, and imagination and opens up possibilities for high-level neural prosthetics that use hippocampal representations.
Assuntos
Mapeamento Encefálico , Interfaces Cérebro-Computador , Hipocampo , Volição , Animais , Ratos , Hipocampo/fisiologia , Imaginação/fisiologia , Memória Episódica , Rememoração Mental/fisiologia , Volição/fisiologia , Navegação EspacialRESUMO
Natural visual experience involves a continuous series of related images while the subject is immobile. How does the cortico-hippocampal circuit process a visual episode? The hippocampus is crucial for episodic memory, but most rodent single unit studies require spatial exploration or active engagement. Hence, we investigated neural responses to a silent movie (Allen Brain Observatory) in head-fixed mice without any task or locomotion demands, or rewards. Surprisingly, a third (33%, 3379/10263) of hippocampal -dentate gyrus, CA3, CA1 and subiculum- neurons showed movie-selectivity, with elevated firing in specific movie sub-segments, termed movie-fields, similar to the vast majority of thalamo-cortical (LGN, V1, AM-PM) neurons (97%, 6554/6785). Movie-tuning remained intact in immobile or spontaneously running mice. Visual neurons had >5 movie-fields per cell, but only ~2 in hippocampus. The movie-field durations in all brain regions spanned an unprecedented 1000-fold range: from 0.02s to 20s, termed mega-scale coding. Yet, the total duration of all the movie-fields of a cell was comparable across neurons and brain regions. The hippocampal responses thus showed greater continuous-sequence encoding than visual areas, as evidenced by fewer and broader movie-fields than in visual areas. Consistently, repeated presentation of the movie images in a fixed, but scrambled sequence virtually abolished hippocampal but not visual-cortical selectivity. The preference for continuous, compared to scrambled sequence was eight-fold greater in hippocampal than visual areas, further supporting episodic-sequence encoding. Movies could thus provide a unified way to probe neural mechanisms of episodic information processing and memory, even in immobile subjects, across brain regions, and species.
Assuntos
Memória Episódica , Filmes Cinematográficos , Humanos , Camundongos , Animais , Hipocampo/fisiologia , Neurônios/fisiologiaRESUMO
To date, there is insufficient evidence to explain the role of adenosinergic receptors in the reconsolidation of long-term spatial memory. In this work, the role of the adenosinergic receptor family (A1, A2A, A2B, and A3) in this process has been elucidated. It was demonstrated that when infused bilaterally into the hippocampal CA1 region immediately after an early nonreinforced test session performed 24 h posttraining in the Morris water maze task, adenosine can cause anterograde amnesia for recent and late long-term spatial memory. This effect on spatial memory reconsolidation was blocked by A1 or A3 receptor antagonists and mimicked by A1 plus A3 receptor agonists, showing that this effect occurs through A1 and A3 receptors simultaneously. The A3 receptor alone participates only in the reconsolidation of late long-term spatial memory. When the memory to be reconsolidated was delayed (reactivation 5 d posttraining), the amnesic effect of adenosine became transient and did not occur in a test performed 5 d after the reactivation of the mnemonic trace. Finally, it has been shown that the amnesic effect of adenosine on spatial memory reconsolidation depends on the occurrence of protein degradation and that the amnesic effect of inhibition of protein synthesis on spatial memory reconsolidation is dependent on the activation of A3 receptors.
Assuntos
Hipocampo , Memória de Longo Prazo , Ratos , Masculino , Animais , Hipocampo/fisiologia , Memória de Longo Prazo/fisiologia , Memória/fisiologia , Região CA1 Hipocampal , Adenosina/metabolismo , Adenosina/farmacologiaRESUMO
Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.
Assuntos
Potenciação de Longa Duração , Neocórtex , Ratos , Animais , Potenciação de Longa Duração/fisiologia , Neurônios , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Plasticidade Neuronal/fisiologia , Hipocampo/fisiologiaRESUMO
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Assuntos
Doença de Alzheimer , Humanos , Hipocampo/fisiologia , Memória , Neurônios GABAérgicos/fisiologia , EncéfaloRESUMO
Environmental enrichment (EE) has been demonstrated to have a beneficial effect on different functions of the central nervous system in several mammal species, being used to improve behavior and cell damage in various neurological and psychiatric diseases. However, little has been investigated on the effect of EE in healthy animals, particularly regarding its impact on memory persistence and the brain structures involved. Therefore, here we verified in male Wistar rats that contextual fear conditioning (CFC) memory persistence, tested 28 days after the CFC training session, was facilitated by 5 weeks of exposure to EE, with no effect in groups tested 7 or 14 days after CFC training. However, a two-week exposure to EE did not affect memory persistence. Moreover, we investigated the role of specific brain regions in mediating the effect of EE on memory persistence. We conducted inactivation experiments using the GABAergic agonist Muscimol to target the basolateral amygdala (BLA), medial prefrontal cortex (mPFC), and CA1 region of the hippocampus (CA1). Inactivation of the BLA immediately and 12 h after CFC training impaired the effect of EE on memory persistence. Similarly, inactivation of the CA1 region and mPFC 12 h after training, but not immediately, also impaired the effect of EE on memory persistence. These results have important scientific implications as they shed new light on the effect of an enriched environment on memory persistence and the brain structures involved, thereby helping elucidate how an environment rich in experiences can modify the persistence of learned information.
Assuntos
Tonsila do Cerebelo , Memória , Ratos , Animais , Masculino , Ratos Wistar , Aprendizagem/fisiologia , Encéfalo , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , MamíferosRESUMO
Hippocampal cells integrate multisensory input to represent the identity of others.
Assuntos
Callithrix , Hipocampo , Reconhecimento de Identidade , Animais , Callithrix/fisiologia , Callithrix/psicologia , Hipocampo/citologia , Hipocampo/fisiologia , Reconhecimento de Identidade/fisiologiaRESUMO
Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.
Assuntos
Callithrix , Reconhecimento Facial , Hipocampo , Neurônios , Identificação Social , Reconhecimento de Voz , Animais , Hipocampo/citologia , Hipocampo/fisiologia , Callithrix/fisiologia , Callithrix/psicologia , Reconhecimento Facial/fisiologia , Reconhecimento de Voz/fisiologia , Neurônios/fisiologia , Rede SocialRESUMO
Human reasoning depends on reusing pieces of information by putting them together in new ways. However, very little is known about how compositional computation is implemented in the brain. Here, we ask participants to solve a series of problems that each require constructing a whole from a set of elements. With fMRI, we find that representations of novel constructed objects in the frontal cortex and hippocampus are relational and compositional. With MEG, we find that replay assembles elements into compounds, with each replay sequence constituting a hypothesis about a possible configuration of elements. The content of sequences evolves as participants solve each puzzle, progressing from predictable to uncertain elements and gradually converging on the correct configuration. Together, these results suggest a computational bridge between apparently distinct functions of hippocampal-prefrontal circuitry and a role for generative replay in compositional inference and hypothesis testing.