Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 691
Filtrar
1.
FASEB J ; 35(9): e21332, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423867

RESUMO

Emerging research has highlighted the capacity of microRNA-23a-3p (miR-23a-3p) to alleviate inflammatory pain. However, the molecular mechanism by which miR-23a-3p attenuates inflammatory pain is yet to be fully understood. Hence, the current study aimed to elucidate the mechanism by which miR-23a-3p influences inflammatory pain. Bioinformatics was initially performed to predict the inflammatory pain related downstream targets of miR-23a-3p in macrophage-derived extracellular vesicles (EVs). An animal inflammatory pain model was established using Complete Freund's Adjuvant (CFA). The miR-23a-3p expression was downregulated in the microglia of CFA-induced mice, after which the inflammatory factors were determined by ELISA. FISH and immunofluorescence were performed to analyze the co-localization of miR-23a-3p and microglia. Interestingly, miR-23a-3p was transported to the microglia via M2 macrophage-EVs, which elevated the mechanical allodynia and the thermal hyperalgesia thresholds in mice model. The miR-23a-3p downstream target, USP5, was found to stabilize HDAC2 via deubiquitination to promote its expression while inhibiting the expression of NRF2. Taken together, the key findings of the current study demonstrate that macrophage-derived EVs containing miR-23a-3p regulates the HDAC2/NRF2 axis by decreasing USP5 expression to alleviate inflammatory pain, which may provide novel therapeutic targets for the treatment of inflammatory pain.


Assuntos
Vesículas Extracelulares/metabolismo , Histona Desacetilase 2/metabolismo , Inflamação/metabolismo , Macrófagos/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Dor/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Linhagem Celular , Enzimas Desubiquitinantes/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Estabilidade Enzimática , Vesículas Extracelulares/genética , Inflamação/genética , Inflamação/terapia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Modelos Biológicos , Dor/genética , Manejo da Dor , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
2.
Phys Chem Chem Phys ; 23(32): 17576-17590, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34369509

RESUMO

The rational design of selective histone deacetylase 2 (HDAC2) inhibitors is beneficial for the therapeutic treatment of liver cancer, though HDAC2 is highly homologous to HDAC8, which may lead to undesired side effects due to the pan-inhibition towards HDAC2 and HDAC8. To clarify the structural basis of selective inhibition towards HDAC2 over HDAC8, we utilized multiple in silico strategies, including sequence alignment, structural comparison, molecular docking, molecular dynamics simulations, free energy calculations, alanine scanning mutagenesis, pharmacophore modeling, protein contacts atlas analysis and QM/MM calculations to study the binding patterns of HDAC2/8 selective inhibitors. Through the whole process described above, it is found that although HDAC2 has conserved GLY154 and PHE210 that also exist within HDAC8, namely GLY151 and PHE208, the two isoforms exhibit diverse binding modes towards their inhibitors. Typically, HDAC2 inhibitors interact with the Zn2+ ions through the core chelate group, while HDAC8 inhibitors adopt a bent conformation within the HDAC8 pocket that inclines to be in contact with the Zn2+ ions through the terminal hydroxamic acid group. In summary, our data comprehensively elucidate the selectivity mechanism towards HDAC2 over HDAC8, which would guide the rational design of selective HDAC2 inhibitors for liver cancer treatment.


Assuntos
Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Desenho de Fármacos , Histona Desacetilase 2/química , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese , Mutação , Ligação Proteica , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Termodinâmica
3.
Nat Commun ; 12(1): 5056, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417458

RESUMO

Melanoma cells rely on developmental programs during tumor initiation and progression. Here we show that the embryonic stem cell (ESC) factor Sall4 is re-expressed in the Tyr::NrasQ61K; Cdkn2a-/- melanoma model and that its expression is necessary for primary melanoma formation. Surprisingly, while Sall4 loss prevents tumor formation, it promotes micrometastases to distant organs in this melanoma-prone mouse model. Transcriptional profiling and in vitro assays using human melanoma cells demonstrate that SALL4 loss induces a phenotype switch and the acquisition of an invasive phenotype. We show that SALL4 negatively regulates invasiveness through interaction with the histone deacetylase (HDAC) 2 and direct co-binding to a set of invasiveness genes. Consequently, SALL4 knock down, as well as HDAC inhibition, promote the expression of an invasive signature, while inhibition of histone acetylation partially reverts the invasiveness program induced by SALL4 loss. Thus, SALL4 appears to regulate phenotype switching in melanoma through an HDAC2-mediated mechanism.


Assuntos
Epigênese Genética , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fator de Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Sequência de Bases , Carcinogênese/genética , Carcinogênese/patologia , Adesão Celular/genética , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/patologia , Camundongos Nus , Camundongos Transgênicos , Invasividade Neoplásica , Micrometástase de Neoplasia , Ligação Proteica , Carga Tumoral
4.
Mol Med Rep ; 23(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34240225

RESUMO

Tracheal stenosis following injury cannot be effectively treated. The current study compared the protective effects of different anti­inflammatory drugs on tracheal stenosis and investigated their possible mechanisms. Rabbit tracheal stenosis models following injury were constructed and confirmed using hematoxylin and eosin (H&E) staining. A total of 30 rabbits were divided into the control (CON), penicillin (PEN), erythromycin (ERY), budesonide (BUD) and PEN + ERY + BUD groups (n=6). Stenotic tracheal tissue, serum and bronchoalveolar lavage fluid (BALF) were collected 10 days after continuous treatment. Pathological changes in the tracheas were observed by H&E staining. Histone deacetylase 2 (HDAC2) expression in tracheal tissues was detected by immunofluorescence. Immunohistochemistry was performed to detect collagen I (Col­I) and collagen III (Col­III) levels in tracheal tissues. Transforming growth factor ß1 (TGF­ß1), vascular endothelial growth factor (VEGF) and interleukin 8 (IL­8) levels in serum and BALF samples were determined using ELISA kits. Western blotting detected HDAC2, IL­8, TGF­ß1 and VEGF levels in tracheal tissues. H&E staining demonstrated that tracheal epithelial hyperplasia and fibroblast proliferation in the ERY and PEN + ERY + BUD groups markedly improved compared with the CON group. Furthermore, in tracheal tissues, HDAC2 expression was significantly increased and IL­8, TGF­ß1, VEGF, Col­I and Col­III levels were significantly decreased in the ERY and PEN + ERY + BUD groups compared with the CON group. Additionally, the results for the PEN + ERY + BUD were more significant compared with the ERY group. In serum and BALF samples, IL­8, TGF­ß1 and VEGF levels in the ERY and PEN + ERY + BUD groups were significantly lower compared with the CON group, with the results of the PEN + ERY + BUD group being more significant compared with the ERY group. There were no significant differences between the PEN, BUD and CON groups. ERY inhibited tracheal granulation tissue proliferation and improved tracheal stenosis following injury and synergistic effects with PEN and BUD further enhanced these protective effects. The mechanism may involve HDAC2 upregulation and inhibition of local airway and systemic inflammatory responses.


Assuntos
Anti-Inflamatórios/uso terapêutico , Budesonida/uso terapêutico , Eritromicina/uso terapêutico , Penicilinas/uso terapêutico , Substâncias Protetoras/uso terapêutico , Estenose Traqueal/metabolismo , Estenose Traqueal/prevenção & controle , Animais , Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Budesonida/farmacologia , Colágeno/metabolismo , Modelos Animais de Doenças , Eritromicina/farmacologia , Tecido de Granulação/efeitos dos fármacos , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Hiperplasia/tratamento farmacológico , Hiperplasia/metabolismo , Interleucina-8/sangue , Interleucina-8/metabolismo , Penicilinas/farmacologia , Substâncias Protetoras/farmacologia , Coelhos , Traqueia/lesões , Traqueia/patologia , Estenose Traqueal/etiologia , Estenose Traqueal/patologia , Fator de Crescimento Transformador beta1/sangue , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Toxicology ; 459: 152847, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245815

RESUMO

Previous findings have confirmed that prenatal nicotine exposure (PNE) leads to retarded cartilage development in the fetal growth plate. It is characterized by insufficient matrix synthesis and decreased expression of matrix phenotype genes aggrecan (ACAN) and Col2A1 in the fetal growth plate chondrocytes; however, the specific molecular mechanism is yet unclear. This study intends to clarify the specific molecular mechanism of fetal osteochondral retardation caused by PNE through animal and cellular experiments. The present study demonstrated that in male offspring of the PNE group (the pregnant rats were subcutaneously administered nicotine 1.0 mg/kg twice per day (2.0 mg/kg.d) at GD11-20), the cartilage matrix of the fetal growth plate was lightly stained, the collagen was reduced, and expression of the matrix phenotype genes, ACAN and Col2A1, was significantly decreased. It was further found that PNE decreased histone acetylation (H3K9/H3K14) levels in the ACAN and Col2A1 promoter regions. Moreover, the expression of Snail and HDAC1/2 was increased in the PNE group. in vitro, the nicotine treatment at different concentrations elevated the expression of Snail/HDAC1/2 while decreasing the H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions. Snail-siRNA transfection partially abolished the nicotine-induced increase in HDAC1/2 expression and decreased the histone acetylation levels in the ACAN and Col2A1 promoter regions. Trichostatin A (TSA) treatment partially reversed the nicotine-induced changes in downstream parameters. In summary, PNE-induced decreased cartilage matrix synthesis in the fetal growth plate of male offspring is effectuated by Snail/HDAC1/2-mediated decreased H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions.


Assuntos
Retardo do Crescimento Fetal/induzido quimicamente , Histona Desacetilase 1/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Fatores de Transcrição da Família Snail/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo , Agrecanas/metabolismo , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Feminino , Lâmina de Crescimento/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Transfecção
6.
Sheng Li Xue Bao ; 73(3): 527-534, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34230954

RESUMO

Oogenesis is the basic reproductive process of female mammals and is essential for fertilization and embryo development. Recent studies have shown that epigenetic modifications play an important role in the regulation of mammalian reproductive processes (such as oogenesis, spermatogenesis, preimplantation embryo development and sex differentiation). Taking histone acetylation as an instance, the dynamic changes of histone acetyltransferases (HATs) and deacetylases (HDACs) are involved in the regulation of gene activation and inactivation when numerous key physiological events occur during reproduction. Thereinto, HDAC1 and HDAC2, which are highly homologous in terms of both structure and function, play a pivotal role in murine oogenesis. HDAC1 and 2 jointly regulate the global transcription and the incidence of apoptosis of growing oocytes and affect its subsequent growth and development, which reflects their compensatory function. In addition, HDAC1 and 2 also play a specific part in oogenesis respectively. It has shown that HDAC2 is more critical than HDAC1 for oocyte development, which regulates de novo DNA methylation and chromosome segregation. Reciprocally, HDAC1 is more critical than HDAC2 for preimplantation development. Deficiency of HDAC1 causes the decreased proliferation of embryonic stem cells and the smaller embryoid bodies with irregular shape. In this review, we summarized the role and the current research progress of HDAC1/2 in murine oogenesis, to provide a reference for further understanding the relationship between epigenetic modifications and reproductive regulation.


Assuntos
Histona Desacetilase 1 , Histona Desacetilase 2 , Acetilação , Animais , Desenvolvimento Embrionário , Feminino , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Masculino , Camundongos , Oócitos , Oogênese
7.
FASEB J ; 35(7): e21700, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34105828

RESUMO

Histone deacetylases (HDACs), especially HDAC2, play a role in alleviating liver fibrosis; however, the specific upstream regulation mechanism is unknown. Herein, TargetScan was used to predict the potential upstream targets of HDAC2, and the role of miR-455-3p was explored. The dual luciferase reporter assay showed that miR-455-3p binds to the 3' UTR of HDAC2 mRNA. Additionally, miR-455-3p was downregulated in the liver tissues of patients with cirrhosis and mice with liver fibrosis, as well as in primary HSCs isolated from fibrotic mouse livers and TGF-ß-treated LX-2 cells. In contrast, it is highly expressed in the reversal stage of hepatic fibrosis and MDI-cultured LX-2 cells. Our functional analyses showed that miR-455-3p overexpression facilitated apoptosis and reduced the expression of pro-fibrotic markers and the proliferation of activated LX-2 cells. On the contrary, miR-455-3p inhibition converted inactivated LX-2 cells into activated, proliferative, fibrogenic cells. Interestingly, restoration of HDAC2 expression partially blocked the function of miR-455-3p. Downregulated miR-455-3p expression can be restored by DNA methyltransferases in activated LX-2 cells. Methylation-specific PCR, bisulfite sequencing PCR, and chromatin immunoprecipitation assays indicated that the methylation level of miR-455-3p promoter CpG islands was elevated in TGF-ß-treated LX-2 cells and that miR-455-3p was downregulated in activated LX-2 cells by DNA hypermethylation, which is mediated by DNMT3b and DNMT1. In conclusion, miR-455-3p acts as a liver fibrosis suppressor by targeting HDAC2, and its deficiency further aggravates the reversal phase of fibrosis. Thus, the epigenetics mediated miR-455-3p/HDAC2 axis may serve as a novel potential therapeutic target for clinical treatment of hepatic fibrosis.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Histona Desacetilase 2/metabolismo , Cirrose Hepática/prevenção & controle , MicroRNAs/genética , Animais , Apoptose , Tetracloreto de Carbono/toxicidade , Proliferação de Células , Células Estreladas do Fígado/citologia , Histona Desacetilase 2/genética , Humanos , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
8.
Nat Commun ; 12(1): 3184, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075040

RESUMO

During spermatogenesis, meiosis is accompanied by a robust alteration in gene expression and chromatin status. However, it remains elusive how the meiotic transcriptional program is established to ensure completion of meiotic prophase. Here, we identify a protein complex that consists of germ-cell-specific zinc-finger protein ZFP541 and its interactor KCTD19 as the key transcriptional regulators in mouse meiotic prophase progression. Our genetic study shows that ZFP541 and KCTD19 are co-expressed from pachytene onward and play an essential role in the completion of the meiotic prophase program in the testis. Furthermore, our ChIP-seq and transcriptome analyses identify that ZFP541 binds to and suppresses a broad range of genes whose function is associated with biological processes of transcriptional regulation and covalent chromatin modification. The present study demonstrates that a germ-cell specific complex that contains ZFP541 and KCTD19 promotes the progression of meiotic prophase towards completion in male mice, and triggers the reconstruction of the transcriptional network and chromatin organization leading to post-meiotic development.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Estágio Paquíteno/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Espermátides/citologia , Espermatogênese/genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas Cromossômicas não Histona/genética , Modelos Animais de Doenças , Feminino , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Oócitos/citologia , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA-Seq , Espermátides/metabolismo , Fatores de Transcrição/genética , Transcrição Genética
9.
Eur J Med Chem ; 222: 113569, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111829

RESUMO

Novel 5-pyridinyl-1,2,4-triazoles were designed as dual inhibitors of histone deacetylase 2 (HDAC2) and focal adhesion kinase (FAK). Compounds 5d, 6a, 7c, and 11c were determined as potential inhibitors of both HDAC2 (IC50 = 0.09-1.40 µM) and FAK (IC50 = 12.59-36.11 nM); 6a revealed the highest activity with IC50 values of 0.09 µM and 12.59 nM for HDAC2 and FAK, respectively. Compound 6a was superior to reference drugs vorinostat and valproic acid in its ability to inhibit growth/proliferation of A-498 and Caki-1 renal cancer cells. Further investigation proved that 6a strongly arrests the cell cycle at the G2/M phase and triggers apoptosis in both A-498 and Caki-1 cells. Moreover, the enhanced Akt activity that is observed upon chronic application of HDAC inhibitors was effectively suppressed by the dual HDAC2/FAK inhibitor. Finally, the high potency and selectivity of 6a towards HDAC2 and FAK proteins were rationalized by molecular docking. Taken together, these findings highlight the potential of 6a as a promising dual-acting HDAC2/FAK inhibitor that could benefit from further optimization.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzamidas/química , Benzamidas/farmacologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Quinase 1 de Adesão Focal/metabolismo , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Triazóis/química , Células Tumorais Cultivadas
10.
Int J Chron Obstruct Pulmon Dis ; 16: 1661-1675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34113097

RESUMO

Background: Exposure to cigarette smoke (CS) is the main risk factor for chronic obstructive pulmonary disease (COPD). CS not only causes chronic airway inflammation and lung damage but also is involved in skeletal muscle dysfunction (SMD). Previous studies have shown that histone deacetylase 2 (HDAC2) plays an important role in the progression of COPD. The aim of this study was to determine the role of HDAC2 in CS-induced skeletal muscle atrophy and senescence. Methods: Gastrocnemius muscle weight and cross-sectional area (CSA) were measured in mice with CS-induced emphysema, and changes in the expression of atrophy-related markers and senescence-related markers were detected. In addition, the relationship between HDAC2 expression and skeletal muscle atrophy and senescence was also investigated. Results: Mice exposed to CS for 24 weeks developed emphysema and gastrocnemius atrophy and exhibited a decrease in gastrocnemius weight and skeletal muscle cross-sectional area. In addition, the HDAC2 protein levels were significantly decreased while the levels of atrophy-associated markers, including MURF1 and MAFbx, and senescence-associated markers, including P53 and P21, were significantly increased in the gastrocnemius muscle. In vitro, the exposure of C2C12 cells to cigarette smoke extract (CSE) significantly increased the MAFbx and MURF1 protein levels and decreased the HDAC2 protein levels. Moreover, overexpression of HDAC2 significantly ameliorated CSE-induced atrophy and senescence and reversed the increased MURF1, MAFbx, P53, and P21 expression in C2C12 cells. In addition, CSE treatment significantly increased the IKK and NF-κB p65 protein levels, and PTDC (an NF-kB inhibitor) ameliorated atrophy and senescence. Conclusion: Our findings suggest that HDAC2 plays an important role in CS-induced skeletal muscle atrophy and senescence, possibly through the NF-κB pathway.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Animais , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/prevenção & controle , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Transdução de Sinais , Fumaça/efeitos adversos , Fumar/efeitos adversos
11.
Life Sci ; 281: 119769, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34186046

RESUMO

AIMS: Heart failure (HF) is linked to electrical remodeling that promotes ventricular arrhythmias. Underlying molecular signaling is insufficiently understood, in particular concerning patients with early disease stages. Previous observations suggest a key role for epigenetic mechanisms in cardiac remodeling processes. We hypothesized that histone deacetylases (HDACs) 1 and 2 contribute to cellular electrophysiological dysregulation in ventricular cardiomyocytes during HF development. MATERIALS AND METHODS: HDAC and ion channel expression was quantified in a porcine model of early HF induced by short-term atrial tachypacing, resulting in atrial fibrillation with rapid ventricular rate response. Anti-Hdac1 and anti-Hdac2 siRNA treatment was employed in neonatal murine cardiomyocytes (NMCM) to study effects of HDACs on ion channel mRNA expression and action potential duration (APD). KEY FINDINGS: Early HF was characterized by mild reduction of left ventricular ejection fraction, prolonged QTc intervals, and increased ventricular effective refractory periods. Delayed repolarization was linked to significant downregulation of HDAC2 in left ventricular (LV) tissue. In addition, there was a tendency towards reduced transcript expression of KCNJ2/Kir2.1 K+ channels. In NMCM, knock-down of Hdac2 recapitulated AP prolongation. Finally, siRNA-mediated suppression of Hdac2 reduced Kcnh2/Kv11.1 K+ channel expression. SIGNIFICANCE: Suppression of HDAC2 is linked to ventricular electrical remodeling of APD and ion channel expression in early stages of heart failure. This previously unrecognized mechanism may serve as basis for future approaches to prevention and treatment of ventricular arrhythmias.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Histona Desacetilase 2/metabolismo , Remodelação Ventricular , Potenciais de Ação , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Histona Desacetilase 2/genética , Camundongos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Interferente Pequeno/genética , Reprodutibilidade dos Testes , Suínos
12.
Nat Commun ; 12(1): 3384, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099674

RESUMO

Despite recent success in computational design of structured cyclic peptides, de novo design of cyclic peptides that bind to any protein functional site remains difficult. To address this challenge, we develop a computational "anchor extension" methodology for targeting protein interfaces by extending a peptide chain around a non-canonical amino acid residue anchor. To test our approach using a well characterized model system, we design cyclic peptides that inhibit histone deacetylases 2 and 6 (HDAC2 and HDAC6) with enhanced potency compared to the original anchor (IC50 values of 9.1 and 4.4 nM for the best binders compared to 5.4 and 0.6 µM for the anchor, respectively). The HDAC6 inhibitor is among the most potent reported so far. These results highlight the potential for de novo design of high-affinity protein-peptide interfaces, as well as the challenges that remain.


Assuntos
Desenho de Fármacos , Inibidores de Histona Desacetilases/farmacologia , Peptídeos Cíclicos/farmacologia , Relação Estrutura-Atividade , Domínio Catalítico/efeitos dos fármacos , Cristalografia por Raios X , Ensaios Enzimáticos , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/isolamento & purificação , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/ultraestrutura , Desacetilase 6 de Histona/antagonistas & inibidores , Desacetilase 6 de Histona/genética , Desacetilase 6 de Histona/isolamento & purificação , Desacetilase 6 de Histona/ultraestrutura , Inibidores de Histona Desacetilases/química , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ressonância Magnética Nuclear Biomolecular , Biblioteca de Peptídeos , Peptídeos Cíclicos/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/ultraestrutura
13.
BMC Res Notes ; 14(1): 135, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849645

RESUMO

OBJECTIVE: Histone acetylation is an important mechanism in the regulation of gene expression and plays a crucial role in both cellular development and cellular response to external or internal stimuli. One key aspect of this form of regulation is that acetylation marks can be added and removed from sites of regulation very quickly through the activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). The activity of both HATs and HDACs has been shown to be important for both physiological hematopoiesis as well as during development of hematological neoplasia, such as lymphomas. In the present study we analyzed the effect of knockout of the two HDACs, Hdac1 and Hdac2 in cells expressing the fractalkine receptor (Cx3cr1) on lymphocyte development. RESULTS: We report data showing a maturation defect in mice harboring a Cx3cr1 dependent knockout of Hdac1 and 2. Furthermore, we report that these mice develop a T-cell neoplasia at about 4-5 months of age, suggesting that a Cx3cr1 expressing subpopulation of immature T-cells gives rise to T-cell lymphomas in the combined absence of Hdac1 and Hdac2.


Assuntos
Histona Desacetilase 1 , Histona Desacetilase 2 , Linfócitos T , Acetilação , Animais , Receptor 1 de Quimiocina CX3C , Diferenciação Celular , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Camundongos , Linfócitos T/metabolismo
14.
Int J Mol Sci ; 22(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802405

RESUMO

Histone deacetylase 2 (HDAC2) is a major HDAC protein in the adult brain and has been shown to regulate many neuronal genes. The aberrant expression of HDAC2 and subsequent dysregulation of neuronal gene expression is implicated in neurodegeneration and brain aging. Human induced pluripotent stem cell-derived neurons (hiPSC-Ns) are widely used models for studying neurodegenerative disease mechanisms, but the role of HDAC2 in hiPSC-N differentiation and maturation has not been explored. In this study, we show that levels of HDAC2 progressively decrease as hiPSCs are differentiated towards neurons. This suppression of HDAC2 inversely corresponds to an increase in neuron-specific isoforms of Endophilin-B1, a multifunctional protein involved in mitochondrial dynamics. Expression of neuron-specific isoforms of Endophilin-B1 is accompanied by concomitant expression of a neuron-specific alternative splicing factor, SRRM4. Manipulation of HDAC2 and Endophilin-B1 using lentiviral approaches shows that the knock-down of HDAC2 or the overexpression of a neuron-specific Endophilin-B1 isoform promotes mitochondrial elongation and protects against cytotoxic stress in hiPSC-Ns, while HDAC2 knock-down specifically influences genes regulating mitochondrial dynamics and synaptogenesis. Furthermore, HDAC2 knock-down promotes enhanced mitochondrial respiration and reduces levels of neurotoxic amyloid beta peptides. Collectively, our study demonstrates a role for HDAC2 in hiPSC-neuronal differentiation, highlights neuron-specific isoforms of Endophilin-B1 as a marker of differentiating hiPSC-Ns and demonstrates that HDAC2 regulates key neuronal and mitochondrial pathways in hiPSC-Ns.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Histona Desacetilase 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Aciltransferases/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Humanos , Mitocôndrias/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Isoformas de Proteínas/metabolismo
15.
Comput Biol Chem ; 92: 107491, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33930743

RESUMO

The fundamental cause of human cancer is strongly influenced by down- or up-regulations of epigenetic factors. Upregulated histone deacetylases (HDAC) have been shown to be effectively neutralized by the action of HDACs inhibitors (HDACi). However, cytotoxicity has been reported in normal cells because of non-specificity of several available HDACis that are in clinical use or at different phases of clinical trials. Because of the high amino acid sequence and structural similarity among HDAC enzymes, it is believed to be a challenging task to obtain isoform-selectivity. The essential aim of the present research work was to identify isoform-selective inhibitors against class IIa HDACs via structure-based drug design. Based on the highest binding affinity and isoform-selectivity, the top-ranked inhibitors were in silico tested for their absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties, which were classified as drug-like compounds. Later, molecular dynamics simulation (MD) was carried out for all compound-protein complexes to evaluate the structural stability and the biding mode of the inhibitors, which showed high stability throughout the 100 ns simulation. Free binding energy predictions by MM-PBSA method showed the high binding affinity of the identified compounds toward their respective targets. Hence, these inhibitors could be used as drug candidates or as lead compounds for more in silico or in vitro optimization to design safe isoform-selective HDACs inhibitors.


Assuntos
Antineoplásicos/farmacologia , Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/química , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Simulação de Dinâmica Molecular , Estrutura Molecular , Neoplasias/metabolismo , Termodinâmica
16.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922983

RESUMO

Proper regulation of sebum production is important for maintaining skin homeostasis in humans. However, little is known about the role of epigenetic regulation in sebocyte lipogenesis. We investigated histone acetylation changes and their role in key lipogenic gene regulation during sebocyte lipogenesis using the human sebaceous gland cell line SZ95. Sebocyte lipogenesis is associated with a significant increase in histone acetylation. Treatment with anacardic acid (AA), a p300 histone acetyltransferase inhibitor, significantly decreased the lipid droplet number and the expression of key lipogenic genes, including sterol regulatory-binding protein 1 (SREBP1), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). In contrast, treatment with trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, increased the expression of these genes. Global HDAC enzyme activity was decreased, and HDAC1 and HDAC2 expression was downregulated during sebaceous lipogenesis. Interestingly, HDAC1 knockdown increased lipogenesis through SREBP1 induction, whereas HDAC1 overexpression decreased lipogenesis and significantly suppressed SREBP1 promoter activity. HDAC1 and SREBP1 levels were inversely correlated in human skin sebaceous glands as demonstrated in immunofluorescence images. In conclusion, HDAC1 plays a critical role in reducing SREBP1 transcription, leading to decreased sebaceous lipogenesis. Therefore, HDAC1 activation could be an effective therapeutic strategy for skin diseases related to excessive sebum production.


Assuntos
Histona Desacetilase 1/metabolismo , Lipogênese/fisiologia , Glândulas Sebáceas/citologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Linhagem Celular , Epigênese Genética , Regulação da Expressão Gênica , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Humanos , Hidrocarbonetos Fluorados/farmacologia , Insulina/metabolismo , Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Receptores X do Fígado/agonistas , Glândulas Sebáceas/metabolismo , Pele/citologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Sulfonamidas/farmacologia
17.
J Med Chem ; 64(8): 4709-4729, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33797924

RESUMO

We describe the discovery of histone deacetylase (HDACs) 1, 2, and 3 inhibitors with ethyl ketone as the zinc-binding group. These HDACs 1, 2, and 3 inhibitors have good enzymatic and cellular activity. Their serum shift in cellular potency has been minimized, and selectivity against hERG has been improved. They are also highly selective over HDACs 6 and 8. These inhibitors contain a variety of substituted heterocycles on the imidazole or oxazole scaffold. Compounds 31 and 48 stand out due to their good potency, high selectivity over HDACs 6 and 8, reduced hERG activity, optimized serum shift in cellular potency, and good rat and dog PK profiles.


Assuntos
Canal de Potássio ERG1/metabolismo , HIV-1/fisiologia , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Cetonas/química , Animais , Cães , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Humanos , Imidazóis/química , Oxazóis/química , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Ratos , Relação Estrutura-Atividade , Ativação Viral/efeitos dos fármacos
18.
Eur J Med Chem ; 216: 113332, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714914

RESUMO

Histone deacetylases (HDACs) have been implicated in a number of diseases including cancer, cardiovascular disorders, diabetes mellitus, neurodegenerative disorders and inflammation. For the treatment of epigenetically altered diseases such as cancer, HDAC inhibitors have made a significant progress in terms of development of isoform selective inhibitiors. Isoform specific HDAC inhibitors have less adverse events and better safety profile. A HDAC isoform i.e., HDAC2 demonstrated significant role in the development of variety of diseases, mainly involved in the cancer and neurodegenerative disorders. Discovery and development of selective HDAC2 inhibitors have a great potential for the treatment of target diseases. In the present compilation, we have reviewed the role of HDAC2 in progression of cancer and neurodegenerative disorders, and information on the drug development opportunities for selective HDAC2 inhibition.


Assuntos
Histona Desacetilase 2/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Desenho de Fármacos , Histona Desacetilase 2/metabolismo , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/patologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
19.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668324

RESUMO

FOXC1, a transcription factor involved in cell differentiation and embryogenesis, is demonstrated to be a negative regulator of Nanog in this study. FOXC1 is up-regulated in retinoic acid-induced differentiation of F9 Embryonal Carcinoma (EC) cells; furthermore, FOXC1 specifically inhibits the core pluripotency factor Nanog by binding to the proximal promoter. Overexpression of FOXC1 in F9 or knockdown in 3T3 results in the down-regulation or up-regulation of Nanog mRNA and proteins, respectively. In order to explain the mechanism by which FOXC1 inhibits Nanog expression, we identified the co-repressor HDAC2 from the FOXC1 interactome. FOXC1 recruits HDAC2 to Nanog promoter to decrease H3K27ac enrichment, resulting in transcription inhibition of Nanog. To the best of our knowledge, this is the first report that FOXC1 is involved in the epigenetic regulation of gene expression.


Assuntos
Células-Tronco de Carcinoma Embrionário/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Proteína Homeobox Nanog/genética , Regiões Promotoras Genéticas , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Células-Tronco de Carcinoma Embrionário/efeitos dos fármacos , Células-Tronco de Carcinoma Embrionário/patologia , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Células HEK293 , Histona Desacetilase 2/genética , Humanos , Camundongos , Células NIH 3T3 , Proteína Homeobox Nanog/metabolismo
20.
PLoS Pathog ; 17(2): e1009307, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596269

RESUMO

Marek's disease virus (MDV) is a potent oncogenic alphaherpesvirus that elicits a rapid onset of malignant T-cell lymphomas in chickens. Three MDV types, including GaHV-2 (MDV-1), GaHV-3 (MDV-2) and MeHV-1 (HVT), have been identified and all encode a US3 protein kinase. MDV-1 US3 is important for efficient virus growth in vitro. To study the role of US3 in MDV replication and pathogenicity, we generated an MDV-1 US3-null virus and chimeric viruses by replacing MDV-1 US3 with MDV-2 or HVT US3. Using MD as a natural virus-host model, we showed that both MDV-2 and HVT US3 partially rescued the growth deficiency of MDV-1 US3-null virus. In addition, deletion of MDV-1 US3 attenuated the virus resulting in higher survival rate and lower MDV specific tumor incidence, which could be partially compensated by MDV-2 and HVT US3. We also identified chicken histone deacetylase 1 (chHDAC1) as a common US3 substrate for all three MDV types while only US3 of MDV-1 and MDV-2 phosphorylate chHDAC2. We further determined that US3 of MDV-1 and HVT phosphorylate chHDAC1 at serine 406 (S406), while MDV-2 US3 phosphorylates S406, S410, and S415. In addition, MDV-1 US3 phosphorylates chHDAC2 at S407, while MDV-2 US3 targets S407 and S411. Furthermore, biochemical studies show that MDV US3 mediated phosphorylation of chHDAC1 and 2 affect their stability, transcriptional regulation activity, and interaction network. Using a class I HDAC specific inhibitor, we showed that MDV US3 mediated phosphorylation of chHDAC1 and 2 is involved in regulation of virus replication. Overall, we identified novel substrates for MDV US3 and characterized the role of MDV US3 in MDV pathogenesis.


Assuntos
Herpesvirus Galináceo 2/patogenicidade , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Doença de Marek/virologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Animais , Galinhas , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Doença de Marek/metabolismo , Doença de Marek/patologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...