RESUMO
Epigenetic alterations, such as those in chromatin structure and DNA methylation, have been extensively studied in a number of tumor types. But oral cancer, particularly oral adenocarcinoma, has received far less attention. Here, we combined laser-capture microdissection and muti-omics mini-bulk sequencing to systematically characterize the epigenetic landscape of oral cancer, including chromatin architecture, DNA methylation, H3K27me3 modification, and gene expression. In carcinogenesis, tumor cells exhibit reorganized chromatin spatial structures, including compromised compartment structures and altered gene-gene interaction networks. Notably, some structural alterations are observed in phenotypically non-malignant paracancerous but not in normal cells. We developed transformer models to identify the cancer propensity of individual genome loci, thereby determining the carcinogenic status of each sample. Insights into cancer epigenetic landscapes provide evidence that chromatin reorganization is an important hallmark of oral cancer progression, which is also linked with genomic alterations and DNA methylation reprogramming. In particular, regions of frequent copy number alternations in cancer cells are associated with strong spatial insulation in both cancer and normal samples. Aberrant methylation reprogramming in oral squamous cell carcinomas is closely related to chromatin structure and H3K27me3 signals, which are further influenced by intrinsic sequence properties. Our findings indicate that structural changes are both significant and conserved in two distinct types of oral cancer, closely linked to transcriptomic alterations and cancer development. Notably, the structural changes remain markedly evident in oral adenocarcinoma despite the considerably lower incidence of genomic copy number alterations and lesser extent of methylation alterations compared to squamous cell carcinoma. We expect that the comprehensive analysis of epigenetic reprogramming of different types and subtypes of primary oral tumors can provide additional guidance to the design of novel detection and therapy for oral cancer.
Assuntos
Cromatina , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Humanos , Cromatina/genética , Cromatina/metabolismo , Histonas/metabolismo , Histonas/genética , Redes Reguladoras de Genes , Variações do Número de Cópias de DNARESUMO
The phenomenon of paramutation describes the interaction between two alleles, in which one allele initiates inherited epigenetic conversion of another allele without affecting the DNA sequence. Epigenetic transformations due to paramutation are accompanied by the change in DNA and/or histone methylation patterns, affecting gene expression. Studies of paramutation in plants and animals have identified small non-coding RNAs as the main effector molecules required for the initiation of epigenetic changes in gene loci. Due to the fact that small non-coding RNAs can be transmitted across generations, the paramutation effect can be inherited and maintained in a population. In this review, we will systematically analyze examples of paramutation in different living systems described so far, highlighting common and different molecular and genetic aspects of paramutation between organisms, and considering the role of this phenomenon in evolution.
Assuntos
Epigênese Genética , Plantas , Animais , Plantas/genética , Plantas/metabolismo , Metilação de DNA , Mutação , Histonas/metabolismo , Histonas/genética , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismoRESUMO
Post-traumatic stress disorder (PTSD) presents distinct sex-specific differences in both symptom expression and treatment outcomes, with the underlying biological mechanisms still remain unclear. Epigenetic modifications, particularly histone acetylation, have been increasingly recognized as critical factors in the pathophysiology of PTSD. Valproic acid (VPA), a potent histone deacetylase (HDAC) inhibitor, has shown promise in modulating epigenetic responses and improving therapeutic outcomes is PTSD, though its effect may differ between sexes. This study aimed to explore the sex-specific epigenetic changes in response to trauma and the impact of VPA treatment in a rat model of PTSD induced by predator scent stress. Sprague-Dawley rats of both sexes were randomly assigned to stressed and non-stressed groups and treated with either VPA (100 mg/kg) or vehicle. Anxiety levels were assessed using the elevated plus maze, followed by analysis of histone H3 and H4 acetylation, HDAC activity, and c-fos expression in the hippocampus. Our findings revealed that traumatic stress led to increased freezing time and anxiety levels, with more pronounced effects observed in females. Additionally, we have identified sex-specific differences in hippocampal epigenetic modifications; stressed females exhibited higher H3 acetylation, and VPA-treated stressed males showed increased H4 acetylation. These results highlight the importance of considering sex differences in the epigenetic mechanism underlying PTSD and suggest that personalized therapeutic approaches may be necessary to address these complexities.
Assuntos
Epigênese Genética , Inibidores de Histona Desacetilases , Ratos Sprague-Dawley , Transtornos de Estresse Pós-Traumáticos , Ácido Valproico , Animais , Ácido Valproico/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/metabolismo , Masculino , Feminino , Epigênese Genética/efeitos dos fármacos , Ratos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Modelos Animais de Doenças , Histonas/metabolismo , Caracteres Sexuais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Ansiedade/tratamento farmacológicoRESUMO
Histone H3-mutant gliomas are deadly brain tumors characterized by a dysregulated epigenome and stalled differentiation. In contrast to the extensive datasets available on tumor cells, limited information exists on their tumor microenvironment (TME), particularly the immune infiltrate. Here, we characterize the immune TME of H3.3K27M and G34R/V-mutant gliomas, and multiple H3.3K27M mouse models, using transcriptomic, proteomic and spatial single-cell approaches. Resolution of immune lineages indicates high infiltration of H3-mutant gliomas with diverse myeloid populations, high-level expression of immune checkpoint markers, and scarce lymphoid cells, findings uniformly reproduced in all H3.3K27M mouse models tested. We show these myeloid populations communicate with H3-mutant cells, mediating immunosuppression and sustaining tumor formation and maintenance. Dual inhibition of myeloid cells and immune checkpoint pathways show significant therapeutic benefits in pre-clinical syngeneic mouse models. Our findings provide a valuable characterization of the TME of oncohistone-mutant gliomas, and insight into the means for modulating the myeloid infiltrate for the benefit of patients.
Assuntos
Neoplasias Encefálicas , Glioma , Histonas , Mutação , Células Mieloides , Microambiente Tumoral , Animais , Glioma/genética , Glioma/imunologia , Glioma/patologia , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Células Mieloides/metabolismo , Células Mieloides/imunologia , Histonas/metabolismo , Histonas/genética , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Humanos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Regulação Neoplásica da Expressão Gênica , Análise de Célula ÚnicaRESUMO
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT , Diferenciação Celular , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Histona Desmetilases , Camundongos Knockout , Células-Tronco Embrionárias Murinas , Ubiquitina-Proteína Ligases , Animais , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Células-Tronco Embrionárias Murinas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histonas/metabolismo , Proliferação de Células , UbiquitinaçãoRESUMO
G9a is a histone methyltransferase that catalyzes the methylation of histone 3 lysine 9 (H3K9), which is involved in the regulation of gene expression. We had previously reported that G9a is expressed in developing tendons in vivo and in vitro and that G9a-deficient tenocytes show impaired proliferation and differentiation in vitro. In this study, we investigated the functions of G9a in tendon development in vivo by using G9a conditional knockout (G9a cKO) mice. We crossed Sox9Cre/+ mice with G9afl/fl mice to generate G9afl/fl; Sox9Cre/+ mice. The G9a cKO mice showed hypoplastic tendon formation at 3 weeks of age. Bromodeoxyuridine labeling on embryonic day 16.5 (E16.5) revealed decreased cell proliferation in the tenocytes of G9a cKO mice. Immunohistochemical analysis revealed decreased expression levels of G9a and its substrate, H3K9me2, in the vertebral tendons of G9a cKO mice. The tendon tissue of the vertebrae and limbs of G9a cKO mice showed reduced expression of a tendon marker, tenomodulin (Tnmd), and col1a1 genes, suggesting that tenocyte differentiation was suppressed. Overexpression of G9a resulted in enhancement of Tnmd and col1a1 expression in tenocytes in vitro. These results suggest that G9a regulates the proliferation and differentiation of tendon progenitor cells during tendon development. Thus, our results suggest that G9a plays an essential role in tendon development.
Assuntos
Diferenciação Celular , Proliferação de Células , Histona-Lisina N-Metiltransferase , Camundongos Knockout , Tendões , Animais , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Tendões/metabolismo , Tendões/embriologia , Camundongos , Tenócitos/metabolismo , Histonas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genéticaRESUMO
Recently, we have demonstrated that mice, cultured embryos in α-minimum essential medium (αMEM) and subsequent fed a high-fat, high-sugar diet, developed steatohepatitis. In this study, we investigated using these samples whether the expression of lipid droplet formation genes in the liver is higher in MEM mice, whether these expressions are regulated by histone acetylation, writers/readers of histone acetylation, and the transcriptional factors of endoplasmic reticulum stress. Mice were produced by two-cell embryos in αMEM or standard potassium simplex-optimized medium (control) in vitro for 48 h, and implanted into an oviduct for spontaneous delivery. MEM and control-mice were fed a high-fat, high-sugar diet for 18 wk, and then liver samples were collected and analyzed by histology, qRT-PCR, and chromatin immunoprecipitation assay. Gene expression of Cidea, Cidec, and Plin4 were higher in MEM mice and histone H3K9 acetylation, BRD4, and CBP were higher in MEM mice than in control mice around those genes. However, the binding of endoplasmic reticulum stress-related transcription factors (ATF4, CHOP and C/EBPα) around those genes in the liver, was not clearly differed between MEM mice and control mice. The increased expression of Cidea, Cidec and Plin4 in the liver, accompanied by the development of steatohepatitis in mice induced is positively associated with increased histone H3K9 acetylation and CBP and BRD4 binding around these genes.
Assuntos
Estresse do Retículo Endoplasmático , Fígado Gorduroso , Histonas , Gotículas Lipídicas , Fígado , Animais , Histonas/metabolismo , Acetilação , Gotículas Lipídicas/metabolismo , Camundongos , Feminino , Fígado/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/etiologia , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Dieta Hiperlipídica/efeitos adversos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Transcrição CHOP/metabolismo , Fator de Transcrição CHOP/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose/genéticaRESUMO
BACKGROUND/AIMS: One of the treatments for breast cancer is surgical resection of the tumour and prevention of recurrence with postoperative radiotherapy. Unfortunately, radiotherapy is not always effective enough due to the low sensitivity of cancer cells to ionising radiation. This study aimed to evaluate the radiosensitising properties of resveratrol, piceatannol and polydatin on breast cancer cells, which differ in the presence of hormonal receptors on their surface. METHODS: The experimental part was carried out on triple-negative breast cancer cells (HCC38) and hormone-dependent cells (MCF7). The study assessed the level of cell death, changes in the expression of genes (BAX, BCL-2) and proteins related to the apoptosis process (CASPASE 3, 8 and P53), changes in the expression of antioxidant enzymes (CATALASE, SOD, GPx1/2) and NRF-2. Additionally, the expression level of RAD51 protein and histone H2AX, which are involved in DNA repair processes, was assessed. Statistical significance was evaluated by a two-way analysis of variance (ANOVA) followed by Tukey's post hoc test (p < 0.05). RESULTS: Ionising radiation in combination with resveratrol or piceatannol activates the apoptosis process by internal and external pathways. Greater sensitivity of MCF7 cells compared to HCC38 cells to ionising radiation in combination with resveratrol is associated with a weaker antioxidant response of cells and reduced intensity of DNA damage repair. DNA repair induced by ionising radiation occurs more effectively in HCC38 cells than in MCF7 cells. CONCLUSION: Resveratrol has the highest radiosensitising potential among the tested stilbene for cells of both lines. The effectiveness of ionizing radiation in combination with resveratrol (to a lesser extent with piceatannol) is more significant in MCF7 than in HCC38 cells.
Assuntos
Apoptose , Radiação Ionizante , Radiossensibilizantes , Resveratrol , Estilbenos , Humanos , Estilbenos/farmacologia , Resveratrol/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Feminino , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Células MCF-7 , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Neoplasias da Mama/tratamento farmacológico , Histonas/metabolismo , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Rad51 Recombinase/metabolismo , Caspase 3/metabolismo , GlucosídeosRESUMO
BACKGROUND: The histone variant macroH2A (mH2A), the most deviant variant, is about threefold larger than the conventional histone H2A and consists of a histone H2A-like domain fused to a large Non-Histone Region responsible for recruiting PARP-1 to chromatin. The available data suggest that the histone variant mH2A participates in the regulation of transcription, maintenance of heterochromatin, NAD+ metabolism, and double-strand DNA repair. RESULTS: Here, we describe a novel function of mH2A, namely its implication in DNA oxidative damage repair through PARP-1. The depletion of mH2A affected both repair and cell survival after the induction of oxidative lesions in DNA. PARP-1 formed a specific complex with mH2A nucleosomes in vivo. The mH2A nucleosome-associated PARP-1 is inactive. Upon oxidative damage, mH2A is ubiquitinated, PARP-1 is released from the mH2A nucleosomal complex, and is activated. The in vivo-induced ubiquitination of mH2A, in the absence of any oxidative damage, was sufficient for the release of PARP-1. However, no release of PARP-1 was observed upon treatment of the cells with either the DNA alkylating agent MMS or doxorubicin. CONCLUSIONS: Our data identify a novel pathway for the repair of DNA oxidative lesions, requiring the ubiquitination of mH2A for the release of PARP-1 from chromatin and its activation.
Assuntos
Dano ao DNA , Reparo do DNA , Histonas , Poli(ADP-Ribose) Polimerase-1 , Ubiquitinação , Histonas/metabolismo , Histonas/genética , Humanos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Estresse Oxidativo , Nucleossomos/metabolismoRESUMO
Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.
Assuntos
Diabetes Mellitus Tipo 2 , Inflamação , Macrófagos , Cicatrização , Cicatrização/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Inflamação/imunologia , Inflamação/metabolismo , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Código das Histonas , Histonas/metabolismoRESUMO
In this issue of Neuron, Torres-Berrío et al.1 show that stress-susceptible mice exhibit elevated H3K27me1 levels in nucleus accumbens neurons due to the action of the SUZ12 VEFS domain, strengthening the link between specific epigenetic changes and long-lasting stress-induced social, emotional, and cognitive alterations.
Assuntos
Histonas , Animais , Camundongos , Histonas/metabolismo , Núcleo Accumbens/metabolismo , Neurônios/metabolismo , Epigênese Genética , Estresse Psicológico/metabolismoRESUMO
Sepsis represents an organ dysfunction resulting from the host's maladjusted response to infection, and can give rise to acute kidney injury (AKI), which significantly increase the morbidity and mortality of septic patients. This study strived for identifying a novel therapeutic strategy for patients with sepsis-induced AKI (SI-AKI). Rat tubular epithelial NRK-52E cells were subjected to lipopolysaccharide (LPS) exposure for induction of in-vitro SI-AKI. The expressions of E1A binding protein p300 (EP300) and methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) in NRK-52E cells were assessed by western blot and qRT-PCR, and their interaction was explored by chromatin immunoprecipitation performed with antibody for H3K27 acetylation (H3K27ac). The effect of them on SI-AKI-associated mitochondrial dysfunction of tubular epithelial cells was investigated using transfection, MTT assay, TUNEL staining, 2',7'-Dichlorodihydrofluorescein diacetate probe assay, Mitosox assay, and JC-1 staining. MTHFD2 and EP300 were upregulated by LPS exposure in NRK-52E cells. LPS increased the acetylation of H3 histone in the MTHFD2 promoter region, and EP300 suppressed the effect of LPS. EP300 ablation inhibited the expression of MTHFD2. MTHFD2 overexpression antagonized LPS-induced viability reduction, apoptosis promotion, reactive oxygen species overproduction, and mitochondrial membrane potential collapse of NRK-52E cells. By contrast, MTHFD2 knockdown and EP300 ablation brought about opposite consequences. Furthermore, MTHFD2 overexpress and EP300 ablation counteracted each other's effect in LPS-exposed NRK-52E cells. EP300-mediated H3 acetylation elevates MTHFD2 expression to reduce mitochondrial dysfunction of tubular epithelial cells in SI-AKI.
Assuntos
Injúria Renal Aguda , Proteína p300 Associada a E1A , Células Epiteliais , Lipopolissacarídeos , Metilenotetra-Hidrofolato Desidrogenase (NADP) , Mitocôndrias , Animais , Ratos , Acetilação , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Proteína p300 Associada a E1A/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Linhagem Celular , Histonas/metabolismo , Apoptose , Sepse/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS: In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY: Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION: Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Assuntos
Antidepressivos , Metilação de DNA , Epigênese Genética , Epigênese Genética/efeitos dos fármacos , Humanos , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Metilação de DNA/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Animais , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Histonas/metabolismo , Estresse Psicológico/genéticaRESUMO
DNMT1 is an essential DNA methyltransferase that catalyzes the transfer of methyl groups to CpG islands in DNA and generates a prominent epigenetic mark. The catalytic activity of DNMT1 relies on its conformational plasticity and ability to change conformation from an auto-inhibited to an activated state. Here, we present four cryo-EM reconstructions of apo DNMT1 and DNTM1: non-productive DNA, DNTM1: H3Ub2-peptide, DNTM1: productive DNA complexes. Our structures demonstrate the flexibility of DNMT1's N-terminal regulatory domains during the transition from an apo 'auto-inhibited' to a DNA-bound 'non-productive' and finally a DNA-bound 'productive' state of DNMT1. Furthermore, we address the regulation of DNMT1's methyltransferase activity by a DNMT1-selective small-molecule inhibitor and ubiquitinated histone H3. We observe that DNMT1 binds DNA in a 'non-productive' state despite the presence of the inhibitor and present the cryo-EM reconstruction of full-length DNMT1 in complex with a di-ubiquitinated H3 peptide analogue. Taken together, our results provide structural insights into the reaction cycle of DNMT1.
Assuntos
Microscopia Crioeletrônica , DNA (Citosina-5-)-Metiltransferase 1 , DNA , Microscopia Crioeletrônica/métodos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/química , DNA/metabolismo , DNA/química , Humanos , Histonas/metabolismo , Histonas/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismoRESUMO
DELLA proteins are conserved master growth regulators that play a central role in controlling plant development in response to internal and environmental cues. DELLAs function as transcription regulators, which are recruited to target promoters by binding to transcription factors (TFs) and histone H2A via their GRAS domain. Recent studies showed that DELLA stability is regulated post-translationally via two mechanisms, phytohormone gibberellin-induced polyubiquitination for its rapid degradation, and Small Ubiquitin-like Modifier (SUMO)-conjugation to increase its accumulation. Moreover, DELLA activity is dynamically modulated by two distinct glycosylations: DELLA-TF interactions are enhanced by O-fucosylation, but inhibited by O-linked N-acetylglucosamine (O-GlcNAc) modification. However, the role of DELLA phosphorylation remains unclear as previous studies showing conflicting results ranging from findings that suggest phosphorylation promotes or reduces DELLA degradation to others indicating it has no effect on its stability. Here, we identify phosphorylation sites in REPRESSOR OF ga1-3 (RGA, an AtDELLA) purified from Arabidopsis by mass spectrometry analysis, and show that phosphorylation of two RGA peptides in the PolyS and PolyS/T regions enhances RGA activity by promoting H2A binding and RGA association with target promoters. Notably, phosphorylation does not affect RGA-TF interactions or RGA stability. Our study has uncovered a molecular mechanism of phosphorylation-induced DELLA activity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cromatina , Regulação da Expressão Gênica de Plantas , Histonas , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , Histonas/metabolismo , Cromatina/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Regiões Promotoras GenéticasRESUMO
Epigenetic inheritance of heterochromatin requires transfer of parental H3-H4 tetramers to both daughter duplexes during replication. Three recent papers exploit yeast genetics coupled to inheritance assays and AlphaFold2-multimer predictions coupled to biochemistry to reveal that a replisome component (Mrc1/CLASPIN) is an H3-H4 tetramer chaperone important for parental histone transfer to daughters.
Assuntos
Replicação do DNA , Aprendizado Profundo , Histonas , Saccharomyces cerevisiae , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Heterocromatina/metabolismo , Epigênese GenéticaRESUMO
Epigenetic modifications (methylation, acetylation, etc.) of core histones play a key role in regulation of gene expression. Thus, the epigenome changes strongly during various biological processes such as cell differentiation and dedifferentiation. Classical methods of analysis of epigenetic modifications such as mass-spectrometry and chromatin immuno-precipitation, work with fixed cells only. Here we present a genetically encoded fluorescent probe, MPP8-Green, for detecting H3K9me3, a histone modification associated with inactive chromatin. This probe, based on the chromodomain of MPP8, allows for visualization of H3K9me3 epigenetic landscapes in single living cells. We used this probe to track changes in H3K9me3 landscapes during the differentiation of induced pluripotent stem cells (iPSCs) into induced neurons. Our findings revealed two major waves of global H3K9me3 reorganization during 4-day differentiation, namely on the first and third days, whereas nearly no changes occurred on the second and fourth days. The proposed method LiveMIEL (Live-cell Microscopic Imaging of Epigenetic Landscapes), which combines genetically encoded epigenetic probes and machine learning approaches, enables classification of multiparametric epigenetic signatures of single cells during stem cell differentiation and potentially in other biological models.
Assuntos
Diferenciação Celular , Epigênese Genética , Corantes Fluorescentes , Histonas , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Histonas/metabolismo , Histonas/genética , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Neurônios/metabolismo , Neurônios/citologia , Animais , CamundongosRESUMO
Methods to measure chromatin contacts at genomic regions bound by histone modifications or proteins are important tools to investigate chromatin organization. However, such methods do not capture the possible involvement of other epigenomic features such as G-quadruplex DNA secondary structures (G4s). To bridge this gap, we introduce ViCAR (viewpoint HiCAR), for the direct antibody-based capture of chromatin interactions at folded G4s. Through ViCAR, we showcase the first G4-3D interaction landscape. Using histone marks, we also demonstrate how ViCAR improves on earlier approaches yielding increased signal-to-noise. ViCAR is a practical and powerful tool to explore epigenetic marks and 3D genome interactomes.
Assuntos
Cromatina , Epigênese Genética , Quadruplex G , Cromatina/metabolismo , Humanos , Epigenômica/métodos , Código das Histonas , Histonas/metabolismoRESUMO
Ovarian cancer is the most fatal of all the reproductive cancers within the female population, mainly due to its late diagnosis that limits surgery and medical treatment. Classically, ovarian cancer therapy has included conventional chemotherapy, and other therapeutic approaches are now being used to treat these patients, but the outcomes of the disease are still poor. Therefore, new strategies are needed to improve life expectancy and life quality of ovarian cancer patients. Considering that, we investigated the effect of the nutritional supplement Ocoxin Oral Solution (OOS) in ovarian cancer models. OOS contains several nutritional supplements, some of them with demonstrated antitumoral action. In vitro studies showed that OOS inhibited the proliferation of several ovarian cancer cell lines, especially of those representative of the endometrioid subtype, in a time- and dose-dependent manner. A fast cell death induction after OOS treatment was observed, and when the molecular mechanisms leading to this effect were investigated, an activation of the DNA damage checkpoint was detected, as shown by activation (phosphorylation) of CHK1 and CHK2 kinases that was followed by the phosphorylation of the target protein histone H2AX. When tested in animal models of ovarian cancer, OOS reduced tumor growth without any observed secondary effects. Moreover, such reduction in tumor proliferation was caused by the induction of DNA damage as corroborated by the in vivo phosphorylation of CHK2 and Histone H2AX. Finally, OOS potentiated the action of carboplatin or olaparib, the standard of care treatments used in ovarian clinics, opening the possibility of including OOS in combination with those standard of care agents in patients with ovarian cancer.
Assuntos
Proliferação de Células , Dano ao DNA , Neoplasias Ovarianas , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Humanos , Dano ao DNA/efeitos dos fármacos , Linhagem Celular Tumoral , Animais , Proliferação de Células/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Piridoxina/farmacologia , Camundongos , Ácido Fólico/farmacologia , Ácido Fólico/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Suplementos Nutricionais , Antineoplásicos/farmacologia , Administração Oral , Vitamina B 6/farmacologia , Vitamina B 6/administração & dosagem , Histonas/metabolismo , Sulfato de Zinco , Vitamina B 12 , Extratos Vegetais , Ácido Pantotênico , Ácido AscórbicoRESUMO
For the genome-wide mapping of histone modifications, chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing remains the benchmark method. While crosslinked ChIP can be used for all kinds of targets, native ChIP is predominantly used for strong and direct DNA interactors like histones and their modifications. Here we describe a native ChIP protocol that can be used for cells and tissue material.