Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.437
Filtrar
1.
Phys Chem Chem Phys ; 21(37): 21038-21048, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31528920

RESUMO

Dramatically different properties have been observed for two types of osmolytes, i.e., trimethylamine N-oxide (TMAO) and urea, in a protein folding process. Great progress has been made in revealing the potential underlying mechanism of these two osmolyte systems. However, many problems still remain unsolved. In this paper, we propose to use the persistent homology to systematically study the osmolytes' molecular aggregation and their hydrogen-bonding network from a global topological perspective. It has been found that, for the first time, TMAO and urea show two extremely different topological behaviors, i.e., an extensive network and local clusters, respectively. In general, TMAO forms highly consistent large loop or circle structures in high concentrations. In contrast, urea is more tightly aggregated locally. Moreover, the resulting hydrogen-bonding networks also demonstrate distinguishable features. With a concentration increase, TMAO hydrogen-bonding networks vary greatly in their total number of loop structures and large-sized loop structures consistently increase. In contrast, urea hydrogen-bonding networks remain relatively stable with slight reduction of the total loop number. Moreover, the persistent entropy (PE) is, for the first time, used in characterization of the topological information of the aggregation and hydrogen-bonding networks. The average PE systematically increases with the concentration for both TMAO and urea, and decreases in their hydrogen-bonding networks. But their PE variances have totally different behaviors. Finally, topological features of the hydrogen-bonding networks are found to be highly consistent with those from the ion aggregation systems, indicating that our topological invariants can characterize intrinsic features of the "structure making" and "structure breaking" systems.


Assuntos
Metilaminas/química , Ureia/química , Entropia , Hidrogênio/química , Ligações de Hidrogênio , Simulação de Dinâmica Molecular , Agregação Patológica de Proteínas , Homologia Estrutural de Proteína
2.
Gene ; 717: 144047, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31421190

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) signaling pathways play important roles in the formation of the blood vascular system and nervous system across animal phyla. We have earlier reported VEGF and FGF from Hydra vulgaris Ind-Pune, a cnidarian with a defined body axis, an organized nervous system and a remarkable ability of regeneration. We have now identified three more components of VEGF and FGF signaling pathways from hydra. These include FGF-1, FGF receptor 1 (FGFR-1) and VEGF receptor 2 (VEGFR-2) with a view to deciphering their possible roles in regeneration. METHODS: In silico analysis of proteins was performed using Clustal omega, Swiss model, MEGA 7.0, etc. Gene expression was studied by whole mount in situ hybridization. VEGF and FGF signaling was inhibited using specific pharmacological inhibitors and their effects on head regeneration were studied. RESULTS: Expression patterns of the genes indicate a possible interaction between FGF-1 and FGFR-1 and also VEGF and VEGFR-2. Upon treatment of decapitated hydra with pharmacological inhibitor of FGFR-1 or VEGFR-2 for 48 h, head regeneration was delayed in treated as compared to untreated, control regenerates. When we studied the expression of head specific genes HyBra1 and HyKs1 and tentacle specific gene HyAlx in control and treated regenerates using whole mount in situ hybridization, expression of all the three genes was found to be adversely affected in treated regenerates. CONCLUSIONS: The results suggest that VEGF and FGF signaling play important roles in regeneration of hypostome and tentacles in hydra.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Cabeça/fisiologia , Hydra/fisiologia , Regeneração/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Simulação por Computador , Fator 1 de Crescimento de Fibroblastos/química , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Hydra/efeitos dos fármacos , Indóis/farmacologia , Domínios Proteicos , Pirróis/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Regeneração/efeitos dos fármacos , Transdução de Sinais , Homologia Estrutural de Proteína , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
BMC Evol Biol ; 19(1): 146, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324143

RESUMO

BACKGROUND: Antioxidative enzymes contribute to a parasite's ability to counteract the host's intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite's life history? RESULTS: Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. CONCLUSIONS: PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed.


Assuntos
Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Catalase/metabolismo , Parasitos/enzimologia , Fotossíntese , Sequência de Aminoácidos , Animais , Ascorbato Peroxidases/química , Ascorbato Peroxidases/genética , Ascorbato Peroxidases/isolamento & purificação , Peróxido de Hidrogênio/metabolismo , Cinética , Modelos Moleculares , Parasitos/genética , Filogenia , Homologia Estrutural de Proteína , Frações Subcelulares/metabolismo
4.
Malar J ; 18(1): 159, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053072

RESUMO

BACKGROUND: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS: Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS: Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS: Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.


Assuntos
Domínio Catalítico , Cisteína Endopeptidases/química , Peptídeo Hidrolases/química , Peptídeos/química , Sequência de Aminoácidos , Catepsinas/química , Simulação por Computador , Precursores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Homologia Estrutural de Proteína
5.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 324-331, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045561

RESUMO

Haloalkane dehalogenases (HLDs) convert halogenated aliphatic pollutants to less toxic compounds by a hydrolytic mechanism. Owing to their broad substrate specificity and high enantioselectivity, haloalkane dehalogenases can function as biosensors to detect toxic compounds in the environment or can be used for the production of optically pure compounds. Here, the structural analysis of the haloalkane dehalogenase DpcA isolated from the psychrophilic bacterium Psychrobacter cryohalolentis K5 is presented at the atomic resolution of 1.05 Å. This enzyme exhibits a low temperature optimum, making it attractive for environmental applications such as biosensing at the subsurface environment, where the temperature typically does not exceed 25°C. The structure revealed that DpcA possesses the shortest access tunnel and one of the most widely open main tunnels among structural homologs of the HLD-I subfamily. Comparative analysis revealed major differences in the region of the α4 helix of the cap domain, which is one of the key determinants of the anatomy of the tunnels. The crystal structure of DpcA will contribute to better understanding of the structure-function relationships of cold-adapted enzymes.


Assuntos
Proteínas de Bactérias/química , Hidrocarbonetos Halogenados/química , Hidrolases/química , Psychrobacter/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Temperatura Baixa , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Psychrobacter/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica
6.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 332-339, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045562

RESUMO

SUMOylation is a post-translational modification in which a small ubiquitin-like molecule (SUMO) is appended to substrate proteins and is known to influence myriads of biological processes. A delicate interplay between several families of SUMOylation proteins and their substrates ensures the proper level of SUMOylation required for normal cell function. Among the SUMO proteins, SUMO2 is known to form mono-SUMOylated proteins and engage in poly-SUMO chain formation, while sentrin-specific protease 1 (SENP1) is a key enzyme in regulating both events. Determination of the SENP1-SUMO2 interaction is therefore necessary to better understand SUMOylation. In this regard, the current paper reports the noncovalent structure of SENP1 in complex with SUMO2, which was refined to a resolution of 2.62 Šwith R and Rfree values of 22.92% and 27.66%, respectively. The structure shows that SENP1-SUMO2 complex formation is driven largely by polar interactions and limited hydrophobic contacts. The essential C-terminal motif (QQTGG) of SUMO2 is stabilized by a number of specific bonding interactions that enable it to protrude into the catalytic triad of SENP1 and provide the arrangement necessary for maturation of SUMO and deSUMOylation activity. Overall, the structure shows a number of structural details that pinpoint the basis of SENP1-SUMO2 complex formation.


Assuntos
Cisteína Endopeptidases/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Homologia Estrutural de Proteína , Termodinâmica
7.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 359-367, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045565

RESUMO

As of 2017, tuberculosis had infected 1.7 billion people (23% of the population of the world) and caused ten million deaths. Mycobacterium tuberculosis (Mtb) is quickly evolving, and new strains are classified as multidrug resistant. Thus, the identification of novel druggable targets is essential to combat the proliferation of these drug-resistant strains. Filamenting temperature-sensitive mutant Z (FtsZ) is a key protein involved in cytokinesis, an important process for Mtb proliferation and viability. FtsZ is required for bacterial cell division because it polymerizes into a structure called the Z-ring, which recruits accessory division proteins to the septum. Here, the crystal structure of the MtbFtsZ protein has been determined to 3.46 Šresolution and is described as a dimer of trimers, with an inter-subunit interface between protomers AB and DE. In this work, a novel conformation of MtbFtsZ is revealed involving the T9 loop and the nucleotide-binding pocket of protomers BC and EF.


Assuntos
Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Mycobacterium tuberculosis/química , Subunidades Proteicas/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Divisão Celular , Clonagem Molecular , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Temperatura Ambiente
8.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 368-376, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045566

RESUMO

The bacterial periplasmic protein LpoA is an outer membrane lipoprotein and an activator for the cross-linking activity of PBP1A, a bifunctional peptidoglycan synthase. Previous structures of the amino-terminal (N) domain of LpoA showed it to consist entirely of helices and loops, with at least four tetratricopeptide-like repeats. Although the previously determined orthorhombic crystal structure of the N domain of Haemophilus influenzae LpoA showed a typical curved structure with a concave groove, an NMR structure of the same domain from Escherichia coli was relatively flat. Here, a crystal structure of the N domain of E. coli LpoA was determined to a resolution of 2.1 Šand was found to be more similar to the H. influenzae crystal structure than to the E. coli NMR structure. To provide a quantitative description for these comparisons, the various structures were superimposed pairwise by fitting the first half of each structure to its pairwise partner and then calculating the rotation axis that would optimally superimpose the second half. Differences in both the magnitude of the rotation and the direction of the rotation axis were observed between different pairs of structures. A 1.35 Šresolution structure of a monoclinic crystal form of the N domain of H. influenzae LpoA was also determined. In this structure, the subdomains rotate 10° relative to those in the original orthorhombic H. influenzae crystal structure to further narrow the groove between the subdomains. To accommodate this, a bound chloride ion (in place of sulfate) allowed the closer approach of a helix that forms one side of the groove.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Cloretos/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Haemophilus influenzae/química , Lipoproteínas/química , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína
9.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 5): 392-396, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045569

RESUMO

Grx1, a cytosolic thiol-disulfide oxidoreductase, actively maintains cellular redox homeostasis using glutathione substrates (reduced, GSH, and oxidized, GSSG). Here, the crystallization of reduced Grx1 from the yeast Saccharomyces cerevisiae (yGrx1) in space group P212121 and its structure solution and refinement to 1.22 Šresolution are reported. To study the structure-function relationship of yeast Grx1, the crystal structure of reduced yGrx1 was compared with the existing structures of the oxidized and glutathionylated forms. These comparisons revealed structural differences in the conformations of residues neighbouring the Cys27-Cys30 active site which accompany alterations in the redox status of the protein.


Assuntos
Cisteína/química , Glutarredoxinas/química , Glutationa/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
10.
Gene ; 703: 102-111, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30928364

RESUMO

Haemonchus contortus (HC) causes Haemonchosis in sheep and goats, with high mortality and morbidity due to lack of effective vaccine and increasing resistance to anthelmintic drugs. The present study was aimed at developing the 3D model of HCP24 protein and to identify the candidate epitopic peptides for effective humoral and cell-mediated immune-response. The HCP24 protein was homology modelled using the Swiss server and developed model was validated by ERRAT, VERIFY3D, PROQ, RAMPAGE and PROCHECK servers. Linear and prominent antigenic epitopes were predicted by SVMTrip and Immuno-medicine group tool. Conformational B-cell epitopes were predicted by Ellipro. MHC-I and MHC-II binding peptides were predicted by MHCPRED2, MHC2PRED and Propred I server. Proteosomal cleavage sites were predicted by Netchop server, to assess the stability of peptides. Reverse and three frame translation was done by EMBOSS tool. Bepipred and IEDB analysis also confirmed that both the predicted peptides (pep-1 and pep-2) were important antigenic region but pep-1 should have better hydrophobicity and stability. The degree of confidence achieved on scientific validation of the generated 3D model of the protein allows us to prescribe its use for research purpose. We could determine the peptide Pep-1(EDCKCTNCVCSRDEAL) should be a conformational B cell epitope with high antigenic potential and should demonstrate good binding affinity with host MHC-II and MHC-I alleles as well as stability inside host. Thus, it could be an ideal vaccine candidate for developing sub-unit vaccine against the parasite and should be assessed for protective immune response by in vitro and in-vivo studies.


Assuntos
Epitopos/química , Haemonchus/metabolismo , Glicoproteínas de Membrana/química , Animais , Sítios de Ligação , Simulação por Computador , Epitopos/imunologia , Proteínas de Helminto/química , Proteínas de Helminto/imunologia , Glicoproteínas de Membrana/imunologia , Modelos Moleculares , Conformação Proteica , Homologia Estrutural de Proteína
11.
PLoS Comput Biol ; 15(4): e1006683, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951524

RESUMO

The actin family of cytoskeletal proteins is essential to the physiology of virtually all archaea, bacteria, and eukaryotes. While X-ray crystallography and electron microscopy have revealed structural homologies among actin-family proteins, these techniques cannot probe molecular-scale conformational dynamics. Here, we use all-atom molecular dynamic simulations to reveal conserved dynamical behaviors in four prokaryotic actin homologs: MreB, FtsA, ParM, and crenactin. We demonstrate that the majority of the conformational dynamics of prokaryotic actins can be explained by treating the four subdomains as rigid bodies. MreB, ParM, and FtsA monomers exhibited nucleotide-dependent dihedral and opening angles, while crenactin monomer dynamics were nucleotide-independent. We further show that the opening angle of ParM is sensitive to a specific interaction between subdomains. Steered molecular dynamics simulations of MreB, FtsA, and crenactin dimers revealed that changes in subunit dihedral angle lead to intersubunit bending or twist, suggesting a conserved mechanism for regulating filament structure. Taken together, our results provide molecular-scale insights into the nucleotide and polymerization dependencies of the structure of prokaryotic actins, suggesting mechanisms for how these structural features are linked to their diverse functions.


Assuntos
Actinas/química , Proteínas de Bactérias/química , Biologia Computacional , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pyrobaculum/química , Homologia Estrutural de Proteína
12.
PLoS Comput Biol ; 15(4): e1006767, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958823

RESUMO

It is well known that, in order to preserve its structure and function, a protein cannot change its sequence at random, but only by mutations occurring preferentially at specific locations. We here investigate quantitatively the amount of variability that is allowed in protein sequence evolution, by computing the intrinsic dimension (ID) of the sequences belonging to a selection of protein families. The ID is a measure of the number of independent directions that evolution can take starting from a given sequence. We find that the ID is practically constant for sequences belonging to the same family, and moreover it is very similar in different families, with values ranging between 6 and 12. These values are significantly smaller than the raw number of amino acids, confirming the importance of correlations between mutations in different sites. However, we demonstrate that correlations are not sufficient to explain the small value of the ID we observe in protein families. Indeed, we show that the ID of a set of protein sequences generated by maximum entropy models, an approach in which correlations are accounted for, is typically significantly larger than the value observed in natural protein families. We further prove that a critical factor to reproduce the natural ID is to take into consideration the phylogeny of sequences.


Assuntos
Evolução Molecular , Proteínas/química , Proteínas/genética , Sequência de Aminoácidos , Biologia Computacional , Bases de Dados de Proteínas/estatística & dados numéricos , Modelos Moleculares , Mutação , Filogenia , Conformação Proteica , Dobramento de Proteína , Proteínas/classificação , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
13.
Molecules ; 24(8)2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018618

RESUMO

Trazodone, a well-known antidepressant drug widely used throughout the world, works as a 5-hydroxytryptamine (5-HT2) and α1-adrenergic receptor antagonist and a serotonin reuptake inhibitor. Our research aimed to develop a new method for the synthesis of trazodone and its derivatives. In the known methods of the synthesis of trazodone and its derivatives, organic and toxic solvents are used, and the synthesis time varies from several to several dozen hours. Our research shows that trazodone and its derivatives can be successfully obtained in the presence of potassium carbonate as a reaction medium in the microwave field in a few minutes. As a result of the research work, 17 derivatives of trazodone were obtained, including compounds that exhibit the characteristics of 5-HT1A receptor ligands. Molecular modeling studies were performed to understand the differences in the activity toward 5-HT1A and 5-HT2A receptors between ligand 10a (2-(6-(4-(3-chlorophenyl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one) (5-HT1A Ki = 16 nM) and trazodone. The docking results indicate the lack of the binding of ligand 10a to 5-HT2AR, which is consistent with the in vitro studies. On the other hand, the docking results for the 5-HT1A receptor indicate two possible binding modes. Crystallographic studies support the hypothesis of an extended conformation.


Assuntos
Antagonistas Adrenérgicos/química , Antidepressivos/química , Técnicas de Química Sintética , Receptor 5-HT1A de Serotonina/química , Inibidores de Captação de Serotonina/química , Trazodona/análogos & derivados , Antagonistas Adrenérgicos/síntese química , Animais , Antidepressivos/síntese química , Sítios de Ligação , Carbonatos/química , Cristalografia por Raios X , Humanos , Ligantes , Micro-Ondas , Simulação de Acoplamento Molecular , Potássio/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Receptor 5-HT2A de Serotonina/química , Inibidores de Captação de Serotonina/síntese química , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Fatores de Tempo , Trazodona/síntese química
14.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 278-289, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950829

RESUMO

Phosphoribulokinase (PRK) catalyses the ATP-dependent phosphorylation of ribulose 5-phosphate to give ribulose 1,5-bisphosphate. Regulation of this reaction in response to light controls carbon fixation during photosynthesis. Here, the crystal structure of PRK from the cyanobacterium Synechococcus sp. strain PCC 6301 is presented. The enzyme is dimeric and has an α/ß-fold with an 18-stranded ß-sheet at its core. Interestingly, a disulfide bond is found between Cys40 and the P-loop residue Cys18, revealing the structural basis for the redox inactivation of PRK activity. A second disulfide bond appears to rigidify the dimer interface and may thereby contribute to regulation by the adaptor protein CP12 and glyceraldehyde-3-phosphate dehydrogenase.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/química , Synechococcus/enzimologia , Sequência de Aminoácidos , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Funções Verossimilhança , Modelos Moleculares , Filogenia , Multimerização Proteica , Homologia Estrutural de Proteína
15.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 290-298, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950830

RESUMO

S-Adenosyl-L-methionine (AdoMet), the primary methyl donor in most biological methylation reactions, is produced from ATP and methionine in a multistep reaction catalyzed by AdoMet synthetase. The diversity of group-transfer reactions that involve AdoMet places this compound at a key crossroads in amino-acid, nucleic acid and lipid metabolism, and disruption of its synthesis has adverse consequences for all forms of life. The family of AdoMet synthetases is highly conserved, and structures of this enzyme have been determined from organisms ranging from bacteria to humans. Here, the structure of an AdoMet synthetase from the infectious parasite Cryptosporidium parvum has been determined as part of an effort to identify structural differences in this enzyme family that can guide the development of species-selective inhibitors. This enzyme form has a less extensive subunit interface than some previously determined structures, and contains some key structural differences from the human enzyme in an allosteric site, presenting an opportunity for the design of selective inhibitors against the AdoMet synthetase from this organism.


Assuntos
Cryptosporidium parvum/enzimologia , Metionina Adenosiltransferase/química , Regulação Alostérica , Sequência de Aminoácidos , Cristalização , Humanos , Modelos Moleculares , Multimerização Proteica , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína
16.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 299-306, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950831

RESUMO

Adenylation enzymes play an important role in the selective incorporation of the cognate carboxylate substrates in natural product biosynthesis. Here, the biochemical and structural characterization of the adenylation enzyme IdnL7, which is involved in the biosynthesis of the macrolactam polyketide antibiotic incednine, is reported. Biochemical analysis showed that IdnL7 selects and activates several small amino acids. The structure of IdnL7 in complex with an L-alanyl-adenylate intermediate mimic, 5'-O-[N-(L-alanyl)sulfamoyl]adenosine, was determined at 2.1 Šresolution. The structure of IdnL7 explains the broad substrate specificity of IdnL7 towards small L-amino acids.


Assuntos
Adenina/metabolismo , Dissacarídeos/biossíntese , Enzimas/química , Enzimas/metabolismo , Streptomyces/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalização , Lactamas , Ligantes , Homologia Estrutural de Proteína , Especificidade por Substrato
17.
Int J Mol Sci ; 20(6)2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30875920

RESUMO

The present study gives an overview of the binding energetics of the homologous heterodimers of cruzipain-chagasin based on the binding energy (ΔGb) prediction obtained with FoldX. This analysis involves a total of 70 homologous models of the cruzipain-chagasin complex which were constructed by homology from the combinatory variation of nine papain-like cysteine peptidase structures and seven cysteine protease inhibitor structures (as chagasin-like and cystatin-like inhibitors). Only 32 systems have been evaluated experimentally, ΔGbexperimental values previously reported. Therefore, the result of the multiple analysis in terms of the thermodynamic parameters, are shown as relative energy |ΔΔG| = |ΔGbfrom FoldX - ΔGbexperimental|. Nine models were identified that recorded |ΔΔG| < 1.3, five models to 2.8 > |ΔΔG| > 1.3 and the other 18 models, values of |ΔΔG| > 2.8. The energetic analysis of the contribution of ΔH and ΔS to ΔGb to the 14-molecular model presents a ΔGb mostly ΔH-driven at neutral pH and at an ionic strength (I) of 0.15 M. The dependence of ΔGb(I,pH) at 298 K to the cruzipain-chagasin complex predicts a linear dependence of ΔGb(I). The computational protocol allowed the identification and prediction of thermodynamics binding energy parameters for cruzipain-chagasin-like heterodimers.


Assuntos
Cisteína Endopeptidases/metabolismo , Complexos Multiproteicos/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Cisteína Endopeptidases/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas de Protozoários/química , Homologia Estrutural de Proteína
18.
Plant Mol Biol ; 100(1-2): 181-197, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30868545

RESUMO

KEY MESSAGE: The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these enzymes operate uniquely on cellulose-xyloglucan networks. Xyloglucan xyloglucosyl transferases (XETs) (EC 2.4.1.207) play a central role in loosening and re-arranging the cellulose-xyloglucan network, which is assumed to be the primary load-bearing structural component of plant cell walls. The sequence of mature TmXET6.3 from Tropaeolum majus (280 residues) was deduced by the nucleotide sequence analysis of complete cDNA by Rapid Amplification of cDNA Ends, based on tryptic and chymotryptic peptide sequences. Partly purified TmXET6.3, expressed in Pichia occurred in N-glycosylated and unglycosylated forms. The quantification of hetero-transglycosylation activities of TmXET6.3 revealed that (1,3;1,4)-, (1,6)- and (1,4)-ß-D-glucooligosaccharides were the preferred acceptor substrates, while (1,4)-ß-D-xylooligosaccharides, and arabinoxylo- and glucomanno-oligosaccharides were less preferred. The 3D model of TmXET6.3, and bioinformatics analyses of identified and putative plant xyloglucan endotransglycosylases (XETs)/hydrolases (XEHs) of the GH16 family revealed that H94, A104, Q108, K234 and K237 were the key residues that underpinned the acceptor substrate specificity of TmXET6.3. Compared to the wild-type enzyme, the single Q108R and K237T, and double-K234T/K237T and triple-H94Q/A104D/Q108R variants exhibited enhanced hetero-transglycosylation activities with xyloglucan and (1,4)-ß-D-glucooligosaccharides, while those with (1,3;1,4)- and (1,6)-ß-D-glucooligosaccharides were suppressed; the incorporation of xyloglucan to (1,4)-ß-D-glucooligosaccharides by the H94Q variant was influenced most extensively. Structural and biochemical data of non-specific TmXET6.3 presented here extend the classic XET reaction mechanism by which these enzymes operate in plant cell walls. The evaluations of TmXET6.3 transglycosylation activities and the incidence of investigated residues in other members of the GH16 family suggest that a broad acceptor substrate specificity in plant XET enzymes could be more widespread than previously anticipated.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Sementes/enzimologia , Tropaeolum/enzimologia , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/genética , Germinação , Glicosilação , Glicosiltransferases/química , Modelos Moleculares , Petroselinum/enzimologia , Filogenia , Proteínas de Plantas/química , Homologia Estrutural de Proteína , Especificidade por Substrato
19.
Mol Biotechnol ; 61(4): 274-285, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30747382

RESUMO

One of the most widespread pathogens worldwide is methicillin-resistant Staphylococcus aureus, a bacterium that provokes severe life-threatening illnesses both in hospitals and in the community. The principal challenge lies in the resistance of MRSA to current treatments, which encourages the study of different molecular targets that could be used to develop new drugs against this infectious agent. With this goal, a detailed characterization of shikimate kinase from this microorganism (SaSK) is described. The results showed that SaSK has a Km of 0.153 and 224 µM for shikimate and ATP, respectively, and a global reaction rate of 13.4 µmol/min/mg; it is suggested that SaSK utilizes the Bi-Bi Ping Pong reaction mechanism. Furthermore, the physicochemical data indicated that SaSK is an unstable, hydrophilic, and acidic protein. Finally, structural information showed that SaSK presented folding that is typical of its homologous counterparts and contains the typical domains of this family of proteins. Amino acids that have been shown to be important for SaSK protein function are conserved. Therefore, this study provides fundamental information that may aid in the design of inhibitors that could be used to develop new antibacterial agents.


Assuntos
Staphylococcus aureus Resistente à Meticilina/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trifosfato de Adenosina/metabolismo , Desenho de Drogas , Estabilidade Enzimática , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ácido Chiquímico/metabolismo , Homologia Estrutural de Proteína
20.
BMC Med Genet ; 20(1): 31, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30764785

RESUMO

BACKGROUND: Gaucher disease is a rare pan-ethnic, lysosomal storage disorder resulting due to beta-Glucosidase (GBA1) gene defect. This leads to the glucocerebrosidase enzyme deficiency and an increased accumulation of undegraded glycolipid glucocerebroside inside the cells' lysosomes. To date, nearly 460 mutations have been described in the GBA1 gene. With the aim to determine mutations spectrum and molecular pathology of Gaucher disease in India, the present study investigated one hundred unrelated patients (age range: 1 day to 31 years) having splenomegaly, with or without hepatomegaly, cytopenia and bone abnormality in some of the patients. METHODS: The biochemical investigation for the plasma chitotriosidase enzyme activity and ß-Glucosidase enzyme activity confirmed the Gaucher disease. The mutations were identified by screening the patients' whole GBA gene coding region using bidirectional Sanger sequencing. RESULTS: The biochemical analysis revealed a significant reduction in the ß-Glucosidase activity in all patients. Sanger sequencing established 71 patients with homozygous mutation and 22 patients with compound heterozygous mutation in GBA1 gene. Lack of identification of mutations in three patients suggests the possibility of either large deletion/duplication or deep intronic variations in the GBA1 gene. In four cases, where the proband died due to confirmed Gaucher disease, the parents were found to be a carrier. Overall, the study identified 33 mutations in 100 patients that also covers four missense mutations (p.Ser136Leu, p.Leu279Val, p.Gly383Asp, p.Gly399Arg) not previously reported in Gaucher disease patients. The mutation p.Leu483Pro was identified as the most commonly occurring Gaucher disease mutation in the study (62% patients). The second common mutations identified were p.Arg535Cys (7% patients) and RecNcil (7% patients). Another complex mutation Complex C was identified in a compound heterozygous status (3% patients). The homology modeling of the novel mutations suggested the destabilization of the GBA protein structure due to conformational changes. CONCLUSIONS: The study reports four novel and 29 known mutations identified in the GBA1 gene in one-hundred Gaucher patients. The given study establishes p.Leu483Pro as the most prevalent mutation in the Indian patients with type 1 Gaucher disease that provide new insight into the molecular basis of Gaucher Disease in India.


Assuntos
Grupo com Ancestrais do Continente Europeu/genética , Doença de Gaucher/genética , Glucosilceramidase/genética , Mutação , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Substituição de Aminoácidos , Criança , Pré-Escolar , Éxons , Feminino , Doença de Gaucher/metabolismo , Glucosilceramidase/química , Glucosilceramidase/metabolismo , Humanos , Índia , Lactente , Recém-Nascido , Masculino , Modelos Moleculares , Homologia Estrutural de Proteína , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA