Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.027
Filtrar
1.
ACS Appl Bio Mater ; 5(6): 3095-3106, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35679606

RESUMO

Foot-and-mouth disease (FMD), a serious, fast-spreading, and virulent disease, has led to huge economic losses to people all over the world. Vaccines are the most effective way to control FMD. However, the weak immunogenicity of inactivated FMD virus (FMDV) requires the addition of adjuvants to enhance the immune effectiveness of the vaccines. Herein, we formulated and fabricated biodegradable dendritic mesoporous tetrasulfide-doped organosilica nanoparticles SOMSN with imiquimod complex (SOMSN-IMQ) and used it as a platform for FMD vaccine delivery and as an adjuvant. SOMSN-IMQ demonstrated excellent stability for 6 months when stored in PBS, while it could be completely degraded within 42 days in SBF at room temperature. Biosafety experiments such as cell toxicity, hemolysis, and histology indicated that the as-prepared SOMSN-IMQ showed nontoxicity and good biocompatibility. Furthermore, SOMSN-IMQ exhibited a maximum adsorption capacity of 1000 µg/mg for inactivated FMDV antigens. Our results showed that SOMSN-IMQ can be effectively engulfed by RAW264.7 cells in a dose-dependent manner. After immunization, SOMSN-IMQ@FMDV can elicit persistent higher antibody levels, higher IgG2a/IgG1 ratio, and cytokine expression, which indicated that SOMSN-IMQ@FMDV triggered superior humoral and cellular immune responses. Moreover, SOMSN-IMQ could provoke maturation and activation of dendritic cells in lymph nodes (LDCs) as well as the proliferation of lymphocytes in vivo. Thus, SOMSN-IMQ could promote effective and potent immunity and provide a promising adjuvant platform for FMDV vaccination with acceptable safety.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Animais , Anticorpos Antivirais , Febre Aftosa/prevenção & controle , Humanos , Imiquimode/farmacologia , Imunoglobulina G , Camundongos
2.
Biomed Pharmacother ; 152: 113245, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689858

RESUMO

Psoriasis is a chronic skin inflammation caused by a dysfunctional immune system, which causes systemic inflammation in various organs and tissues. Due to the risk of systemic inflammation and recurrence of psoriasis, it is important to identify the critical targets in the pathogenesis of psoriasis and develop targeted therapeutics. Dimerized translationally controlled tumor protein (dTCTP) promotes immune cell activation as a pro-inflammatory cytokine and plays a role in developing allergic diseases such as asthma and rhinitis. Here, we sought to explore whether dTCTP and its inhibition contributed to the development and control of imiquimod (IMQ)-induced psoriasis. Topical application of IMQ inflamed the skin of the back and ear, increased inflammatory cytokines, and decreased regulatory T cell markers. Interestingly, TCTP was significantly increased in inflamed skin and immune cells such as T cells, B cells, and macrophages after IMQ treatment and was secreted into the serum to undergo dimerization. Extracellular dTCTP treatment selectively suppressed regulatory T (Treg) cells, not other effector T helper (Th) cells, and increased M1 macrophages. Moreover, dTCTP-binding peptide 2 (dTBP2), a dTCTP inhibitor peptide, effectively attenuated the systemic inflammatory responses, including Th17 cell response, and alleviated psoriatic skin inflammation. dTBP2 blocked dTCTP-mediated Treg suppression and stimulated the expression of Treg cell markers in the spleen and inflammatory skin lesions. These results suggest that dTCTP dysregulated immune balance through Treg suppression in psoriatic inflammation and that functional inhibition of dTCTP by dTBP2 maintained immune homeostasis and attenuated inflammatory skin diseases by expanding Treg cells.


Assuntos
Psoríase , Linfócitos T Reguladores , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Imiquimode/farmacologia , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Peptídeos/farmacologia , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele , Linfócitos T Reguladores/metabolismo , Células Th17
3.
Food Funct ; 13(12): 6802-6812, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35674182

RESUMO

The interaction between interleukin-17A (IL-17A) and IL-17A receptor (IL-17RA) is a crucial target of psoriasis. Several natural compounds from foods or herbs have displayed efficacies on the amelioration of psoriasis. However, the anti-psoriatic mechanisms are mostly through the common anti-inflammatory effects and rarely via the blockage of the IL-17A/IL-17RA interaction. In this study, the IL-17A/IL-17RA-targeting effects of phenylpropanoids, a large class of secondary metabolites in plants, were analyzed. By screening 17 phenylpropanoids, we found that top four compounds with IL-17A/IL-17RA-blocking abilities were rosmarinic acid, eugenol, syringic acid, and gallic acid, with inhibitory concentrations at 50% of 2.14 ± 0.35 mM, 6.35 ± 0.1 mM, 4.79 ± 0.2 mM, and >10 mM, respectively. The oral administration of rosmarinic acid ameliorated redness and scaling on the dorsal skin of imiquimod-induced psoriatic mice in a dose-dependent manner. Rosmarinic acid suppressed the production of IL-23 and IL-17A and the infiltration of granulocyte subsets in skin tissues. Docking analysis showed that rosmarinic acid docked into IL-17A/IL-17RA interaction regions and exhibited hydrogen bonding with Arg-61, Glu-68, Arg-100, and Ser-118 of IL-17A, which are located in the epitope regions recognized by IL-17A neutralizing antibodies Fab6785 and Fab6468. In conclusion, this is the first study reporting that rosmarinic acid is an IL-17A-targeting agent that ameliorates psoriatic skin inflammation in mice via blocking the IL-17A/IL-17RA interaction.


Assuntos
Dermatite , Psoríase , Animais , Cinamatos , Depsídeos , Imiquimode , Inflamação/tratamento farmacológico , Interleucina-17/genética , Interleucina-17/metabolismo , Camundongos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Receptores de Interleucina-17/metabolismo
4.
Int J Mol Sci ; 23(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35682849

RESUMO

(1) Background: Psoriasis is a T helper 1/T helper 17 cells-involved immune-mediated genetic disease. Lithospermic acid, one of the major phenolic acid compounds of Danshen, has antioxidation and anti-inflammation abilities. Due to the inappropriate molecular weight for topical penetration through the stratum corneum, lithospermic acid was loaded into the well-developed microemulsion delivery system for IMQ-induced psoriasis-like dermatitis treatment. (2) Methods: BALB/c mice were administered with topical imiquimod to induce psoriasis-like dermatitis. Skin barrier function, disease severity, histology assessment, autophagy-related protein expression, and skin and spleen cytokine expression were evaluated. (3) Results: The morphology, histopathology, and skin barrier function results showed that 0.1% lithospermic acid treatment ameliorated the IMQ-induced psoriasis-like dermatitis and restored the skin barrier function. The cytokines array results confirmed that 0.1% lithospermic acid treatment inhibited the cutaneous T helper-17/Interleukin-23 axis related cytokines cascades. (4) Conclusions: The results implied that lithospermic acid might represent a possible new therapeutic agent for psoriasis treatment.


Assuntos
Dermatite , Psoríase , Animais , Citocinas/metabolismo , Dermatite/metabolismo , Modelos Animais de Doenças , Imiquimode , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética , Pele/metabolismo
5.
Oxid Med Cell Longev ; 2022: 5800586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720176

RESUMO

Background: Psoriasis is an immune-mediated, chronic inflammatory disease, and genetic, immune, oxidative stress (OS), and environmental factors are all thought to contribute to its occurrence. Proanthocyanidins (PCs) are natural flavonoids consisting of catechins and epicatechins which have anti-inflammatory and anti-OS activities. PCs have been widely used to treat various diseases, but reports regarding psoriasis are rare. Objective: To investigate the therapeutic effect and potential mechanisms of action of PCs in a psoriasis-like mouse model. Methods: Thirty male BALB/c hairless mice were assigned to six groups (n = 5): normal, model, low-dose PCs, medium-dose PCs, high-dose PCs, and control groups. The final five groups were dorsally exposed to 5% imiquimod (IMQ) cream once a day for 6 consecutive days, while the normal group received no intervention. Following the first day of IMQ application, mice in the PC-treated group were dosed with different amounts of PCs daily by oral gavage for six days, whereas mice in the control group received normal saline in the same way. One week later, skin lesions were evaluated by the severity of scoring system based on psoriasis area and severity index (PASI), and pathological alterations were assessed by hematoxylin-eosin (HE) staining. Indicators of inflammation or OS, such as interleukin- (IL-) 17, IL-23, phosphorylated-phosphatidylinositol 3-kinase (p-PI3K), phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), catalase (CAT), vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), reactive oxygen species (ROS), and heme oxygenase-1 (HO-1), were determined by ELISA, RT-PCR, western blot, and immunohistochemistry (IHC) analysis. Results: IMQ administration induced the formation of large dark red plaques with thickly layered scales on the dorsal skin of mice; nevertheless, the lesions were substantially alleviated by PC administration. Histopathological alterations were observed in both model and control groups with epidermal hyperkeratosis, granulosa layer thinning, acanthosis, downward extension of rete ridges, dermal papillae expansion, capillary hyperplasia, and infiltration by inflammatory cells around blood vessels. These pathological changes, however, were restored by a range of doses of PCs, high-dose PCs in particular. Different doses of PCs significantly lowered the spleen index, levels of inflammatory or oxidative proteins (IL-17, IL-23, MDA, ROS, p-PI3K, and p-STAT3), and the mRNA expression of Il-17, Il-23, Vegf, and iNos. Protein and mRNA levels of anti-OS and anti-inflammatory biomarkers, including SOD, CAT, GSH, and HO-1, greatly increased after PC treatment, especially at the highest dose. Conclusions: Our findings reveal that PCs ameliorate psoriasis-like symptoms, suppressing the inflammatory response and mitigating OS damage in an IMQ-induced psoriasis-like mouse model. These effects are probably related to the inactivation of STAT3 and PI3K and activation of HO-1 signaling.


Assuntos
Proantocianidinas , Psoríase , Animais , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucina-23/farmacologia , Interleucina-23/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol 3-Quinases/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacologia , Proantocianidinas/uso terapêutico , Psoríase/tratamento farmacológico , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Pele/patologia , Superóxido Dismutase/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Mol Med Rep ; 26(1)2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35582997

RESUMO

IL­17A, the effector cytokine of T helper (Th) 17 cells, plays a crucial role in the pathogenesis of psoriasis. The Notch1 and PI3K/AKT signaling pathways are implicated in Th17 cell differentiation and IL­17A production. The present study aimed to evaluate the regulatory effect of the Notch1/hairy and enhancer of split 1 (Hes1)­PTEN/AKT/IL­17A feedback loop on Th17 cell differentiation via the PI3K/AKT inhibitor LY294002 in a mouse model of psoriasis. Mice were randomly divided into 3 groups: a control group, a model group [5% imiquimod (IMQ)­induced group] and an intervention group (5% IMQ­induced plus LY294002­treated group). Skin structural characteristics were recorded and evaluated by hematoxylin and eosin staining. The weights of the spleens and inguinal lymph nodes were measured. Th17 cell percentage, as well as the mRNA and protein expression levels of Notch1, Notch1 intracellular domain (NICD1), Hes1, PTEN, AKT, phosphorylated (p)­AKT, mTOR complex 1 (mTORC1), p­mTORC1, S6 kinase (S6K)1, S6K2 and IL­17A were detected in skin samples of the three experimental groups. Additionally, splenic mononuclear cells from model mice were treated by 10 and 50 µM LY294002 to further evaluate its regulatory effect on Notch1/Hes1­PTEN/AKT/IL­17A feedback loop. Increased Th17 cell percentage, increased expression of Notch1, NICD1, Hes1, AKT, p­AKT, mTORC1, p­mTORC1, S6K1, S6K2 and IL­17A, and decreased PTEN levels were observed in model mice alongside marked psoriasis­like skin inflammation, splenomegaly and lymphadenopathy. LY294002 treatment significantly alleviated the severity of psoriasis­like skin inflammation in the intervention mice, attenuated the degree of epidermal hyperplasia and dermal inflammatory cell infiltration, and mitigated splenomegaly and lymphadenopathy. In addition, LY294002 treatment reversed the increased Th17 cell percentage, as well as the increased expression of Notch1, NICD1, Hes1, AKT, p­AKT, mTORC1, p­mTORC1, S6K1, S6K2 and IL­17A, and the decreased expression of PTEN. In vitro study from 5% IMQ­induced mouse splenic mononuclear cells presented that high dose of LY294002 exerted more obviously regulatory effect on Notch1/Hes1­PTEN/AKT/IL­17A feedback loop. The current findings suggested that the Notch1/Hes1­PTEN/AKT/IL­17A feedback loop regulates Th17 cell differentiation within the disease environment of psoriasis. Blocking the Notch1/Hes1­PTEN/AKT/IL­17A feedback loop may thus be a potential therapeutic method for management of psoriatic inflammation.


Assuntos
Dermatite , Linfadenopatia , Psoríase , Animais , Diferenciação Celular , Dermatite/metabolismo , Retroalimentação , Imiquimode/efeitos adversos , Inflamação/patologia , Interleucina-17/metabolismo , Linfadenopatia/metabolismo , Linfadenopatia/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/genética , Pele/patologia , Esplenomegalia/metabolismo , Esplenomegalia/patologia , Células Th17/metabolismo , Fatores de Transcrição HES-1
7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562873

RESUMO

Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) has been used as an adjunct therapy for psoriasis due to its anti-inflammatory properties. Free fatty acid receptor 4 (FFA4 or GPR120) is a receptor-sensing n-3 PUFA. In the present study, we examined whether FFA4 acted as a therapeutic target for n-3 PUFA in psoriasis therapy. Experimentally, psoriasis-like skin lesions were induced by treatment with imiquimod for 6 consecutive days. A selective FFA4 agonist, Compound A (30 mg/kg), was used in FFA4 WT and FFA4 KO mice. Imiquimod-induced psoriasis-like skin lesions, which present as erythematous papules and plaques with silver scaling, as well as markedly elevated IL-17/IL-23 cytokine levels in skin tissues, were significantly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Enlarged lymph nodes and spleens, as well as imiquimod-induced, elevated IL-17/IL-23 cytokine levels, were also strongly suppressed by Compound A in FFA4 WT mice, but not in FFA4 KO mice. Imiquimod-induced increases in the CD4+IL-17A+ T cell population in lymph nodes and spleens were suppressed by Compound A treatment in FFA4 WT mice; however, this was not seen in FFA4 KO mice. Furthermore, compound A suppressed the differentiation of CD4+ naïve T cells from splenocytes into TH17 cells in an FFA4-dependent manner. In conclusion, we demonstrated that the activation of FFA4 ameliorates imiquimod-induced psoriasis, and the suppression of the differentiation of TH17 cells may partly contribute to its efficacy. Therefore, we suggest that FFA4 could be a therapeutic target for psoriasis therapy.


Assuntos
Ácidos Graxos Ômega-3 , Psoríase , Animais , Citocinas/uso terapêutico , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/uso terapêutico , Ácidos Graxos Ômega-3/uso terapêutico , Imiquimode/toxicidade , Interleucina-17/genética , Interleucina-23 , Camundongos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele/patologia
8.
Int Immunopharmacol ; 108: 108851, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35588658

RESUMO

Psoriasis is a chronic inflammatory skin disease, which does not have effective treatment options. However, olive oil has been suggested as an alternative to treat psoriasis, but no study has evaluated the mechanisms involved in the effects of olive oil on psoriasis. Thus, the current study investigated whether olive oil could ameliorate psoriasiform skin inflammation. To test this, mice received topical application of imiquimod to induce inflammation and were treated orally with olive oil. Human immortalized keratinocytes were also treated with imiquimod and olive oil. Epidermal thickness and keratinocyte proliferation were increased in imiquimod-induced lesions of olive-oil-treated animals. In both in vitro and in vivo studies, protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) were elevated following imiquimod and olive oil administration. Inhibition of Nrf2 abolished the increased proliferation of keratinocytes treated with imiquimod and olive oil, demonstrating the role of Nrf2 in olive oil-mediated exacerbation of psoriasiform skin inflammation. In addition, lower levels of linoleic acid and higher levels of oleic acid were observed in imiquimod- and olive-oil-treated animals, which may also contribute to the adverse effects of olive oil on psoriasis. In conclusion, dietary intake of olive oil aggravates the symptoms of psoriatic skin lesions through the overexpression of Nrf2 and an imbalance in oleic and linoleic acids levels, suggesting that a diet rich in olive oil may have significant negative effects on psoriasis.


Assuntos
Dermatite , Dieta , Azeite de Oliva , Psoríase , Dermatopatias , Animais , Dermatite/patologia , Modelos Animais de Doenças , Ácidos Graxos Insaturados/efeitos adversos , Humanos , Imiquimode/farmacologia , Inflamação/metabolismo , Queratinócitos , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Azeite de Oliva/efeitos adversos , Psoríase/patologia , Pele/patologia , Dermatopatias/patologia
9.
Molecules ; 27(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35566346

RESUMO

Psoriasis is reported to be a common chronic immune-mediated skin disease characterized by abnormal keratinocytes and cell proliferation. Perilla leaves are rich in essential oils, fatty acids, and flavonoids, which are recognized for their antioxidant and anti-inflammatory effects. In this study, the alleviating effect of essential oil (PO) extracted from Perilla frutescens stems and leaves on imiquimod (IMQ) -induced psoriasis-like lesions in BALB/c mice were investigated. Results showed that PO ameliorated psoriasis-like lesions in vivo, reduced the expression of lymphocyte antigen 6 complex locus G6D (Ly-6G), which is a marker of neutrophil activation, and inhibited the expression of inflammatory factors interleukin 1 (IL-1), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase 2 (COX2). In addition, PO significantly decreased the expression of cytokines such as IL-6, IL-1, interleukin 23 (IL-23), interleukin 17 (IL-17), and nuclear factor kappa-B (NF-κB). Furthermore, the down-regulation of mRNA levels of psoriasis-related pro-inflammatory cytokines, such as IL-17, interleukin 22 (IL-22), IL-23, interferon-α (IFN-α), and Interferon-γ (IFN-γ) was observed with the treatment of PO. All results show a concentration dependence of PO, with low concentrations showing the best results. These results suggest that PO effectively alleviated psoriasis-like skin lesions and down-regulated inflammatory responses, which indicates that PO could potentially be used for further studies on inflammation-related skin diseases such as psoriasis and for the treatment of psoriasis such as psoriasis natural plant essential oil resources.


Assuntos
Dermatite , Óleos Voláteis , Perilla frutescens , Psoríase , Animais , Citocinas/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Interleucina-1 , Interleucina-17 , Interleucina-23 , Interleucina-6/farmacologia , Queratinócitos , Camundongos , Camundongos Endogâmicos BALB C , Óleos Voláteis/efeitos adversos , Perilla frutescens/metabolismo , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele/metabolismo
10.
Molecules ; 27(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35566373

RESUMO

2-(4-Chlorophenyl)-5-benzoxazoleacetic acid (CBA) and its ester, methyl-2-(4-chloro-phenyl)-5-benzoxazoleacetate (MCBA), were synthesized, and their structures were confirmed by 1HNMR, IR, and mass spectrophotometry. The anti-psoriatic activities of CBA and MCBA were tested using an imiquimod (IMQ)-induced psoriatic mouse model, in which mice were treated both topically (1% w/w) and orally (125 mg/kg) for 14 days. The erythema intensity, thickness, and desquamation of psoriasis were scored by calculating the psoriasis area severity index (PASI). The study also included the determination of histopathological alterations in the skin tissues of treated mice. Topical and oral administration of CBA and MCBA led to a reduction in erythema intensity, thickness, and desquamation, which was demonstrated by a significant decrease in the PASI value. In addition, skin tissues of mice treated with CBA and MCBA showed less evidence of psoriatic alterations, such as hyperkeratosis, parakeratosis, scale crust, edema, psoriasiform, and hyperplasia. After administration of either topical or oral dosing, the anti-psoriatic effects were found to be stronger in MCBA-treated than in CBA-treated mice. These effects were comparable to those produced by Clobetasol propionate, the reference drug. This drug discovery could be translated into a potential new drug for future clinical use in psoriasis treatment.


Assuntos
Benzoxazóis , Psoríase , Animais , Benzoxazóis/farmacologia , Benzoxazóis/uso terapêutico , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Camundongos , Camundongos Endogâmicos CBA , Preparações Farmacêuticas , Psoríase/induzido quimicamente , Pele
11.
J Nanobiotechnology ; 20(1): 228, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568916

RESUMO

Immunotherapeutic interventions represent a promising approach to treating cancer, with strategies such as immune checkpoint blockade (ICB), immunogenic sonodynamic therapy (SDT), and immune adjuvant T cell delivery having exhibited clinical promise. In this report, we describe the use of cancer cell membrane-coated triphenylphosphonium (TPP) decorated nano-metal-organic framework (nMOF) constructs [Zr-TCPP(TPP)/R837@M] that were used to generate homologous, mitochondria-targeted platforms with a high rate of sonosensitizer loading. This construct was utilized to simultaneously promote tumor antigen presentation via enhancing SDT while synergistically promoting dendritic cell (DC) maturation through the delivery of the Toll-like receptor agonist R837. In vitro, these functionalized nMOFs were readily internalized by homologous tumor cells in which they were efficiently targeted to the mitochondria, promoting DC activation through the induction of immunogenic cell death (ICD) following ultrasound exposure. Moreover, this nanoplatform was able to achieve in vivo synergy with anti-CTLA-4 ICB to reverse immunosuppression tumor microenvironment (TME), thus achieving more robust antitumor efficacy capable of suppressing metastatic disease progression and facilitating the development of durable antitumor memory responses. Together, these results highlight a promising approach to achieving enhanced SDT activity while overcoming an immunosuppressive TME, thereby achieving more robust antitumor immunity.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Biomimética , Linhagem Celular Tumoral , Membrana Celular , Imiquimode , Imunoterapia/métodos , Mitocôndrias , Neoplasias/terapia
12.
Zhongguo Zhen Jiu ; 42(5): 541-8, 2022 May 12.
Artigo em Chinês | MEDLINE | ID: mdl-35543945

RESUMO

OBJECTIVE: To observe the effect of fire needling on psoriasis-like lesion and the signal transducer and activator of transcription 3 (STAT3) pathway in mice and compare the therapeutic effect between different interventions of fire needling therapy (surrounding technique of fire needling, fire needling at "Dazhui" [GV 14] and "Zusanli" [ST 36]). METHODS: Thirty male BALB/c mice were randomized into a blank group, a model group, a dexamthasone group, a surrounding technique group and an acupoint group, 6 mice in each one. Except the blank group, the mice in the rest groups were established as psoriasis-like lesion model by topical application with imiquimod cream, once daily, consecutively for 8 days. From day 4 to day 8, in the dexamthasone group, gastric infusion with 0.2 mL dexamthasone was administered, once daily. On day 4, 6 and 8, in the surrounding technique group, fire needling was exerted around the skin lesion; and fire needling was applied to "Dazhui" (GV 14) and "Zusanli" (ST 36) in the acupoint group, once a day. The changes in skin lesion on the dorsal parts of mice were observed in each group to score the psoriasis area and severity index (PASI). Using HE staining, the dermal morphological changes and epidermal thickness were observed in the mice of each group. The positive expression of proliferating cell-associated antigen Ki-67 was determined by immunofluorescence. Immunohistochemistry method was used to determine the expressions of , and T cells of skin tissue in each group. Using real-time PCR, the expressions of interleukin (IL)-17, IL-22, tumor necrosis factor α(TNF-α) mRNA were determined. Western blot method was adopted to determine the protein expressions of STAT3 and p-STAT3 in skin tissue in each group. RESULTS: Compared with the blank group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all increased in the mice of the model group (P<0.01). Except for the erythema scores of the dexamethasone group and the surrounding technique group, the scores of each item and the total scores of PASI, as well as the epidermal thickness were all decreased in each intervention group as compared with the model group (P<0.01). The infiltration scores and the total scores in the dexamethasone group and the acupoint group were lower than those in the surrounding technique group respectively (P<0.01, P<0.05). In comparison with the blank group, Ki-67 positive cell numbers and the numbers of , and T cells in skin tissue were increased in the mice of the model group (P<0.01). Ki-67 positive cell numbers and the numbers of , and T cells were reduced in each intervention group as compared with the model group (P<0.01), and the numbers of and T cells in the acupoint group were less than the surrounding technique group (P<0.01). Compared with the blank group, the mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all increased in the model group (P<0.01). The mRNA expressions of IL-17, IL-22 and TNF-α and the ratio of p-STAT3 to STAT3 were all decreased in each intervention group as compared with the model group (P<0.01, P<0.05). The mRNA expressions of IL-17, IL-22 and TNF-α in the acupoint group, as well as mRNA expression of IL-17 in the surrounding technique group were all lower than the dexamethasone group (P<0.01), while, the mRNA expression of IL-22 in the acupoint group was lower than the surrounding technique group (P<0.01). CONCLUSION: Fire needling therapy improves skin lesion severity in imiquimod induced psoriasis-like lesion of the mice, which is probably related to the inhibition of STAT3 pathway activation and the decrease of Th17 inflammatory factors expression. The systemic regulation of fire needling at "Dazhui" (GV 14) and "Zusanli" (ST 36) is superior to the local treatment.


Assuntos
Interleucina-17 , Psoríase , Animais , Dexametasona/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Imiquimode/efeitos adversos , Imiquimode/metabolismo , Interleucina-17/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , RNA Mensageiro/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Pele/metabolismo , Pele/patologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563616

RESUMO

Psoriasis is a chronic inflammatory disease distinguished by an excessive proliferation and abnormal differentiation of keratinocytes. Immune cells, such as T lymphocytes and neutrophils, and inflammatory cytokines, such as Tumor Necrosis Factor-α (TNF-α) and interleukin 17 (IL-17), are essential for maintaining psoriatic lesions. Additionally, a hypoxic milieu present in the skin promotes the expression of transcriptional factor hypoxia-inducible factor-1 alpha (HIF-1α). This protein regulates the expression of angiogenic and glycolytic factors, such as vascular endothelial grown factor and lactate dehydrogenase (LDH), both relevant in chronic inflammation. The von Hippel-Lindau protein (pVHL) is a negative regulator of HIF-1α. Previously, we found that pVHL was almost absent in the lesions of psoriasis patients; therefore, we investigated the impact of rescue pVHL expression in lesional skin. We used the imiquimod-induced psoriasis-like mouse model as an adenoviral vector that allowed us to express pVHL in the skin. Our data show that, in lesional skin, pVHL expression was reduced, whereas HIF-1α was increased. Remarkably, the retrieval of pVHL prevented psoriatic lesions, diminishing erythema, scale, and epidermal and vascular thickness. Furthermore, pVHL expression was capable of reducing HIF-1α, LDH, TNF-α and immune cell infiltration (mainly IL-17+ neutrophils). In conclusion, our results demonstrate that pVHL has a protective role to play in the pathophysiology of psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Imiquimode/efeitos adversos , Inflamação , Interleucina-17/genética , Camundongos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
14.
Actas Dermosifiliogr ; 113(4): T407-T412, 2022 Apr.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35623739

RESUMO

Topical imiquimod has been used off-label as monotherapy or adjuvant treatment for lentigo maligna. Our aim is to describe treatment modalities, clinical outcomes, and management of recurrence in patients receiving imiquimod for lentigo maligna. Patients from our unit with lentigo maligna or lentigo maligna melanoma treated with imiquimod 5% as monotherapy or in combination with surgery were included in this study. Fourteen cases were recruited (85.7% lentigo maligna and 14.3% lentigo maligna melanoma). Eight patients (57.1%) received imiquimod without surgery, and six (42.9%) underwent narrow excision before beginning treatment. During the follow-up period, pigmentation reappeared in 6 patients (4 postinflammatory hyperpigmentation and 2 relapses). Relapses were managed with very narrow excision (1 mm margin) and retreatment with imiquimod 5%. All imiquimod modalities showed well-tolerated side effects and low recurrence rates, with long periods of follow-up. Imiquimod appears to be a versatile option for treating LM in suitable candidates.


Assuntos
Sarda Melanótica de Hutchinson , Neoplasias Cutâneas , Aminoquinolinas/efeitos adversos , Humanos , Sarda Melanótica de Hutchinson/tratamento farmacológico , Imiquimode/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Cutâneas/terapia
15.
Cell Immunol ; 376: 104531, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35576719

RESUMO

Psoriasis is a chronic dermal inflammatory disease with a world-wide prevalence in which different immune/non-immune cells, e.g. T cells, macrophages, neutrophils, and keratinocytes play a decisive role. These immune cells interact among themselves by releasing multiple mediators which eventually cause characteristic psoriatic plaques in the skin. T cells are reported to be significant contributors to psoriatic inflammation through release of multiple cytokines which are controlled by several kinases, one of them being Lymphocyte-specific protein tyrosine kinase (Lck). Lck has been reported to be crucial for expression/production of several key inflammatory cytokines though modulation of several other kinases/transcription factors in T cells. Therefore, in this investigation, effect of Lck inhibitor, A-770041 was examined on PLCγ, p38MAPK, NFATc1, NFkB and STAT3, TNF-α, IFN-γ, Foxp3, IL-17A, in CD4+ T cells in imiquimod (IMQ)-induced psoriatic inflammation in mice. Results from the present study exhibit that p-Lck expression is enhanced in CD4+ T cells of IMQ-treated mice which is concomitant with enhanced clinical features of psoriatic inflammation (ear/back skin thickness, MPO activity, acanthosis/leukocytic infiltration) and molecular parameters (enhanced expression of p-Lck, p-PLCγ, p-p38-MAPK, NFATc1, p-NFkB, TNF-α, IFN-γ, p-STAT3, and IL-17A in CD4+ T cells). Inhibition of Lck signaling led to amelioration of clinical features of psoriasis through attenuation of Th1/Th17 immune responses and upregulation of Treg cells in IMQ-treated mice. In summary, current investigations reveal that Lck signaling is a crucial executor of inflammatory signaling in CD4+ T cells in the context of psoriatic inflammation. Therefore, Lck inhibition may be pursued as an effective strategy to counteract psoriatic inflammation.


Assuntos
Linfócitos T CD4-Positivos , Interleucina-17 , Psoríase , Pirazóis , Pirimidinas , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/farmacologia , Animais , Linfócitos T CD4-Positivos/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Interleucina-17/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/antagonistas & inibidores , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/biossíntese , Camundongos , Psoríase/tratamento farmacológico , Psoríase/imunologia , Pirazóis/imunologia , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/imunologia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pele/efeitos dos fármacos , Pele/imunologia , Fator de Necrose Tumoral alfa/imunologia
17.
Int J Pharm ; 622: 121873, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35640806

RESUMO

Apremilast is 'difficult-to-deliver' in stratum corneum and viable layers (viable epidermis, dermis) owing to its modest lipophilicity and poor aqueous solubility, respectively. The objective of the present research was to develop apremilast nanocrystal-based gel for enhanced anti-psoriatic efficacy for the treatment of psoriasis. Nanosuspension was generated by wet media milling with a mean particle size of 200 nm. In-vivoefficacy of nanocrystal-based gels was evaluated in the imiquimod-induced psoriatic plaque model. Nanocrystal-based gel (1% and 3% w/w) improved phenotypic, histopathological features of psoriatic skin and attenuated splenic hypertrophy, psoriasis area severity scoring. Enzyme-linked immunosorbent assay was performed to evaluate levels of psoriatic biochemical markers indicating a significant decrease in the concentration of cytokines such as IL-23, IL-17A, IL-6 and TNF-α by nanocrystal-based gels (1% and 3% w/w) over disease induced group. Skin irritation study revealed that nanocrystal-based gel was significantly less irritating than the positive control. These results suggest that nanocrystal-based gel of apremilast can be an effective strategy for the management of psoriasis.


Assuntos
Nanopartículas , Psoríase , Animais , Modelos Animais de Doenças , Géis/farmacologia , Imiquimode/farmacologia , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Pele , Talidomida/análogos & derivados
18.
J Nanobiotechnology ; 20(1): 181, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35392911

RESUMO

Cancer immunotherapy is limited by the immune escape of tumor cells and adverse effects. Photo-immunotherapy, the combination of immunotherapy and phototherapy (such as photodynamic therapy (PDT) and photothermal therapy (PTT)), can improve the effectiveness of immunotherapy in cancer treatment. Here, we first explored mesoporous hexagonal core-shell zinc porphyrin-silica nanoparticles (MPSNs), which are composed of a zinc porphyrin core and a mesoporous silica shell, and exhibit high laser-triggered photodynamic and photothermal activity, as well as outstanding drug loading capacity. In other words, MPSNs can be used not only as excellent photosensitizers for photo-immunotherapy, but also as an ideal drug carrier to achieve more efficient synergy. After loading with R837 (imiquimod, a toll-like receptor-7 agonist), MPSNs@R837 will elicit high-efficiency immunogenic cell death via PDT and PTT, and promote dendritic cell maturation after the PH-responsive release of R837, thereby, inducing tumor-specific immune responses. When combined with a programmed death ligand-1 checkpoint blockade, the photo-immunotherapy system markedly restrains primary tumors and metastatic tumors with negligible systemic toxicity. Therefore, the therapeutic strategy of integrating PTT, PDT and checkpoint blockade, shows great potential for suppressing cancer metastasis.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Imiquimode , Imunoterapia , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fototerapia , Dióxido de Silício
19.
Front Immunol ; 13: 764557, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371102

RESUMO

Mounting evidence indicates the importance of aberrant Toll-like receptor 7 (TLR7) signaling in the pathogenesis of systemic lupus erythematosus (SLE). However, the mechanism of disease progression remains unclear. An imiquimod (IMQ)-induced lupus model was used to analyze the lupus mechanism related to the aberrant TLR7 signals. C57BL/6 mice and NZB/NZW mice were treated with topical IMQ, and peripheral blood, draining lymph nodes, and kidneys were analyzed focusing on monocytes and monocyte-related cells. Monocytes expressed intermediate to high levels of TLR7, and the long-term application of IMQ increased Ly6Clo monocytes in the peripheral blood and Ly6Clo monocyte-like cells in the lymph nodes and kidneys, whereas Ly6Chi monocyte-like cell numbers were increased in lymph nodes. Ly6Clo monocyte-like cells in the kidneys of IMQ-induced lupus mice were supplied by bone marrow-derived cells as demonstrated using a bone marrow chimera. Ly6Clo monocytes obtained from IMQ-induced lupus mice had upregulated adhesion molecule-related genes, and after adoptive transfer, they showed greater infiltration into the kidneys compared with controls. RNA-seq and post hoc PCR analyses revealed Ly6Clo monocyte-like cells in the kidneys of IMQ-induced lupus mice had upregulated macrophage-related genes compared with peripheral blood Ly6Clo monocytes and downregulated genes compared with kidney macrophages (MF). Ly6Clo monocyte-like cells in the kidneys upregulated Il6 and chemoattracting genes including Ccl5 and Cxcl13. The higher expression of Il6 in Ly6Clo monocyte-like cells compared with MF suggested these cells were more inflammatory than MF. However, MF in IMQ-induced lupus mice were characterized by their high expression of Cxcl13. Genes of proinflammatory cytokines in Ly6Chi and Ly6Clo monocytes were upregulated by stimulation with IMQ but only Ly6Chi monocytes upregulated IFN-α genes upon stimulation with 2'3'-cyclic-GMP-AMP, an agonist of stimulator of interferon genes. Ly6Chi and Ly6Clo monocytes in IMQ-induced lupus mice had different features. Ly6Chi monocytes responded in the lymph nodes of locally stimulated sites and had a higher expression of IFN-α upon stimulation, whereas Ly6Clo monocytes were induced slowly and tended to infiltrate into the kidneys. Infiltrated monocytes in the kidneys likely followed a trajectory through inflammatory monocyte-like cells to MF, which were then involved in the development of nephritis.


Assuntos
Monócitos , Receptor 7 Toll-Like , Animais , Contagem de Células , Imiquimode , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NZB , Monócitos/metabolismo , Receptor 7 Toll-Like/metabolismo
20.
Front Immunol ; 13: 799919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432331

RESUMO

Tγδ17 cells have emerged as a key population in the development of inflammatory and autoimmune conditions such as psoriasis. Thus, the therapeutic intervention of Tγδ17 cells can exert protective effects in this type of pathologies. Tγδ cells commit to IL-17 production during thymus development, and upon immune challenge, additional extrathymic signals induce the differentiation of uncommitted Tγδ cells into Tγδ17 effector cells. Despite the interest in Tγδ17 cells during the past 20 years, the role of TCR signaling in the generation and function of Tγδ17 cells has not been completely elucidated. While some studies point to the notion that Tγδ17 differentiation requires weak or no TCR signaling, other works suggest that Tγδ17 require the participation of specific kinases and adaptor molecules downstream of the TCR. Here we have examined the differentiation and pathogenic function of Tγδ17 cells in "knockin" mice bearing conservative mutations in the CD3ε polyproline rich sequence (KI-PRS) with attenuated TCR signaling due to lack of binding of the essential adaptor Nck. KI-PRS mice presented decreased frequency and numbers of Tγδ17 cells in adult thymus and lymph nodes. In the Imiquimod model of skin inflammation, KI-PRS presented attenuated skin inflammation parameters compared to wild-type littermates. Moreover, the generation, expansion and effector function Tγδ17 cells were impaired in KI-PRS mice upon Imiquimod challenge. Thus, we conclude that an intact CD3ε-PRS sequence is required for optimal differentiation and pathogenic function of Tγδ17 cells. These data open new opportunities for therapeutic targeting of specific TCR downstream effectors for treatment of Tγδ17-mediated diseases.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Imiquimode , Inflamação/metabolismo , Camundongos , Mutação , Peptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...