Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34445455

RESUMO

Glycerol is used in many skin care products because it improves skin function. Anecdotal reports by patients on the National Psoriasis Foundation website also suggest that glycerol may be helpful for the treatment of psoriasis, although to date no experimental data confirm this idea. Glycerol entry into epidermal keratinocytes is facilitated by aquaglyceroporins like aquaporin-3 (AQP3), and its conversion to phosphatidylglycerol, a lipid messenger that promotes keratinocyte differentiation, requires the lipid-metabolizing enzyme phospholipase-D2 (PLD2). To evaluate whether glycerol inhibits inflammation and psoriasiform lesion development in the imiquimod (IMQ)-induced mouse model of psoriasis, glycerol's effect on psoriasiform skin lesions was determined in IMQ-treated wild-type and PLD2 knockout mice, with glycerol provided either in drinking water or applied topically. Psoriasis area and severity index, ear thickness and ear biopsy weight, epidermal thickness, and inflammatory markers were quantified. Topical and oral glycerol ameliorated psoriasiform lesion development in wild-type mice. Topical glycerol appeared to act as an emollient to induce beneficial effects, since even in PLD2 knockout mice topical glycerol application improved skin lesions. In contrast, the beneficial effects of oral glycerol required PLD2, with no improvement in psoriasiform lesions observed in PLD2 knockout mice. Our findings suggest that the ability of oral glycerol to improve psoriasiform lesions requires its PLD2-mediated conversion to phosphatidylglycerol, consistent with our previous report that phosphatidylglycerol itself improves psoriasiform lesions in this model. Our data also support anecdotal evidence that glycerol can ameliorate psoriasis symptoms and therefore might be a useful therapy alone or in conjunction with other treatments.


Assuntos
Glicerol/farmacologia , Imiquimode/efeitos adversos , Psoríase/tratamento farmacológico , Pele/metabolismo , Animais , Aquaporina 3/genética , Aquaporina 3/metabolismo , Modelos Animais de Doenças , Humanos , Imiquimode/farmacologia , Camundongos , Camundongos Knockout , Fosfolipase D/deficiência , Fosfolipase D/metabolismo , Psoríase/induzido quimicamente , Psoríase/genética , Psoríase/metabolismo
2.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281197

RESUMO

Psoriasis, a long-lasting and multifactorial skin disease, is related to comorbidities such as metabolic disease, depression, and psoriatic arthritis. Psoriasis occurs due to a variety of factors including keratinocyte hyperproliferation, inflammation, and abnormal differentiation. Proinflammatory cytokines upregulated by increased activation of keratinocytes and immune cells in the skin trigger progression of psoriasis. This study aimed to investigate the effects of anoctamin1 (ANO1) on psoriasis development in vitro and in vivo. We analyzed the proliferation of HaCaT keratinocytes and ANO1-related ERK and AKT signaling pathways after ANO1 inhibitor (T16Ainh-A01 and Ani9) treatment and knock-down of ANO1. Furthermore, after applying imiquimod (IMQ) cream or coapplying IMQ cream and T16Ainh-A01 on mouse ears, we not only observed psoriatic symptoms, including ear thickening, but also quantified the effects of treatment on ERK and AKT signaling-involved proteins and proinflammatory cytokines. Inhibition of ANO1 attenuated the proliferation of HaCaT cells and induced reduction of pERK1/2. Coapplication of IMQ and T16Ainh-A01 on ears of mice reduced not only symptoms of IMQ-induced psoriasis such as thickening and erythema, but also expression of ANO1 and pERK1/2 compared to that of application of IMQ alone. In addition, the expression levels of IL-17A, IL-17F, IL-22, IL-23, IL-6, IL-1ß, and TNF-α increased after applying IMQ and were significantly reduced by coapplying IMQ and T16Ainh-A01. These results aid in understanding the underlying mechanisms of ANO1 in epidermal layer keratinocyte hyperproliferation and suggest the potential of ANO1 as a target to treat psoriasis.


Assuntos
Anoctamina-1/farmacologia , Queratinócitos/efeitos dos fármacos , Psoríase/induzido quimicamente , Acetamidas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HaCaT , Humanos , Hidrazonas/farmacologia , Imiquimode/efeitos adversos , Imiquimode/farmacologia , Inflamação/metabolismo , Inflamação/patologia , Interleucinas/metabolismo , Queratinócitos/metabolismo , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Psoríase/metabolismo , Psoríase/patologia , Pirimidinas/farmacologia , Tiazóis/farmacologia
3.
J Neuroimmunol ; 357: 577620, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34062352

RESUMO

Neuropsychiatric systemic lupus erythematosus (NPSLE) is the most serious and complicated clinical manifestation of lupus erythematosus. Cognitive dysfunction is the most common symptom of NPSLE. A variety of potential mechanisms or mediators related to the pathogenesis of NPSLE cognitive dysfunction have been proposed. However, the involvement of microglia CD40 has not been reported yet. This study aimed to investigate whether hippocampal microglia CD40 of MRL/MpJ-Faslpr (MRL/lpr) mice was involved in NPSLE cognitive dysfunction. This study found, using quantitative polymerase chain reaction, western blotting and immunohistochemistry, that hippocampal CD40 was aberrantly overexpressed in the MRL/lpr lupus mice. It also determined using flow cytometry and immunofluorescence that the aberrantly overexpressed CD40 was mainly derived from hippocampal microglia. The adeno-associated virus was used to inhibit microglia CD40 expression, and the brain damage and cognitive dysfunction of MRL/lpr mice improved. Also, imiquimod (IMQ)-induced lupus mice had the same NPSLE cognitive dysfunction, brain damage, and overexpressed hippocampal microglia CD40 as MRL/lpr mice. Therefore, IMQ-induced lupus mouse was proposed as one of the mouse models for studying NPSLE cognitive dysfunction for the first time in this study. The findings indicated that hippocampal microglia CD40 was involved in the development of NPSLE cognitive dysfunction, thus providing a novel research direction for the study of the pathogenesis of NPSLE.


Assuntos
Antígenos CD40/metabolismo , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo , Microglia/metabolismo , Animais , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Imiquimode/farmacologia , Indutores de Interferon/farmacologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/complicações , Camundongos , Camundongos Endogâmicos MRL lpr
4.
Mol Immunol ; 136: 45-54, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34082258

RESUMO

Toll-like receptor 8 (TLR8), as an important innate immune receptor, can recognize specific ligands, activate intracellular signaling and produce an inflammatory response to kill and eliminate pathogenic microorganisms. Recent studies have resolved the crystal structure of human TLR8 (hTLR8) and two types of ligand binding sites were identified. Among the conserved binding site 1 of hTLR8, the residues interacting with imidazoquinoline derivatives (IQDs) were determined. We previously showed that porcine TLR8 (pTLR8) exhibited species specificity for recognition of the hTLR7 agonist imiquimod (R837). Given the species specificity, the pTLR8 residues interacting with IQDs may be different from hTLR8 counterparts. The present study was aimed to identify the pTLR8 residues interacting with small molecular IQDs. Via molecular docking, the pTLR8 residues interacting with R837 and R848 were predicted. The corresponding mutants were tested for pTLR8 signaling in response to IQDs R837, R848 and CL075, and the results showed that five of nine predicted residues (Y336, K341, K342, F395 and G562) are critical for pTLR8 signaling and these residues are partially different from those reported in hTLR8. Further, we found that the pTLR8 GQKNG motif corresponding to hTLR8 RQSYA exhibited disparity to CL075 stimulation. Our study thus reveals fine TLR8 species specificity which deepens the understanding of TLR8 activation mechanism.


Assuntos
Imidazóis/metabolismo , Quinolinas/metabolismo , Receptor 8 Toll-Like/metabolismo , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Imiquimode/farmacologia , Imunidade Inata/imunologia , Conformação Molecular , Simulação de Acoplamento Molecular , Domínios Proteicos/imunologia , Transdução de Sinais/genética , Especificidade da Espécie , Suínos , Receptor 8 Toll-Like/genética
5.
ACS Appl Mater Interfaces ; 13(20): 23469-23480, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33999610

RESUMO

Although photothermal therapy (PTT) has great potential for tumor inhibition, this single mode of action frequently encounters recurrence and metastasis, highlighting the urgent need for developing combination therapy. Inspired by established evidence that PTT could induce efficient immunogenic cell death (ICD), we here developed a versatile biomimetic nanoplatform (denoted as AuDRM) for the synergism of photothermal/starvation/immunotherapy against cancer. Specifically, dendritic mesoporous silica nanoparticles (NPs) were successfully constructed followed by the in situ synthesis of Au NPs in the mesopores. Afterward, a hybrid membrane was coated to facilitate the loading of R837. Upon efficient accumulation in the tumor tissue by homotypic targeting, the pH-sensitive membrane could be jettisoned to ensure the exposure of Au NPs for starvation therapy and the effective release of the immunostimulator R837 for enhancement of immunotherapy. Except for the PTT-mediated tumor ablation, the induction of ICD coupled with the release of tumor antigens could work synergistically with the immunostimulator R837 for inhibiting the primary tumor as well as the metastasis and induce a long-term immune memory effect for tumor inhibition via a vaccine-like function. Thus, this study paves the way for high-performance tumor ablation by the synergism of photothermal/starvation/immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Membranas Artificiais , Nanopartículas Metálicas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Materiais Biomiméticos/química , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Imiquimode/química , Imiquimode/farmacocinética , Imiquimode/farmacologia , Imunoterapia , Nanopartículas Metálicas/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Immunol ; 12: 635018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936047

RESUMO

Objective: Bacterial and viral infectious triggers are linked to spondyloarthritis (SpA) including psoriatic arthritis (PsA) development, likely via dendritic cell activation. We investigated spinal entheseal plasmacytoid dendritic cells (pDCs) toll-like receptor (TLR)-7 and 9 activation and therapeutic modulation, including JAK inhibition. We also investigated if COVID-19 infection, a potent TLR-7 stimulator triggered PsA flares. Methods: Normal entheseal pDCs were characterized and stimulated with imiquimod and CpG oligodeoxynucleotides (ODN) to evaluate TNF and IFNα production. NanoString gene expression assay of total pDCs RNA was performed pre- and post- ODN stimulation. Pharmacological inhibition of induced IFNα protein was performed with Tofacitinib and PDE4 inhibition. The impact of SARS-CoV2 viral infection on PsA flares was evaluated. Results: CD45+HLA-DR+CD123+CD303+CD11c- entheseal pDCs were more numerous than blood pDCs (1.9 ± 0.8% vs 0.2 ± 0.07% of CD45+ cells, p=0.008) and showed inducible IFNα and TNF protein following ODN/imiquimod stimulation and were the sole entheseal IFNα producers. NanoString data identified 11 significantly upregulated differentially expressed genes (DEGs) including TNF in stimulated pDCs. Canonical pathway analysis revealed activation of dendritic cell maturation, NF-κB signaling, toll-like receptor signaling and JAK/STAT signaling pathways following ODN stimulation. Both tofacitinib and PDE4i strongly attenuated ODN induced IFNα. DAPSA scores elevations occurred in 18 PsA cases with SARS-CoV2 infection (9.7 ± 4 pre-infection and 35.3 ± 7.5 during infection). Conclusion: Entheseal pDCs link microbes to TNF/IFNα production. SARS-CoV-2 infection is associated with PsA Flares and JAK inhibition suppressed activated entheseal plasmacytoid dendritic Type-1 interferon responses as pointers towards a novel mechanism of PsA and SpA-related arthropathy.


Assuntos
Artrite Psoriásica/complicações , COVID-19/complicações , Células Dendríticas/metabolismo , Interferon-alfa/metabolismo , Janus Quinases/antagonistas & inibidores , Adjuvantes Imunológicos/farmacologia , Adulto , Idoso , COVID-19/genética , COVID-19/metabolismo , Biologia Computacional , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células Dendríticas/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Imiquimode/farmacologia , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Oligonucleotídeos/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo
7.
Front Immunol ; 12: 636427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897689

RESUMO

Macrophage activation and osteoclastogenesis are hallmarks of inflammatory osteolysis and may be targeted by the local application of liquid platelet-rich fibrin (PRF). Liquid PRF is produced by a hard spin of blood in the absence of clot activators and anticoagulants, thereby generating an upper platelet-poor plasma (PPP) layer, a cell-rich buffy coat layer (BC; termed concentrated-PRF or C-PRF), and the remaining red clot (RC) layer. Heating PPP has been shown to generate an albumin gel (Alb-gel) that when mixed back with C-PRF generates Alb-PRF having extended working properties when implanted in vivo. Evidence has demonstrated that traditional solid PRF holds a potent anti-inflammatory capacity and reduces osteoclastogenesis. Whether liquid PRF is capable of also suppressing an inflammatory response and the formation of osteoclasts remains open. In the present study, RAW 264.7 and primary macrophages were exposed to lipopolysaccharides (LPS), lactoferrin, and agonists of Toll-like receptors (TLR3 and TLR7) in the presence or absence of lysates prepared by freeze-thawing of liquid PPP, BC, Alb-gel, and RC. For osteoclastogenesis, primary macrophages were exposed to receptor activator of nuclear factor kappa B ligand (RANKL), macrophage colony-stimulating factor (M-CSF), and human transforming growth factor-ß1 (TGF-ß1) in the presence or absence of PPP, BC, Alb-gel, RC lysates and hemoglobin. We show here that it is mainly the lysates prepared from PPP and BC that consistently reduced the agonist-induced expression of interleukin 6 (IL6) and cyclooxygenase-2 (COX2) in macrophages, as determined by RT-PCR and immunoassay. With respect to osteoclastogenesis, lysates from PPP and BC but also from RC, similar to hemoglobin, reduced the expression of osteoclast marker genes tartrate-resistant acid phosphatase (TRAP) and cathepsin K, as well as TRAP histochemical staining. These findings suggest that liquid PRF holds a potent in vitro heat-sensitive anti-inflammatory activity in macrophages that goes along with an inhibition of osteoclastogenesis.


Assuntos
Inflamação/prevenção & controle , Ativação de Macrófagos , Macrófagos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Plasma Rico em Plaquetas/metabolismo , Animais , Imiquimode/farmacologia , Inflamação/sangue , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Lactoferrina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/imunologia , Osteogênese/efeitos dos fármacos , Fenótipo , Poli I-C/farmacologia , Células RAW 264.7 , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo
8.
Front Immunol ; 12: 629917, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767699

RESUMO

Toxoplasma gondii is a prevalent parasite of medical and veterinary importance. Tachyzoïtes and bradyzoïtes are responsible for acute and chronic toxoplasmosis (AT and CT), respectively. In immunocompetent hosts, AT evolves into a persistent CT, which can reactivate in immunocompromised patients with dire consequences. Imiquimod is an efficient immunomodulatory drug against certain viral and parasitic infections. In vivo, treatment with Imiquimod, throughout AT, reduces the number of brain cysts while rendering the remaining cysts un-infectious. Post-establishment of CT, Imiquimod significantly reduces the number of brain cysts, leading to a delay or abortion of reactivation. At the molecular level, Imiquimod upregulates the expression of Toll-like receptors 7, 11, and 12, following interconversion from bradyzoïtes to tachyzoïtes. Consequently, MyD88 pathway is activated, resulting in the induction of the immune response to control reactivated Toxoplasma foci. This study positions Imiquimod as a potent drug against toxoplasmosis and elucidates its mechanism of action particularly against chronic toxoplasmosis, which is the most prevalent form of the disease.


Assuntos
Imiquimode/farmacologia , Fator 88 de Diferenciação Mieloide/fisiologia , Receptores Toll-Like/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Animais , Encéfalo/parasitologia , Células Cultivadas , Feminino , Humanos , Imiquimode/uso terapêutico , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/fisiologia , Toxoplasma/efeitos dos fármacos , Toxoplasmose/imunologia
9.
Commun Biol ; 4(1): 276, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658617

RESUMO

In this work, we are reporting that "Shock and Kill", a therapeutic approach designed to eliminate latent HIV from cell reservoirs, is extrapolatable to cancer therapy. This is based on the observation that malignant cells express a spectrum of human endogenous retroviral elements (HERVs) which can be transcriptionally boosted by HDAC inhibitors. The endoretroviral gene HERV-V2 codes for an envelope protein, which resembles syncytins. It is significantly overexpressed upon exposure to HDAC inhibitors and can be effectively targeted by simultaneous application of TLR7/8 agonists, triggering intrinsic apoptosis. We demonstrated that this synergistic cytotoxic effect was accompanied by the functional disruption of the TLR7/8-NFκB, Akt/PKB, and Ras-MEK-ERK signalling pathways. CRISPR/Cas9 ablation of TLR7 and HERV-V1/V2 curtailed apoptosis significantly, proving the pivotal role of these elements in driving cell death. The effectiveness of this new approach was confirmed in ovarian tumour xenograft studies, revealing a promising avenue for future cancer therapies.


Assuntos
Adjuvantes Imunológicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Retrovirus Endógenos/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptor 7 Toll-Like/agonistas , Ativação Viral/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Depsipeptídeos/farmacologia , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Feminino , Humanos , Imiquimode/farmacologia , Imunidade Inata/efeitos dos fármacos , Camundongos Nus , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/virologia , Pteridinas/farmacologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Células Tumorais Cultivadas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vorinostat/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 22(1)2020 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-33375467

RESUMO

Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.


Assuntos
Carcinoma de Células Escamosas/imunologia , Imiquimode/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Melanoma/imunologia , Tumores Neuroendócrinos/imunologia , Doença de Paget Extramamária/imunologia , Neoplasias Vulvares/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/uso terapêutico , Alphapapillomavirus/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Feminino , Humanos , Imiquimode/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Tumores Neuroendócrinos/tratamento farmacológico , Tumores Neuroendócrinos/patologia , Doença de Paget Extramamária/tratamento farmacológico , Doença de Paget Extramamária/patologia , Prognóstico , Neoplasias Vulvares/tratamento farmacológico , Neoplasias Vulvares/patologia , Neoplasias Vulvares/virologia
11.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202847

RESUMO

Emerging evidence has demonstrated that Toll-like receptors (TLRs) are associated with autoimmune diseases. In this study, we investigated the role of TLR2 in psoriasis using imiquimod-induced psoriasis-like dermatitis. Although TLR2 signaling is known to play a critical role in the induction of proinflammatory cytokines by immune cells, such as dendritic cells (DCs), macrophages, and monocytes, TLR2 deficiency unexpectedly exacerbated psoriasiform skin inflammation. Importantly, messenger RNA (mRNA) levels of Foxp-3 and IL-10 in the lesional skin were significantly decreased in TLR2 KO mice compared with wild-type mice. Furthermore, flow cytometric analysis of the lymph nodes revealed that the frequency of regulatory T cells (Tregs) among CD4-positive cells was decreased. Notably, stimulation with Pam3CSK4 (TLR2/1 ligand) or Pam2CSK4 (TLR2/6 ligand) increased IL-10 production from Tregs and DCs and the proliferation of Tregs. Finally, adoptive transfer of Tregs from wild-type mice reduced imiquimod-induced skin inflammation in TLR2 KO mice. Taken together, our results suggest that TLR2 signaling directly enhances Treg proliferation and IL-10 production by Tregs and DCs, suppressing imiquimod-induced psoriasis-like skin inflammation. Enhancement of TLR2 signaling may be a new therapeutic strategy for psoriasis.


Assuntos
Imiquimode/efeitos adversos , Interleucina-10 , Psoríase , Pele , Linfócitos T Reguladores , Receptor 2 Toll-Like/deficiência , Animais , Imiquimode/farmacologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Interleucina-10/imunologia , Camundongos , Camundongos Knockout , Psoríase/induzido quimicamente , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia , Pele/imunologia , Pele/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Receptor 2 Toll-Like/imunologia
12.
Biochem Pharmacol ; 182: 114206, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32828805

RESUMO

The Toll-like receptor 7 (TLR7) agonist imiquimod is an antitumor and antiviral drug used for the treatment of skin indications such as basal cell carcinoma, squamous cell carcinoma, and genital warts caused by the human papilloma virus. We show that imiquimod has TLR7-independent activity in which it directly inhibits phosphodiesterase (PDE), leading to cAMP increase, PKA-mediated CREB phosphorylation and subsequent CRE-dependent reporter transcription. The activation of the cAMP pathway by imiquimod is synergistically amplified by the ß-adrenergic receptor agonist, isoproterenol. PDE inhibition is implied from cAMP measurements and CRE-reporter assays in intact RAW264.7 macrophages and HEK293T cells, and also directly demonstrated in-vitro using macrophages lysate. Moreover, molecular docking simulated the binding of imiquimod in the active site of PDE4B, enabled by the high molecular similarity between imiquimod and the adenine moiety of cAMP. As expected from the known anti-inflammatory role of cAMP inducers in stimulated macrophages, PDE inhibition by imiquimod results in reduced expression of the key pro-inflammatory cytokine TNFα, and enhanced expression of the key anti-inflammatory cytokine IL-10, compared to a different TLR7 agonist, loxoribine, as well as to the TLR4 agonist LPS. To conclude, our results indicate that the widely used inflammatory drug, imiquimod, is not only a TLR7 agonist, but also harbors a novel anti-inflammatory function as a PDE inhibitor. This off-target affects the desired therapeutic inflammatory activity of imiquimod and may be accountable for adverse side effects.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Imiquimode/farmacologia , Mediadores da Inflamação/antagonistas & inibidores , Inibidores de Fosfodiesterase/farmacologia , Receptor 7 Toll-Like/agonistas , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Células RAW 264.7 , Receptor 7 Toll-Like/metabolismo
13.
ACS Appl Mater Interfaces ; 12(36): 40002-40012, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805869

RESUMO

Although immunotherapy has merged as an ideal cancer therapeutic strategy for preventing tumor growth and recurrence, effective approaches to treat immunologically cold tumors are still lacking. Herein, we reported a practical and extendable nanoplatform (HA/ZIF-8@ICG@IMQ) that facilely integrated various therapeutics and functions for boosting host antitumor immunity to treat immunologically cold tumors. The tumor-targeted and microenvironment-responsive HA/ZIF-8@ICG@IMQ facilitated the tumor-specific accumulation and release of photothermal agents and immune adjuvants. With near-infrared irradiation, the designed nanoparticles effectively enhanced the infiltration of cytotoxic T lymphocytes and helper T cells and effectively blocked the growth of primary and distant tumors. Moreover, the smart therapeutic could effectively prevent tumor rechallenge and recurrence with a long-term host immunological memory response. This method shows an effective immunologically cold tumor treatment using extendable nanotherapeutics and may have reference significance for clinical cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/terapia , Imunoterapia , Nanopartículas/química , Fototerapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Imiquimode/química , Imiquimode/farmacologia , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Camundongos , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Zeolitas/química , Zeolitas/farmacologia
14.
Gene ; 760: 145003, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32739587

RESUMO

Imiquimod (IMQ) is approved as a first-line treatment for genital warts caused by human papillomavirus (HPV) infection. However, the recurrence rate is very high. HPV E7 protein plays a critical role in HPV immune escape. However, the role of HPV11 E7 protein in genital warts recurrence during IMQ treatment is not clear. Here, we found that the expression profile of NHEK cells was obviously changed after IMQ treatment, and a large number of genes encoding cytokines and genes involved in cytokine-mediated signaling pathways and cellular metabolic signaling pathways were up- or downregulated. HPV11E7 overexpression inhibited the IMQ-induced production of of multiple chemokines and colony-stimulating factors in NHEK cells. Furthermore, we found that HPV11E7 could impair the activation of mitogen-activated protein kinase (MAPK) signaling pathway. Therefore, our results suggested that HPV11 E7 diminishes the production of chemokines, colony-stimulating factors and other cytokines via inhibition of the MAPK signaling pathway, which suppresses the therapeutic effect of IMQ and promotes the recurrence of diseases, such as condyloma acuminatum.


Assuntos
Imiquimode/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Quimiocinas/biossíntese , Quimiocinas/genética , Quimiocinas/metabolismo , Fatores Estimuladores de Colônias/biossíntese , Fatores Estimuladores de Colônias/metabolismo , Citocinas/metabolismo , Expressão Gênica/efeitos dos fármacos , Papillomavirus Humano 11/metabolismo , Humanos , Imiquimode/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
Toxicol Appl Pharmacol ; 405: 115209, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835761

RESUMO

In this work, we aimed to investigate whether oxymatrine exerts its anti-pruritic and anti-inflammatory efficacy in the imiquimod-induced psoriasis mice and the related mechanism. We established the psoriasis model by applying the imiquimod ointment topically and oxymatrine was injected intraperitoneally as the treatment. The behavior and skin morphology results indicated that oxymatrine inhibits imiquimod-induced pruritus alleviating keratinization of skin and inflammatory infiltration. Moreover, we examined the expression of various indicators and found heat shock protein (HSP) 90 and 60 upregulated in model group, which were reversed in oxymatrine treated groups. Molecular docking and the studies in vivo confirmed that HSP90 and HSP60 participate in the inhibitory effect of oxymatrine on the phenotypes of psoriasis mice. Mechanically, immunofluorescence staining demonstrated that oxymatrine-induced downregulation of HSP90 and HSP60 was mainly in keratinocytes. In vitro results showed that oxymatrine decreases the expression of HSP90 and HSP60 upregulated by TNF-α and IFN-γ in HaCaTs cells and the siRNA mediated HSP90 and HSP60 silencing reverses inflammation inhibited by oxymatrine. Taken together, these results indicate that oxymatrine relieves psoriasis pruritic and inflammation by inhibiting the expression of HSP90 and HSP60 in keratinocytes through MAPK signaling pathway.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Chaperonina 60/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Queratinócitos/efeitos dos fármacos , Psoríase/tratamento farmacológico , Quinolizinas/farmacologia , Animais , Chaperonina 60/genética , Modelos Animais de Doenças , Regulação para Baixo , Proteínas de Choque Térmico HSP90/genética , Células HaCaT , Humanos , Imiquimode/farmacologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica , Prurido/tratamento farmacológico , Prurido/metabolismo , Psoríase/imunologia , Psoríase/metabolismo , Psoríase/patologia
16.
J Am Chem Soc ; 142(29): 12579-12584, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32658476

RESUMO

Nanoscale metal-organic frameworks (nMOFs) are excellent radiosensitizers for radiotherapy-radiodynamic therapy (RT-RDT). Herein, we report surface modification of a Hf-DBP nMOF for the co-delivery of a hydrophobic small-molecule toll-like receptor 7 agonist, imiquimod (IMD), and a hydrophilic macromolecule, anti-CD47 antibody (αCD47), for macrophage modulation and reversal of immunosuppression in tumors. IMD repolarizes immunosuppressive M2 macrophages to immunostimulatory M1 macrophages, while αCD47 blocks CD47 tumor cell surface marker to promote phagocytosis. Upon X-ray irradiation, IMD@Hf-DBP/αCD47 effectively modulates the immunosuppressive tumor microenvironment and activates innate immunity to orchestrate adaptive immunity when synergized with an anti-PD-L1 immune checkpoint inhibitor, leading to complete eradication of both primary and distant tumors on a bilateral colorectal tumor model. nMOFs thus provide a unique platform to co-deliver multiple immunoadjuvants for macrophage therapy to induce systematic immune responses and superb antitumor efficacy.


Assuntos
Anticorpos/farmacologia , Antígeno CD47/antagonistas & inibidores , Neoplasias Colorretais/terapia , Imiquimode/farmacologia , Imunoterapia , Estruturas Metalorgânicas/química , Receptor 7 Toll-Like/agonistas , Animais , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Neoplasias Colorretais/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Nanoestruturas/química , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Receptor 7 Toll-Like/imunologia
17.
Biomolecules ; 10(7)2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32605030

RESUMO

The current investigation aimed to improve the topical efficacy of imiquimod in combination with curcumin using the nanoemulsion-based delivery system through a combinatorial approach. Co-delivery of curcumin acts as an adjuvant therapeutic and to minimize the adverse skin reactions that are frequently associated with the topical therapy of imiquimod for the treatment of cutaneous infections and basal cell carcinomas. The low-energy emulsification method was used for the nano-encapsulation of imiquimod and curcumin in the nanodroplet oil phase, which was stabilized using Tween 20 in an aqueous dispersion system. The weak base property of imiquimod helped to increase its solubility in oleic acid compared with ethyl oleate, which indicates that fatty acids should be preferred as the oil phase for the design of imiquimod-loaded topical nanoemulsion compared with fatty acid esters. The phase diagram method was used to optimize the percentage composition of the nanoemulsion formulation. The mean droplet size of the optimized nanoemulsion was 76.93 nm, with a polydispersity index (PdI) value of 0.121 and zeta potential value of -20.5 mV. The optimized imiquimod-loaded nanoemulsion was uniformly dispersed in carbopol 934 hydrogel to develop into a nanoemulgel delivery system. The imiquimod nanoemulgel exhibited significant improvement (p<0.05) in skin permeability and deposition profile after topical application. The in vivo effectiveness of the combination of imiquimod and curcumin nanoemulgel was compared to the imiquimod nanoemulgel and imiquimod gel formulation through topical application for ten days in BALB/c mice. The combination of curcumin with imiquimod in the nanoemulgel system prevented the appearance of psoriasis-like symptoms compared with the imiquimod nanoemulgel and imiquimod gel formulation entirely. Further, the imiquimod nanoemulgel as a mono-preparation slowed and reduced the psoriasis-like skin reaction when compared with the conventional imiquimod gel, and that was contributed to by the control release property of the nano-encapsulation approach.


Assuntos
Curcumina/administração & dosagem , Imiquimode/administração & dosagem , Psoríase/tratamento farmacológico , Administração Tópica , Animais , Curcumina/química , Curcumina/farmacologia , Modelos Animais de Doenças , Combinação de Medicamentos , Composição de Medicamentos , Emulsões , Imiquimode/química , Imiquimode/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanogéis , Ácido Oleico/química , Tamanho da Partícula , Permeabilidade , Polietilenoglicóis , Polietilenoimina , Polissorbatos/química , Psoríase/etiologia , Ratos
18.
Cells ; 9(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708790

RESUMO

Calcific aortic valve stenosis (CAVS) is a common age-related disease characterized by active calcification of the leaflets of the aortic valve. How innate immune cells are involved in disease pathogenesis is not clear. In this study we investigate the role of the pattern recognition receptor Toll-like receptor 7 (TLR7) in CAVS, especially in relation to macrophage subtype. Human aortic valves were used for mRNA expression analysis, immunofluorescence staining, or ex vivo tissue assays. Response to TLR7 agonist in primary macrophages and valvular interstitial cells (VICs) were investigated in vitro. In the aortic valve, TLR7 correlated with M2 macrophage markers on mRNA levels. Expression was higher in the calcified part compared with the intermediate and healthy parts. TLR7+ cells were co-stained with M2-type macrophage receptors CD163 and CD206. Ex vivo stimulation of valve tissue with the TLR7 ligand imiquimod significantly increased secretion of IL-10, TNF-α, and GM-CSF. Primary macrophages responded to imiquimod with increased secretion of IL-10 while isolated VICs did not respond. In summary, in human aortic valves TLR7 expression is associated with M2 macrophages markers. Ex vivo tissue challenge with TLR7 ligand led to secretion of immunomodulatory cytokine IL-10. These results connect TLR7 activation in CAVS to reduced inflammation and improved clearance.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Macrófagos/metabolismo , Receptor 7 Toll-Like/metabolismo , Valva Aórtica/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Humanos , Imiquimode/farmacologia , Ligantes , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Receptor 7 Toll-Like/agonistas
19.
FASEB J ; 34(8): 10590-10604, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32557852

RESUMO

Psoriasis is a chronic relapsing inflammatory skin disease, affecting up to 3% of the global population. Accumulating evidence suggests that the complement system is involved in its pathogenesis. Our previous study revealed that the C5a/C5aR1 pathway is crucial for disease development. However, the underlying mechanisms remain largely unknown. To explore potential mechanisms, psoriatic skin lesions and histological changes were assessed following imiquimod (IMQ) cream treatment. Inflammatory cytokine expression was tested by real-time RT-PCR. Immunohistochemistry and flow cytometry were used to identify inflammatory cell infiltration and interleukin (IL-17A) IL-17A expression. A C5aR1 antagonist (C5aR1a) and PI3K inhibitor (wortmannin) were used for blocking experiments (both in vivo and in vitro) to explore the mechanism. C5a/C5aR1-pathway inhibition significantly attenuated psoriasis-like skin lesions with decreased epidermal hyperplasia, downregulated type 17-related inflammatory gene expression, and reduced IL-17A-producing γδ-T cell responses. Mechanistically, C5a/C5aR1 promoted the latter phenotype via PI3K-Akt signaling. Consistently, C5aR1 deficiency clearly ameliorated IMQ-induced chronic psoriasiform dermatitis, with a significant decrease in IL-17A expression. Finally, blocking C5aR1 signaling further decreased psoriasiform skin inflammation in IL-17-deficient mice. Results suggest that C5a/C5aR1 mediates experimental psoriasis and skin inflammation by upregulating IL-17A expression from γδ-T cells. Blocking C5a/C5aR1/IL-17A axis is expected to be a promising strategy for psoriasis treatment.


Assuntos
Inflamação/metabolismo , Interleucina-17/metabolismo , Linfócitos Intraepiteliais/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Pele/metabolismo , Animais , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Feminino , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Imiquimode/farmacologia , Inflamação/tratamento farmacológico , Linfócitos Intraepiteliais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/efeitos dos fármacos
20.
FASEB J ; 34(8): 10657-10667, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32598088

RESUMO

Autophagy is a multistage catabolic process that mediates stress responses. However, the role of autophagy in epidermal proliferation, particularly under conditions when the epidermis becomes "activated" (hyperproliferative), remains unclear. We have shown that inhibition of Beclin 1, a key activator in the initiation phase of autophagy, attenuates imiquimod (IMQ)-induced epidermal hyperplasia in adult mice as well as naturally occurring hyperproliferation in neonatal mouse epidermis. Inhibition of Beclin 1 did not change the levels of several key inflammatory molecules or the numbers of immune cells in lesional skins. This indicates that autophagy does not affect inflammatory regulators in IMQ-treated mouse skin. Bioinformatic analysis combined with gene expression quantitative assays, revealed that a deficiency in autophagy decreases the expression of PDZ Binding Kinase (PBK), a regulator of the cell cycle, in mouse epidermis and human epidermal keratinocytes (HEKs). Interestingly, the decrease in PBK results in inhibition of proliferation in HEKs and such reduced proliferation can be rescued by activation of p38, the downstream signaling of PBK. Collectively, autophagy plays a positive role in epidermal proliferation, which is in part via regulating PBK expression.


Assuntos
Autofagia/fisiologia , Proliferação de Células/fisiologia , Epiderme/fisiologia , Animais , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Epiderme/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/fisiologia , Humanos , Hiperplasia/induzido quimicamente , Hiperplasia/fisiopatologia , Imiquimode/farmacologia , Inflamação/fisiopatologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/fisiologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Pele/efeitos dos fármacos , Pele/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...