Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.519
Filtrar
1.
Life Sci ; 259: 118397, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32896557

RESUMO

There is increasing evidence that Bazedoxifene, as an FDA-approved selective estrogen inhibitor, approved by FDA, not only inhibits estrogen receptors, but also has other pharmacological effects. The purpose of this study was to investigate the effects of Bazedoxifene on the functional changes of vascular smooth muscle cells (VSMCs) after PDGF-BB stimulation. VSMCs were divided into control group, PDGF-BB treatment group, and PDGF-BB treatment group with different concentrations of Bazedoxifene. CCK-8 and EdU staining were used to determine the VSMCs viability and proliferation. Western blot was used to detect the expressions of vimentin, SMA, ERK, p-ERK, STAT3, p-STAT3, AKT, p-AKT, and LC3 I/II. Wound healing method was used to detect the migration of VSMCs. PDGF-BB treatment significantly enhanced the viability and proliferation of VSMCs as indicated by CCK-8 and EdU assays (P < 0.01), while Bazedoxifene pretreatment could reduce the increased viability and proliferation of VSMCs caused by PDGF-BB (P < 0.05). Wound healing test also showed Bazedoxifene significantly attenuated the migration in the PDGF-BB stimulated VSMCs (P < 0.01). PDGF-BB also induced the phenotypic switch and decreased the autophagy level in VSMCs, manifested as a reduction in vimentin, SMA, and LC3 II (P < 0.01). These effects of PDGF-BB were partially reversed by Bazedoxifene (P < 0.05). Bazedoxifene may inhibit the proliferation and migration of VSMCs through up-regulate the autophagy level after PDGF-BB stimulation.


Assuntos
Autofagia/efeitos dos fármacos , Becaplermina/farmacologia , Indóis/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Becaplermina/antagonistas & inibidores , Western Blotting , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Músculo Liso Vascular/citologia , Fenótipo
2.
Molecules ; 25(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977525

RESUMO

The problem of treating viral infections is extremely relevant due to both the emergence of new viral diseases and to the low effectiveness of existing approaches to the treatment of known viral infections. This review focuses on the application of porphyrin, chlorin, and phthalocyanine series for combating viral infections by chemical and photochemical inactivation methods. The purpose of this review paper is to summarize the main approaches developed to date in the chemical and photodynamic inactivation of human and animal viruses using porphyrins and their analogues and to analyze and discuss the information on viral targets and antiviral activity of porphyrins, chlorins, of their conjugates with organic/inorganic compounds obtained in the last 10-15 years in order to identify the most promising areas.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Fotoquimioterapia/métodos , Pneumonia Viral/tratamento farmacológico , Porfirinas/farmacologia , Antivirais/química , Humanos , Indóis/química , Indóis/farmacologia , Pandemias , Processos Fotoquímicos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Ligação Viral/efeitos dos fármacos
3.
Bratisl Lek Listy ; 121(10): 705-711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32955901

RESUMO

BACKGROUND: COVID-19 is not fully known and causes severe inflammation and cytokine storm. It has many symptoms, such as: fever, sore throat, headache, dyspnoea, and diarrhoea. Arbidol was used in the treatment of COVID19, which was the most critical health problem in the world. However, the desired recovery was not achieved with Arbidol. Many countries still use this drug in the treatment of COVID19. AIM: We aimed to determine whether Arbidol, the hemagglutinin esterase inhibitor used in the treatment of COVID-19, was effective against SARS Cov-2 in silico. RESULTS AND CONCLUSION: The similarity between hemagglutinin and spike proteins were reported due to the fact that inhibition properties of Arbidol and its 39 analogues were examined in detail against hemagglutinin esterase and spike glycoproteins. CID 1070884 and CID 1207786 were found to be more active against hemagglutinin esterase than in Arbidol, while these compounds were inactive against spike glycoproteins. The interaction mechanism was clarified between arbidol and spike proteins. Phenylalanine, tyrosine, glycine, lysine, and aspartic acid were found to be the headliner amino acids in the interactions between Arbidol and binding domains of spike glycoproteins in the SARS-CoV2 (Tab. 3, Fig. 8, Ref. 28).


Assuntos
Betacoronavirus/efeitos dos fármacos , Indóis/farmacologia , Sítios de Ligação , Infecções por Coronavirus , Humanos , Pandemias , Pneumonia Viral , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores
4.
In Vivo ; 34(5): 3027-3028, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32871847
5.
J Cancer Res Clin Oncol ; 146(11): 2871-2883, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32770382

RESUMO

PURPOSE: Polo-like kinase 4 (PLK4) inhibitors, such as CFI-400945 and centrinone, are emerging as promising antineoplastic agents. However, their effectiveness against Ewing's sarcoma, a highly aggressive childhood cancer, remains to be established. METHODS: CFI-400945 and centrinone were tested in three Ewing's sarcoma cell lines with different TP53 status. Effects were assessed by flow-cytometric analyses of cell death, dissipation of the mitochondrial transmembrane potential and cell cycle distribution, by cell viability assay as well as by caspase 3/7 activity measurement, by immunoblotting and by immunofluorescence microscopy. RESULTS: CFI-400945 and centrinone elicited cell death in p53 wild-type and mutant Ewing's sarcoma cells. Both agents induced mitochondrial membrane depolarisation, caspase 3/7 activation, PARP1 cleavage and DNA fragmentation, indicating an apoptotic form of cell death. In addition, the PLK4 inhibitors induced a G2/M cell cycle arrest, particularly when cell killing was attenuated by the pan-caspase inhibitor z-VAD-fmk. Moreover, CFI-400945 treatment produced polyploidy. CONCLUSION: Our findings show that PLK4 inhibitors were effective against Ewing's sarcoma cells in vitro and thus provide a rationale for their evaluation in vivo.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sarcoma de Ewing/patologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Indazóis/farmacologia , Indóis/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pirimidinas/farmacologia , Sulfonas/farmacologia
6.
Medicine (Baltimore) ; 99(34): e21821, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32846824

RESUMO

BACKGROUND: Traditional Chinese medicine Tongxinluo (TXL) has been widely used to treat coronary artery disease in China, since it could reduce myocardial infarct size and ischemia/reperfusion injury in both non-diabetic and diabetic conditions. It has been shown that TXL could regulate peroxisome proliferator activated receptor-α (PPAR-α), a positive modulator of angiopoietin-like 4 (Angptl4), in diabetic rats. Endothelial junction substructure components, such as VE-cadherin, are involved in the protection of reperfusion injury. Thus, we hypothesized cell-intrinsic and endothelial-specific Angptl4 mediated the protection of TXL on endothelial barrier under high glucose condition against ischemia/reperfusion-injury via PPAR-α pathway. METHODS: Incubated with high glucose medium, the human cardiac microvascular endothelial cells (HCMECs) were then exposed to oxygen-glucose-serum deprivation (2 hours) and restoration (2 hours) stimulation, with or without TXL, insulin, or rhAngptl4 pretreatment. RESULTS: TXL, insulin, and rhAngptl4 had similar protective effects on the endothelial barrier. TXL treatment reversed the endothelial barrier breakdown in HCMECs significantly as identified by decreasing endothelial permeability, upregulating the expression of JAM-A, VE-cadherin, and integrin-α5 and increasing the membrane location of VE-cadherin and integrin-α5, and these effects of TXL were as effective as insulin and rhAngptl4. However, Angptl4 knock-down with small interfering RNA (siRNA) interference and PPAR-α inhibitor MK886 partially abrogated these beneficial effects of TXL. Western blotting also revealed that similar with insulin, TXL upregulated the expression of Angptl4 in HCMECs, which could be inhibited by Angptl4 siRNA or MK886 exposure. TXL treatment increased PPAR-α activity, which could be diminished by MK886 but not by Angptl4 siRNA. CONCLUSION: These data suggest cell-intrinsic and endothelial-specific Angptl4 mediates the protection of TXL against endothelial barrier breakdown during oxygen-glucose-serum deprivation and restoration under high glucose condition partly via the PPAR-α/Angptl4 pathway.


Assuntos
Proteína 4 Semelhante a Angiopoietina/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Células Endoteliais/efeitos dos fármacos , Endotélio/efeitos dos fármacos , Endotélio/fisiopatologia , PPAR alfa/metabolismo , Proteína 4 Semelhante a Angiopoietina/genética , Proteína 4 Semelhante a Angiopoietina/farmacologia , Caderinas/metabolismo , Permeabilidade Capilar , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Técnicas de Silenciamento de Genes , Glucose/metabolismo , Glucose/farmacologia , Humanos , Indóis/farmacologia , Insulina/farmacologia , Integrina alfa5/metabolismo , Inibidores de Lipoxigenase/farmacologia , Microvasos/citologia , Oxigênio/metabolismo , Oxigênio/farmacologia , Receptores de Superfície Celular/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
7.
mBio ; 11(4)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820005

RESUMO

We assessed various newly generated compounds that target the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and various previously known compounds reportedly active against SARS-CoV-2, employing RNA quantitative PCR (RNA-qPCR), cytopathicity assays, and immunocytochemistry. Here, we show that two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, exerted potent activity against SARS-CoV-2 in cell-based assays performed using VeroE6 cells and TMPRSS2-overexpressing VeroE6 cells. While GRL-0820 and the nucleotide analog remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred. No significant anti-SARS-CoV-2 activity was found for several compounds reportedly active against SARS-CoV-2 such as lopinavir, nelfinavir, nitazoxanide, favipiravir, and hydroxychroloquine. In contrast, GRL-0920 exerted potent activity against SARS-CoV-2 (50% effective concentration [EC50] = 2.8 µM) and dramatically reduced the infectivity, replication, and cytopathic effect of SARS-CoV-2 without significant toxicity as examined with immunocytochemistry. Structural modeling shows that indole and chloropyridinyl of the derivatives interact with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using high-performance liquid chromatography-mass spectrometry (HPLC/MS), suggesting that the indole moiety is critical for the anti-SARS-CoV-2 activity of the derivatives. GRL-0920 might serve as a potential therapeutic for coronavirus disease 2019 (COVID-19) and might be optimized to generate more-potent anti-SARS-CoV-2 compounds.IMPORTANCE Targeting the main protease (Mpro) of SARS-CoV-2, we identified two indole-chloropyridinyl-ester derivatives, GRL-0820 and GRL-0920, active against SARS-CoV-2, employing RNA-qPCR and immunocytochemistry and show that the two compounds exerted potent activity against SARS-CoV-2. While GRL-0820 and remdesivir blocked SARS-CoV-2 infection, viral breakthrough occurred as examined with immunocytochemistry. In contrast, GRL-0920 completely blocked the infectivity and cytopathic effect of SARS-CoV-2 without significant toxicity. Structural modeling showed that indole and chloropyridinyl of the derivatives interacted with two catalytic dyad residues of Mpro, Cys145 and His41, resulting in covalent bonding, which was verified using HPLC/MS. The present data should shed light on the development of therapeutics for COVID-19, and optimization of GRL-0920 based on the present data is essential to develop more-potent anti-SARS-CoV-2 compounds for treating COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Indóis/farmacologia , Pneumonia Viral/tratamento farmacológico , Sequência de Aminoácidos , Animais , Betacoronavirus/enzimologia , Chlorocebus aethiops , Cloroquina/farmacologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Indóis/química , Indóis/uso terapêutico , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , Células Vero , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
8.
PLoS One ; 15(7): e0236175, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32697798

RESUMO

Adenoviruses cause upper respiratory infections, conjunctivitis, keratitis, and gastrointestinal illness. These can be fatal in immunocompromised individuals. Adenoviruses have also been engineered into viral vectors to deliver therapeutic genes or induce immunity as vaccine carriers. The success of ocular gene therapy is driven partly by the immunologic and biochemical influences of the intraocular environment. We have shown that versican and hyaluronan modulate adenoviral vector transgene expression through CD44 signaling. Herein we explored the role of these pathways on virus replication and viral protein expression of wild type adenovirus. We report that the addition of vitreous humor (which contains both versican and hyaluronan) increases viral hexon protein levels. Vitreous humor also increased wild type adenovirus DNA replication in vitro. Metalloproteinase and γ-secretase inhibitors, which inhibit CD44 proteolytic activation, blocked adenoviral replication in vitro. Similarly, protein kinase C and RhoA kinase inhibitors, both proteins associated with CD44 mediated pathways, also inhibited wild type adenoviral replication in vitro. Application of metalloproteinase and γ-secretase inhibitors to human conjunctival explants sharply decreased adenoviral vector gene expression. Our results demonstrate that pharmacologic delivery of these inhibitors is easily achievable. The inhibition of these enzymes should be explored as potential therapies of wild type adenoviral infections.


Assuntos
Infecções por Adenoviridae/tratamento farmacológico , Adenoviridae/efeitos dos fármacos , Antivirais/farmacologia , Vetores Genéticos/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adenoviridae/fisiologia , Infecções por Adenoviridae/virologia , Administração Oftálmica , Amidas/farmacologia , Amidas/uso terapêutico , Antivirais/uso terapêutico , Túnica Conjuntiva/metabolismo , DNA Viral/genética , DNA Viral/isolamento & purificação , Diaminas/farmacologia , Diaminas/uso terapêutico , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/fisiologia , Células HeLa , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/metabolismo , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Maleimidas/farmacologia , Maleimidas/uso terapêutico , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Permeabilidade , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Proteólise/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Versicanas/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Corpo Vítreo/metabolismo , Quinases Associadas a rho/metabolismo
9.
Eur J Endocrinol ; 183(4): 439-452, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32698159

RESUMO

Objective: Combining conjugated estrogens (CE) with the selective estrogen receptor modulator bazedoxifene (BZA) is a novel, orally administered menopausal therapy. We investigated the effect of CE/BZA on insulin sensitivity, energy metabolism, and serum metabolome in postmenopausal women with obesity. Design: Randomized, double-blind, crossover pilot trial with washout was conducted at Pennington Biomedical Research Center. Eight postmenopausal women (age 50-60 years, BMI 30-40 kg/m2) were randomized to 8 weeks CE/BZA or placebo. Primary outcome was insulin sensitivity (hyperinsulinemic-euglycemic clamp). Secondary outcomes included body composition (DXA); resting metabolic rate (RMR); substrate oxidation (indirect calorimetry); ectopic lipids (1H-MRS); fat cell size, adipose and skeletal muscle gene expression (biopsies); serum inflammatory markers; and serum metabolome (LC/MS). Results: CE/BZA treatment produced no detectable effect on insulin sensitivity, body composition, ectopic fat, fat cell size, or substrate oxidation, but resulted in a non-significant increase in RMR (basal: P = 0.06; high-dose clamp: P = 0.08) compared to placebo. CE/BZA increased serum high-density lipoprotein (HDL)-cholesterol. CE/BZA also increased serum diacylglycerol (DAG) and triacylglycerol (TAG) species containing long-chain saturated, mono- and polyunsaturated fatty acids (FAs) and decreased long-chain acylcarnitines, possibly reflecting increased hepatic de novo FA synthesis and esterification into TAGs for export into very low-density lipoproteins, as well as decreased FA oxidation, respectively (P < 0.05). CE/BZA increased serum phosphatidylcholines, phosphatidylethanolamines, ceramides, and sphingomyelins, possibly reflecting the increase in serum lipoproteins (P < 0.05). Conclusions: A short treatment of obese postmenopausal women with CE/BZA does not alter insulin action or ectopic fat but increases serum markers of hepatic de novo lipogenesis and TAG production.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Estrogênios Conjugados (USP)/farmacologia , Glucose/metabolismo , Indóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Estrogênios Conjugados (USP)/uso terapêutico , Feminino , Humanos , Indóis/uso terapêutico , Pessoa de Meia-Idade , Obesidade/tratamento farmacológico , Projetos Piloto , Pós-Menopausa/efeitos dos fármacos , Pós-Menopausa/metabolismo
10.
J Cancer Res Clin Oncol ; 146(10): 2559-2574, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32681294

RESUMO

PURPOSE: Canonical Wnt/ ß-catenin pathway is one mechanism being activated in platinum-resistant epithelial ovarian cancer (EOC). Detecting potential targets for Wnt pathway modulation as a putative future therapeutic approach was the aim of this study. METHODS: Biological effects of different Wnt modulators (SB216763, XAV939 and triptolide) on the EOC cell lines A2780 and its platinum-resistant clone A2780cis were investigated via multiple functional tests. Immunohistochemistry (IHC) was carried out to compare the expression levels of Wnt marker proteins (ß-catenin, snail/ slug, E-cadherin) in patient specimens and to correlate them with lifetime data. RESULTS: We could show that activated Wnt signaling of the platinum-resistant EOC cell line A2780cis can be reversed by Wnt manipulators through SB216763 or XAV939. All Wnt manipulators tested consecutively decreased cell proliferation and cell viability. Apoptosis of A2780 and A2780cis was enhanced by triptolide in a dose-dependent manner, whereas cell migration was inhibited by SB216763 and triptolide. IHC analyses elucidated significantly different expression patterns for Wnt markers in the serous subtype. Herein, higher plasmatic snail/ slug expression is associated with improved progression-free (PFS) and overall survival (OS). CONCLUSION: According to the described effects on EOC biology, all three Wnt manipulators seem to have the potential to augment the impact of a platinum-based chemotherapy in EOC. This is promising as a dominance of this pathway was confirmed in serous histology.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Antígenos CD/biossíntese , Antígenos CD/metabolismo , Caderinas/biossíntese , Caderinas/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Diterpenos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Compostos de Epóxi/farmacologia , Feminino , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Indóis/farmacologia , Maleimidas/farmacologia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Compostos Organoplatínicos/administração & dosagem , Neoplasias Ovarianas/patologia , Fenantrenos/farmacologia , beta Catenina/biossíntese , beta Catenina/metabolismo
11.
Anticancer Res ; 40(7): 3669-3683, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32620606

RESUMO

BACKGROUND/AIM: Triple negative cancer (TNBC) is a subtype of breast cancer that is highly aggressive, with poor prognosis and responds differently to treatments. This study investigated the role of vorinostat and indole-3-carbinol (I3C) on regulating critical receptors that are not normally expressed in TNBC. MATERIALS AND METHODS: Using real-time PCR, immunostaining, and western blots, the re-expression of estrogen receptor α (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2) receptors was examined in four different TNBC cell types. RESULTS: ERα was re-expressed in three subtypes using vorinostat and I3C. Re-expression of the PR by vorinostat was also detected. Neither vorinostat nor I3C resulted in re-expression of the HER2 receptor. A significant decrease in growth and sensitivity to tamoxifen was also noted. CONCLUSION: The results of this study show that vorinostat and I3C modulate the re-expression of critical receptors in certain subtypes of TNBC through several pathways and these effects can be influenced by the molecular profiles of TNBCs.


Assuntos
Antineoplásicos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Indóis/farmacologia , Receptores de Progesterona/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Vorinostat/farmacologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptor ErbB-2/metabolismo
12.
Gene ; 759: 145000, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32717310

RESUMO

Upregulation of the ATP-binding cassette (ABC) transporter is one of the most important factors leading to multidrug resistance (MDR) in several types of cancer. In the present study, we investigated the ability of rucaparib, a Poly (ADP-ribose) polymerase (PARP) inhibitor which is currently in clinical development, on overcoming ABC transporters-mediated MDR in cervical cancer cell lines. Rucaparib significantly enhanced the cytotoxic effects of a series of conventional chemotherapeutic drugs in drug resistance cervical cancer cell lines. Moreover, rucaparib significantly increased the accumulation of rhodamine 123 in doxorubicin- and paclitaxel-resistance cervical cancer cell lines. In addition, rucaparib significantly increased the accumulation of tritium-labeled chemotherapeutic drugs in drug resistance cervical cancer cells, and decrease the efflux of tritium-labeled chemotherapeutic drugs. Molecular docking study indicated that rucaparib could bind to the active site of the ABC transporters. The present study indicated that rucaparib could antagonize MDR in cervical cancer cells by blocking the function of ABC transporters. The results obtained in the present study provide the potential possibilities that the combination of rucaparib with other chemotherapeutic agents may benefit patients with cervical cancer.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias do Colo do Útero/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Ligação Proteica
13.
Adv Exp Med Biol ; 1207: 569-579, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32671775

RESUMO

Pulmonary fibrosis is a progressive chronic inflammatory disease with a poor clinical outcome. Although pirfenidone and nintedanib have been approved by FDA to treat idiopathic pulmonary fibrosis (IPF), these drugs can only slow the progression of IPF. Autophagy plays an important role in the pathogenesis of pulmonary fibrosis. Whether the autophagic flux is blocked or not is directly related to the development direction of pulmonary fibrosis. Defining how autophagy activity regulates the pathogenesis of pulmonary fibrosis will greatly advance the progression of pulmonary fibrosis therapy.


Assuntos
Autofagia , Fibrose Pulmonar , Progressão da Doença , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Fibrose Pulmonar/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico
14.
Antiviral Res ; 181: 104878, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32679055

RESUMO

In response to the current pandemic caused by the novel SARS-CoV-2, identifying and validating effective therapeutic strategies is more than ever necessary. We evaluated the in vitro antiviral activities of a shortlist of compounds, known for their cellular broad-spectrum activities, together with drugs that are currently under evaluation in clinical trials for COVID-19 patients. We report the antiviral effect of remdesivir, lopinavir, chloroquine, umifenovir, berberine and cyclosporine A in Vero E6 cells model of SARS-CoV-2 infection, with estimated 50% inhibitory concentrations of 0.99, 5.2, 1.38, 3.5, 10.6 and 3 µM, respectively. Virus-directed plus host-directed drug combinations were also investigated. We report a strong antagonism between remdesivir and berberine, in contrast with remdesivir/diltiazem, for which we describe high levels of synergy, with mean Loewe synergy scores of 12 and peak values above 50. Combination of host-directed drugs with direct acting antivirals underscore further validation in more physiological models, yet they open up interesting avenues for the treatment of COVID-19.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Pandemias , Pneumonia Viral/tratamento farmacológico , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Animais , Berberina/farmacologia , Chlorocebus aethiops , Cloroquina/farmacologia , Infecções por Coronavirus/virologia , Ciclosporina/farmacologia , Antagonismo de Drogas , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , Indóis/farmacologia , Lopinavir/farmacologia , Pneumonia Viral/virologia , Células Vero
15.
Life Sci ; 256: 117892, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32502538

RESUMO

BACKGROUND: Organophosphorus pesticides exert their toxic effects mainly by the inhibition of acetylcholinesterase (AChE), which is related to emotional disorders, such as depression. Atropine-oximes therapy is commonly used; however, the efficacy of oximes in the reactivation of AChE has been inconsistent. The objective of this study was to investigate the possible neuroprotective effect of (3Z)-5-Chloro-3-(hydroxyimino)indolin-2-one (Cℓ-HIN), a compound that combines the isatin and oxime functional groups, in rats exposed to malathion. The effect of Cℓ-HIN on the AChE activity and the BDNF-Trkß pathway in the prefrontal cortex of malathion-exposed rats were tested. METHODS: Wistar male rats were co-treated with Cℓ-HIN [50 mg/kg (p.o.) (3 mL/kg)] and/or malathion [250 mg/kg (i.p.) (5 mL/kg)] and performed behavioral tests twelve hours after these exposures. RESULTS: The Cℓ-HIN reversed the increased immobility time in the forced swimming test and the decreased grooming time in the splash test induced by malathion, but any significant difference was observed in locomotion analysis. These results demonstrate the antidepressant-like effect of Cℓ-HIN. The cortical AChE activity was reactivated by Cℓ-HIN in rats exposed to malathion. Malathion induced an increase in Trkß and a decrease in BDNF levels in the prefrontal cortex of rats, which were avoided by Cℓ-HIN. CONCLUSION: These findings support the hypothesis that Cℓ-HIN is an AChE reactivator with antidepressant-like properties, which is related to the improvement of BDNF-Trkß signaling after acute exposure to malathion in rats. Thus, the results allow suggesting the potential use of Cℓ-HIN as an oxime-based therapy against the neurotoxic effects of malathion.


Assuntos
Acetilcolinesterase/metabolismo , Antidepressivos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Indóis/farmacologia , Malation/toxicidade , Receptor trkB/metabolismo , Transdução de Sinais , Animais , Antidepressivos/administração & dosagem , Antidepressivos/química , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Indóis/administração & dosagem , Indóis/química , Indóis/uso terapêutico , Masculino , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
16.
Virus Res ; 286: 198068, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32565126

RESUMO

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a renewed interest in studying the role of the spike S glycoprotein in regulating coronavirus infections in the natural host. Taking advantage of the cryo-electron microscopy structure of SARS-CoV-2 S trimer in the prefusion conformation, we performed a virtual screening simulation with the aim to identify novel molecules that could be used as fusion inhibitors. The spike glycoprotein structure has been completed using modeling techniques and its inner cavity, needful for the postfusion transition of the trimer, has been scanned for the identification of strongly interacting available drugs. Finally, the stability of the protein-drug top complexes has been tested using classical molecular dynamics simulations. The free energy of interaction of the molecules to the spike protein has been evaluated through the MM/GBSA method and per-residue decomposition analysis. Results have been critically discussed considering previous scientific knowledge concerning the selected compounds and sequence alignments have been carried out to evaluate the spike glycoprotein similarity among the betacoronavirus family members. Finally, a cocktail of drugs that may be used as SARS-CoV-2 fusion inhibitors has been suggested.


Assuntos
Antivirais/química , Betacoronavirus/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Indóis/química , Perileno/análogos & derivados , Glicoproteína da Espícula de Coronavírus/química , Sulfonamidas/química , Antivirais/farmacologia , Betacoronavirus/patogenicidade , Sítios de Ligação , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Expressão Gênica , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Perileno/química , Perileno/farmacologia , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Sulfonamidas/farmacologia , Termodinâmica , Interface Usuário-Computador , Internalização do Vírus/efeitos dos fármacos
17.
Curr Med Sci ; 40(3): 480-485, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32474860

RESUMO

The efficient transmission of severe acute respiratory syndrome-2 coronavirus (SARS-CoV-2) from patients to health care workers or family members has been a worrisome and prominent feature of the ongoing outbreak. On the basis of clinical practice and in-vitro studies, we postulated that post-exposure prophylaxis (PEP) using Arbidol is associated with decreased infection among individuals exposed to confirmed cases of COVID-19 infection. We conducted a retrospective cohort study on family members and health care workers who were exposed to patients confirmed to have SARS-CoV-2 infection by real-time RT-PCR and chest computed tomography (CT) from January 1 to January 16, 2020. The last follow-up date was Feb. 26, 2020. The emergence of fever and/or respiratory symptoms after exposure to the primary case was collected. The correlations between post-exposure prophylaxis and infection in household contacts and health care workers were respectively analyzed. A total of 66 members in 27 families and 124 health care workers had evidence of close exposure to patients with confirmed COVID-19. The Cox regression based on the data of the family members and health care workers with Arbidol or not showed that Arbidol PEP was a protective factor against the development of COVID-19 (HR 0.025, 95% CI 0.003-0.209, P=0.0006 for family members and HR 0.056, 95% CI 0.005-0.662, P=0.0221 for health care workers). Our findings suggest Arbidol could reduce the infection risk of the novel coronavirus in hospital and family settings. This treatment should be promoted for PEP use and should be the subject of further investigation.


Assuntos
Antivirais/administração & dosagem , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/transmissão , Indóis/administração & dosagem , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Pneumonia Viral/transmissão , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico por imagem , Família , Feminino , Pessoal de Saúde , Humanos , Indóis/farmacologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/diagnóstico por imagem , Profilaxia Pós-Exposição , Análise de Regressão , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
18.
Life Sci ; 255: 117867, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32479954

RESUMO

Obesity continues to be a growing health concern around the world, and elevated levels of free fatty acids as a result of high-fat intake might play a role in neuroendocrine alterations leading to obesity. However, it is unclear how fatty acids affect neuroendocrine functions and energy metabolism. Since hypothalamic monoamines play a crucial role in regulating neuroendocrine functions relating to energy balance, we investigated the direct effects of oleic acid on hypothalamic monoamines and hypothesized that oleic acid would activate peroxisome proliferator-activated receptor alpha (PPAR-α), a nuclear transcription factor involved with fatty acid metabolism, to affect monoamines. We also hypothesized that this response would be subdued in diet-induced obesity (DIO). To test these hypotheses, hypothalami from Sprague Dawley and DIO rats were incubated with 0 (Control), 0.00132 mM, 0.132 mM, 1.32 mM oleic acid, 50 µM MK 886 (a selective PPAR- α antagonist), or oleic acid + MK 886 in Krebs Ringers Henseleit (KRH) solution. HPLC-EC was used to measure monoamine levels in perfusates. Oleic acid produced a significant increase in norepinephrine, dopamine, and serotonin levels in a dose-dependent manner, and incubation with MK886 blocked these effects. The effect of oleic acid on hypothalamic monoamines was attenuated in DIO rats. These findings suggest that PPARα probably plays an essential role in fatty acid sensing in the hypothalamus, by affecting monoamine efflux and DIO rats are resistant to the effects of oleic acid.


Assuntos
Hipotálamo/efeitos dos fármacos , Obesidade/fisiopatologia , Ácido Oleico/farmacologia , PPAR alfa/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Ácidos Graxos não Esterificados/metabolismo , Hipotálamo/metabolismo , Indóis/farmacologia , Masculino , Norepinefrina/metabolismo , Ácido Oleico/administração & dosagem , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo
19.
Int J Antimicrob Agents ; 56(2): 105998, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32360231

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic is a global public health emergency, and new therapeutics are needed. This article reports the potential drug target and mechanism of action of Arbidol (umifenovir) to treat coronavirus disease 2019 (COVID-19). Molecular dynamics and structural analysis were used to show how Arbidol targets the SARS-CoV-2 spike glycoprotein and impedes its trimerization, which is key for host cell adhesion and hijacking, indicating the potential of Arbidol to treat COVID-19. It is hoped that knowledge of the potential drug target and mechanism of action of Arbidol will help in the development of new therapeutics for SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Biopolímeros/química , Infecções por Coronavirus/tratamento farmacológico , Indóis/farmacologia , Pneumonia Viral/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/virologia , Humanos , Indóis/química , Pandemias , Pneumonia Viral/virologia
20.
Mol Pharmacol ; 98(1): 49-60, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358164

RESUMO

Negative allosteric modulation of the metabotropic glutamate 5 (mGlu5) receptor has emerged as a potential strategy for the treatment of neurologic disorders. Despite the success in preclinical studies, many mGlu5 negative allosteric modulators (NAMs) that have reached clinical trials failed due to lack of efficacy. In this study, we provide a detailed in vitro pharmacological characterization of nine clinically and preclinically tested NAMs. We evaluated inhibition of l-glutamate-induced signaling with Ca2+ mobilization, inositol monophosphate (IP1) accumulation, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and real-time receptor internalization assays on rat mGlu5 expressed in HEK293A cells. Moreover, we determined association rates (kon) and dissociation rates (koff), as well as NAM affinities with [3H]methoxy-PEPy binding experiments. kon and koff values varied greatly between the nine NAMs (34- and 139-fold, respectively) resulting in long receptor residence times (>400 min) for basimglurant and mavoglurant, medium residence times (10-30 min) for AZD2066, remeglurant, and (RS)-remeglurant, and low residence times (<10 mins) for dipraglurant, F169521, F1699611, and STX107. We found that all NAMs inhibited l-glutamate-induced mGlu5 receptor internalization, generally with a similar potency to IP1 accumulation and ERK1/2 phosphorylation, whereas Ca2+ mobilization was less potently inhibited. Operational model of allosterism analyses revealed that dipraglurant and (RS)-remeglurant were biased toward (affinity) receptor internalization and away (cooperativity) from the ERK1/2 phosphorylation pathway, respectively. Our study is the first to measure mGlu5 NAM binding kinetics and negative allosteric modulation of mGlu5 receptor internalization and adds significant new knowledge about the molecular pharmacology of a diverse range of clinically relevant NAMs. SIGNIFICANCE STATEMENT: The metabotropic glutamate 5 (mGlu5) receptor is important in many brain functions and implicated in several neurological pathologies. Negative allosteric modulators (NAMs) have shown promising results in preclinical models but have so far failed in human clinical trials. Here we provide the most comprehensive and comparative molecular pharmacological study to date of nine preclinically/clinically tested NAMs at the mGlu5 receptor, which is also the first study to measure ligand binding kinetics and negative allosteric modulation of mGlu5 receptor internalization.


Assuntos
Imidazóis/farmacologia , Indóis/farmacologia , Isoxazóis/farmacologia , Piridinas/farmacologia , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Triazóis/farmacologia , Regulação Alostérica/efeitos dos fármacos , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Imidazóis/química , Indóis/química , Fosfatos de Inositol/metabolismo , Isoxazóis/química , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Piridinas/química , Ratos , Fatores de Tempo , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA