Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.113
Filtrar
1.
Viruses ; 13(6)2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072981

RESUMO

Infectious bronchitis virus (IBV) was first identified in the 1930s and it imposes a major economic burden on the poultry industry. In particular, GI-19 lineage has spread globally and has evolved constantly since it was first detected in China. In this study, we analyzed S1 gene sequences from 60 IBVs isolated in South Korea. Two IBV lineages, GI-15 and GI-19, were identified in South Korea. Phylogenetic analysis suggested that there were six distinct subgroups (KM91-like, K40/09-like, and QX-like I to IV) of the South Korean GI-19 IBVs. Among them, QX-type III and IV subgroups, which are phylogenetically different from those reported in South Korea in the past, accounted for more than half of the total. Moreover, the phylogeographic analysis of the QX-like subgroups indicated at least four distinct introductions of GI-19 IBVs into South Korea during 2001-2020. The efficacy of commercialized vaccines against the recently introduced QX-like subgroups should be verified, and continuous international surveillance efforts and quarantine procedures should be enhanced to prevent the incursion of viruses.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Doenças das Aves Domésticas/virologia , Animais , Galinhas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Genômica , Genótipo , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/isolamento & purificação , Filogenia , Doenças das Aves Domésticas/epidemiologia , República da Coreia/epidemiologia , Análise de Sequência de RNA , Homologia de Sequência , Glicoproteína da Espícula de Coronavírus/genética
2.
Vet Parasitol Reg Stud Reports ; 24: 100567, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34024383

RESUMO

Cryptosporidiosis of neonatal dairy calves causes diarrhea, resulting in important economic losses. In Argentina, prevalence values of Cryptosporidium spp. and other enteropathogens such as group A rotavirus (RVA), bovine coronavirus (BCoV) and enterotoxigenic Escherichia coli (ETEC, endotoxin STa+), have been independently studied in different regions. However, an integrative epidemiological investigation on large-scale farms has not been carried out. In this study, fecal samples (n = 908) were randomly collected from diarrheic and healthy calves from 42 dairy farms, and analyzed for the presence of Cryptosporidium spp., RVA, BCoV, ETEC (STa+) and Salmonella spp. In all sampled dairy farms, dams had been vaccinated against rotavirus and gram-negative bacteria to protect calves against neonatal diarrhea. The proportion of calves shedding Cryptosporidium spp., RVA, and BCoV in animals younger than 20 days of age were 29.8%, 12.4% and 6.4%, and in calves aged between 21 and 90 days, 5.6%, 3.9%, and 1.8%, respectively. ETEC was absent in the younger, and occurred only sporadically in the older group (0.9%), whereas Salmonella spp. was absent in both. The observed sporadic finding or even absence of bacterial pathogens might be explained by the frequent use of parenteral antibiotics in 25.3% and 6.5% of the younger and the older group of calves, respectively, within 2 days prior to sampling and/or vaccination of dams against gram-negative bacteria. Diarrhea was observed in 28.8% (95% CI, 24.7-32.8%) of the younger calves and 11.7% (95% CI, 9.1-15.5%) of the older calves. Importantly, Cryptosporidium spp. (odds ratio (OR) = 5.7; 95% CI, 3.3-9.9; p < 0.0001) and RVA (OR = 2.5; 95% CI, 1.2-5.1; p < 0.05) were both found to be risk factors for diarrhea in calves younger than 20 days old. Based on its high prevalence and OR, our results strongly suggest that Cryptosporidium spp. is the principal causative factor for diarrhea in the group of neonatal calves, whereas RVA seems to play a secondary role in the etiology of diarrhea in the studied farms, with about three-times lower prevalence and a half as high OR. Furthermore, a coinfection rate of Cryptosporidium spp. and RVA of 3.7% was observed in the group of younger calves, which strengthens the assumption that these events are independent. In contrast, due to a low infection rate of enteropathogens in older calves, mixed infection (<< 1%) was virtually absent in this group.


Assuntos
Doenças dos Bovinos/epidemiologia , Infecções por Coronavirus/veterinária , Criptosporidiose/epidemiologia , Cryptosporidium/patogenicidade , Indústria de Laticínios , Diarreia/veterinária , Infecções por Rotavirus/veterinária , Fatores Etários , Animais , Animais Recém-Nascidos , Argentina/epidemiologia , Bovinos , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/virologia , Infecções por Coronavirus/epidemiologia , Coronavirus Bovino/genética , Coronavirus Bovino/patogenicidade , Cryptosporidium/genética , Diarreia/epidemiologia , Diarreia/parasitologia , Diarreia/virologia , Fezes/parasitologia , Fezes/virologia , Feminino , Rotavirus/genética , Rotavirus/patogenicidade , Infecções por Rotavirus/epidemiologia
3.
J Vet Sci ; 22(3): e36, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34056877

RESUMO

BACKGROUND: Mouse hepatitis virus (MHV) A59 is a highly infectious pathogen and starts in the respiratory tract and progresses to systemic infection in laboratory mice. The complement system is an important part of the host immune response to viral infection. It is not clear the role of the classical complement pathway in MHV infection. OBJECTIVES: The purpose of this study was to determine the importance of the classical pathway in coronavirus pathogenesis by comparing C1qa KO mice and wild-type mice. METHODS: We generated a C1qa KO mouse using CRISPR/Cas9 technology and compared the susceptibility to MHV A59 infection between C1qa KO and wild-type mice. Histopathological and immunohistochemical changes, viral loads, and chemokine expressions in both mice were measured. RESULTS: MHV A59-infected C1qa KO mice showed severe histopathological changes, such as hepatocellular necrosis and interstitial pneumonia, compared to MHV A59-infected wild-type mice. Virus copy numbers in the olfactory bulb, liver, and lungs of C1qa KO mice were significantly higher than those of wild-type mice. The increase in viral copy numbers in C1qa KO mice was consistent with the histopathologic changes in organs. These results indicate that C1qa deficiency enhances susceptibility to MHV A59 systemic infection in mice. In addition, this enhanced susceptibility effect is associated with dramatic elevations in spleen IFN-γ, MIP-1 α, and MCP-1 in C1qa KO mice. CONCLUSIONS: These data suggest that C1qa deficiency enhances susceptibility to MHV A59 systemic infection, and activation of the classical complement pathway may be important for protecting the host against MHV A59 infection.


Assuntos
Complemento C1q/deficiência , Via Clássica do Complemento , Infecções por Coronavirus/veterinária , Suscetibilidade a Doenças/veterinária , Hepatite Viral Animal/genética , Camundongos , Vírus da Hepatite Murina/fisiologia , Doenças dos Roedores/genética , Animais , Infecções por Coronavirus/genética , Suscetibilidade a Doenças/virologia , Predisposição Genética para Doença , Camundongos Knockout
4.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33886507

RESUMO

Emerging coronaviruses from zoonotic reservoirs, including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have been associated with human-to-human transmission and significant morbidity and mortality. Here, we study both intradermal and intramuscular 2-dose delivery regimens of an advanced synthetic DNA vaccine candidate encoding a full-length MERS-CoV spike (S) protein, which induced potent binding and neutralizing antibodies as well as cellular immune responses in rhesus macaques. In a MERS-CoV challenge, all immunized rhesus macaques exhibited reduced clinical symptoms, lowered viral lung load, and decreased severity of pathological signs of disease compared with controls. Intradermal vaccination was dose sparing and more effective in this model at protecting animals from disease. The data support the further study of this vaccine for preventing MERS-CoV infection and transmission, including investigation of such vaccines and simplified delivery routes against emerging coronaviruses.


Assuntos
Infecções por Coronavirus/veterinária , Macaca mulatta/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Vacinas Virais/uso terapêutico , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Imunogenicidade da Vacina , Injeções Intradérmicas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
5.
Vet Microbiol ; 257: 109068, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33894664

RESUMO

Porcine deltacoronavirus (PDCoV) is a swine enteropathogenic coronavirus (CoV) that continues to spread globally, placing strain on economic and public health. Currently, the pathogenic mechanism of PDCoV remains largely unclear, and effective strategies to prevent or treat PDCoV infection are still limited. In this study, the interaction between autophagy and PDCoV replication in LLC-PK1 cells was investigated. We demonstrated that PDCoV infection induced a complete autophagy process. Pharmacologically induced autophagy with rapamycin increased the expression of PDCoV N, while pharmacologically inhibited autophagy with wortmannin decreased the expression of PDCoV N, suggesting that PDCoV-induced autophagy facilitates virus replication. Further experiments showed that PDCoV infection activated p38 signaling pathway to trigger autophagy. Besides, ergosterol peroxide (EP) alleviated PDCoV-induced activation of p38 to suppress autophagy, thus exerting its antiviral effects. Finally, we employed a piglet model of PDCoV infection to demonstrate that EP prevented PDCoV infection by suppressing PDCoV-induced autophagy via p38 signaling pathway in vivo. Collectively, these findings accelerate the understanding of the pathogenesis of PDCoV infection and provide new insights for the development of EP as an effective therapeutic strategy for PDCoV.


Assuntos
Antivirais/farmacologia , Autofagia , Infecções por Coronavirus/veterinária , Deltacoronavirus/efeitos dos fármacos , Ergosterol/análogos & derivados , Sistema de Sinalização das MAP Quinases , Replicação Viral/efeitos dos fármacos , Animais , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/virologia , Deltacoronavirus/fisiologia , Ergosterol/farmacologia , Células LLC-PK1 , Suínos , Doenças dos Suínos/virologia
6.
Vet Microbiol ; 257: 109081, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33901803

RESUMO

As the most abundant cell type in the blood, red blood cells (RBCs) are serving for transporting oxygen. However, the mechanism by which RBCs binding virus remains largely unknown. Here, we demonstrated that porcine epidemic diarrhea virus (PEDV), a kind of coronavirus, could hijack RBCs and cause typical diarrhea in neonatal piglets. In an epidemiology investigation of PEDV, the RBCs samples from diarrheic pigs in several pig farms were found to be PEDV-positive. PEDV could bind to neonatal RBCs through CD71 and clathrin-mediated endocytosis, and its viability was maintained for 12 h. PEDV-loaded RBCs could transfer the virus to CD3+ T cells by conjugation and reach the intestine mucosa, where it caused infection. Finally, a further animal challenge revealed that transfusing with PEDV-loaded RBCs could cause intestinal epithelial cells (IECs) infection and typical diarrhea symptom. Therefore, our studies illustrated the mechanism by which PEDV could cause intestinal infection through hijacking RBCs, further providing a novel insight into the role of RBCs as potential cells for viral transmission in coronavirus pathogenesis.


Assuntos
Transfusão de Sangue/veterinária , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Eritrócitos/virologia , Vírus da Diarreia Epidêmica Suína/patogenicidade , Doenças dos Suínos/transmissão , Animais , Animais Recém-Nascidos , Chlorocebus aethiops , Diarreia/virologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Suínos , Doenças dos Suínos/virologia , Linfócitos T/virologia , Células Vero , Ligação Viral
7.
Res Vet Sci ; 136: 587-594, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33892367

RESUMO

This study investigated the pathogenesis of infectious bronchitis virus (Gammacoronavirus) strain Q1 in two commercial broiler chicken lines, and the host immune response to infection. Chicks from each line were grouped into either infected or control. Following Q1 infection at day-old, fast (Line-A) and slow (Line-B) growing chicks were monitored for clinical signs and body weights. At 3, 7, 9, 14, 21 and 28 days post infection (dpi), five birds were humanely euthanised, and trachea, kidney and proventriculus tissues were collected for quantitative RT-PCR and histopathology. Blood was collected weekly to determine IBV-specific ELISA antibody titres. Q1 infection significantly reduced the body weights of Line-A chicks at 14 and 21 dpi, but there were no significant differences in Line-B. Through qRT-PCR, significantly higher viral loads were found in the trachea, proventriculus and kidney tissues of Line-A chicks at 7-9 dpi. At day-old and at 28 dpi, the mean antibody titre in Line-B was notably higher than Line-A. Significant IFN-α mRNA expression was noted in the trachea and kidneys of Line-A, whereas no change occurred in Line-B. Chicks in Line-B, compared to those in Line-A, demonstrated a tissue-dependent increase of IFN-ß, TLR3, IL-1ß and IL-6 and LITAF gene transcription responses to IBV Q1. It appears that the level of maternal antibodies, growth rates, and other inherent host genetic factors could have influenced the differences in viral loads and immune responses.


Assuntos
Galinhas/imunologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/imunologia , Doenças das Aves Domésticas/virologia , Animais , Galinhas/virologia , Infecções por Coronavirus/imunologia , Ensaio de Imunoadsorção Enzimática/veterinária , Imunidade , Doenças das Aves Domésticas/imunologia , Carga Viral/veterinária
8.
Viruses ; 13(4)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808275

RESUMO

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic coronavirus, has catastrophic impacts on the global pig industry. Owing to the lack of effective vaccines and specific therapeutic options for PEDV, it is pertinent to develop new and available antivirals. This study identified, for the first time, a salinomycin that actively inhibited PEDV replication in Vero cells in a dose-dependent manner. Furthermore, salinomycin significantly inhibited PEDV infection by suppressing the entry and post-entry of PEDV in Vero cells. It did not directly interact with or inactivate PEDV particles, but it significantly ameliorated the activation of Erk1/2, JNK and p38MAPK signaling pathways that are associated with PEDV infection. This implied that salinomycin inhibits PEDV replication by altering MAPK pathway activation. Notably, the PEDV induced increase in reactive oxidative species (ROS) was not decreased, indicating that salinomycin suppresses PEDV replication through a pathway that is an independent pathway of viral-induced ROS. Therefore, salinomycin is a potential drug that can be used for treating PEDV infection.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Piranos/farmacologia , Doenças dos Suínos/virologia , Animais , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Sistema de Sinalização das MAP Quinases , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
9.
Trop Biomed ; 38(1): 28-32, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33797520

RESUMO

Infectious bronchitis viral (IBV) (Avian coronavirus) diseases is among the major reproductive diseases affecting the avian production in Africa. There is scanty information on its current status and vaccination compliance among captive wild birds (CWB) and indigenous chickens (LC) in Nigeria. This study aimed to assess the exposure and the risk factors associated with IBV in CWB and LC from North-central and South west regions of Nigeria. Sera samples from 218 LC and 43 CWB were examined for IBV IgG using enzyme linked immunosorbent assay. Also, owners of LC and managers of CWB were interviewed using a pre-tested structured checklist. An overall IBV prevalence of 42.9% (112/261) was obtained. Captive wild birds and indigenous chickens had 11.6% (5/43) and 49.1% (107/218) prevalence respectively with a significant difference (p< 0.0001, OR= 7.3, 95% CI= 2.8-19.3). Also, geo-location indicated significant difference in IBV exposure among birds (p<=0.034). Furthermore, the study showed that there had never been laboratory screening on all acquired wild birds for exposure to infectious agents in the study location while none of these birds (LB/CWB) had history of vaccination. Since IBV is endemic in Nigeria, the use of vaccine for prophylactic measure should be advocated among LC and CWB owners in order to avoid unnecessary losses. Also, the essence of screening for infectious agents in newly acquired wild birds should be considered crucial for health sustenance and public safety.


Assuntos
Animais Selvagens/virologia , Galinhas/virologia , Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa , Animais , Animais Selvagens/imunologia , Galinhas/imunologia , Infecções por Coronavirus/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Nigéria/epidemiologia , Estudos Soroepidemiológicos
10.
Viruses ; 13(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33807288

RESUMO

Middle East respiratory syndrome-related coronavirus (MERS-CoV) is a persistent zoonotic pathogen with frequent spillover from dromedary camels to humans in the Arabian Peninsula, resulting in limited outbreaks of MERS with a high case-fatality rate. Full genome sequence data from camel-derived MERS-CoV variants show diverse lineages circulating in domestic camels with frequent recombination. More than 90% of the available full MERS-CoV genome sequences derived from camels are from just two countries, the Kingdom of Saudi Arabia (KSA) and United Arab Emirates (UAE). In this study, we employ a novel method to amplify and sequence the partial MERS-CoV genome with high sensitivity from nasal swabs of infected camels. We recovered more than 99% of the MERS-CoV genome from field-collected samples with greater than 500 TCID50 equivalent per nasal swab from camel herds sampled in Jordan in May 2016. Our subsequent analyses of 14 camel-derived MERS-CoV genomes show a striking lack of genetic diversity circulating in Jordan camels relative to MERS-CoV genome sequences derived from large camel markets in KSA and UAE. The low genetic diversity detected in Jordan camels during our study is consistent with a lack of endemic circulation in these camel herds and reflective of data from MERS outbreaks in humans dominated by nosocomial transmission following a single introduction as reported during the 2015 MERS outbreak in South Korea. Our data suggest transmission of MERS-CoV among two camel herds in Jordan in 2016 following a single introduction event.


Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Variação Genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Zoonoses/virologia , Animais , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Genoma Viral , Jordânia/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Filogenia , República da Coreia/epidemiologia , Arábia Saudita/epidemiologia , Emirados Árabes Unidos/epidemiologia , Zoonoses/epidemiologia
11.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762411

RESUMO

Porcine hemagglutinating encephalomyelitis virus (PHEV) is a betacoronavirus that causes vomiting and wasting disease and/or encephalomyelitis in suckling pigs. This study characterized PHEV infection, pathogenesis, and immune response in cesarean-derived, colostrum-deprived (CDCD) neonatal pigs. Infected animals developed mild respiratory, enteric, and neurological clinical signs between 2 to 13 days postoronasal inoculation (dpi). PHEV did not produce viremia, but virus shedding was detected in nasal secretions (1 to 10 dpi) and feces (2 to 7 dpi) by reverse transcriptase quantitative PCR (RT-qPCR). Viral RNA was detected in all tissues except liver, but the detection rate and RT-qPCR threshold cycle (CT ) values decreased over time. The highest concentration of virus was detected in inoculated piglets necropsied at 5 dpi in turbinate and trachea, followed by tonsils, lungs, tracheobronchial lymph nodes, and stomach. The most representative microscopic lesions were gastritis lymphoplasmacytic, moderate, multifocal, with perivasculitis, and neuritis with ganglia degeneration. A moderate inflammatory response, characterized by increased levels of interferon alpha (IFN-α) in plasma (5 dpi) and infiltration of T lymphocytes and macrophages were also observed. Increased plasma levels of interleukin-8 (IL-8) were detected at 10 and 15 dpi, coinciding with the progressive resolution of the infection. Moreover, a robust antibody response was detected by 10 dpi. An ex vivo air-liquid CDCD-derived porcine respiratory cells culture (ALI-PRECs) system showed virus replication in ALI-PRECs and cytopathic changes and disruption of ciliated columnar epithelia, thereby confirming the tracheal epithelia as a primary site of infection for PHEV.IMPORTANCE Among the ∼46 virus species in the family Coronaviridae, many of which are important pathogens of humans and 6 of which are commonly found in pigs, porcine hemagglutinating encephalomyelitis remains one of the least researched. The present study provided a comprehensive characterization of the PHEV infection process and immune responses using CDCD neonatal pigs. Moreover, we used an ex vivo ALI-PRECs system resembling the epithelial lining of the tracheobronchial region of the porcine respiratory tract to demonstrate that the upper respiratory tract is a primary site of PHEV infection. This study provides a platform for further multidisciplinary studies of coronavirus infections.


Assuntos
Betacoronavirus 1/imunologia , Infecções por Coronavirus/imunologia , Interferon-alfa/imunologia , Interleucina-8/imunologia , Doenças dos Suínos/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Especificidade de Órgãos/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos , Doenças dos Suínos/patologia , Linfócitos T/patologia , Linfócitos T/virologia
12.
Mol Immunol ; 134: 86-99, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33740580

RESUMO

Porcine deltacoronavirus (PDCoV), an emerging porcine enteropathogenic coronavirus, causes acute watery diarrhea and vomiting in piglets. Here, we isolated a strain of PDCoV from intestinal content of a piglet with severe watery diarrhea on a farm located in Henan Province, named PDCoV strain HNZK-02. Subsequently, the complete genomes of cell-cultured PDCoV HNZK-02 passage 5 and 15 were sequenced and analyzed. There was a continuous 3-nucleotide deletion and 7 amino acid changes in S genes when compared with the other reported PDCoVs. RNA sequencing (RNA-seq)-based transcriptome analysis was used to quantitatively identify differentially expressed genes after PDCoV infection in ST cells. In total, 523 differentially expressed genes (DEGs) were identified, including 62 upregulated genes and 457 downregulated genes. The 62 upregulated genes were associated with TNF signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, IL-17 signaling, chemokine signaling pathway and NF-κB signaling pathway. The significant expressing changed genes, including three antiviral genes (Mx1, OASL, OAS1) and three inflammatory chemokine related genes (CCL5, CXCL8, CXCL10) were further validated using quantitative real-time RT-PCR (qRT-PCR) assay. It showed the consistent expression patterns of the candidate genes with those from RNA-seq. Our results demonstrated that PDCoV infection activates NF-κB signaling pathway and leads to the expression of inflammatory factors, which may be related to TLRs but TLR2 is not a critical factor.In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of PDCoV infection.


Assuntos
Infecções por Coronavirus/veterinária , Deltacoronavirus/genética , Gastroenteropatias/veterinária , Gastroenteropatias/virologia , Genoma Viral/genética , Animais , China , Infecções por Coronavirus/virologia , Deltacoronavirus/isolamento & purificação , Gastroenteropatias/patologia , Perfilação da Expressão Gênica , Transdução de Sinais/genética , Suínos , Doenças dos Suínos/virologia , Transcriptoma/genética
13.
Poult Sci ; 100(4): 101018, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33662661

RESUMO

The objective of the present study was to characterize the atypical turkey coronavirus strain detected in a commercial meat turkey farm in Poland. Using the viral metagenomics approach, we obtained a complete genome sequence of coronavirus, isolated from duodenum samples of animals suffering from acute enteritis. The nearly full-length genome consisted of 27,614 nucleotides and presented a typical genetic organization similar to that of Polish infectious bronchitis virus (IBV) or French turkey coronavirus/guinea fowl coronavirus strains. Phylogenetic analysis based on both the full-length genome and the whole S gene suggested that gCoV/Tk/Poland/G160/2016 is related to turkey and guinea fowl coronavirus and not IBV strains. Sequence analysis of the genome revealed unique genetic characteristics of the present strain, demonstrating that the virus emerged as a result of the exchange of the S gene of IBV GI-19 lineage with the S gene related to the North American turkey coronaviruses and French guinea fowl coronaviruses. Analysis of earlier, similar recombinations suggests that both the S gene structures may be particularly mobile, willingly switching between different gammacoronavirus genomic backbones. The identified recombinant caused a severe course of the disease, which may imply that it is in the first phase of breaking the barriers between different bird species.


Assuntos
Coronavirus do Peru , Gammacoronavirus , Vírus da Bronquite Infecciosa , Glicoproteína da Espícula de Coronavírus/genética , Animais , Galinhas , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Coronavirus do Peru/genética , Gammacoronavirus/genética , Genoma Viral , Vírus da Bronquite Infecciosa/genética , Filogenia , Doenças das Aves Domésticas/virologia
14.
Emerg Infect Dis ; 27(4): 1015-1022, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33770472

RESUMO

The ongoing global pandemic caused by coronavirus disease has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. Because severe acute respiratory syndrome coronavirus 2 was first detected in December 2019, information on its tropism, host range, and clinical manifestations in animals is limited. Given the limited information, data from other coronaviruses might be useful for informing scientific inquiry, risk assessment, and decision-making. We reviewed endemic and emerging infections of alphacoronaviruses and betacoronaviruses in wildlife, livestock, and companion animals and provide information on the receptor use, known hosts, and clinical signs associated with each host for 15 coronaviruses detected in humans and animals. This information can be used to guide implementation of a One Health approach that involves human health, animal health, environmental, and other relevant partners in developing strategies for preparedness, response, and control to current and future coronavirus disease threats.


Assuntos
Coronaviridae/isolamento & purificação , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/veterinária , Zoonoses/virologia , Alphacoronavirus/isolamento & purificação , Animais , Animais Selvagens , Betacoronavirus/isolamento & purificação , COVID-19/virologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Surtos de Doenças , Reservatórios de Doenças/virologia , Especificidade de Hospedeiro , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Pandemias , SARS-CoV-2 , Zoonoses/epidemiologia
15.
Viruses ; 13(2)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671997

RESUMO

Porcine epidemic diarrhea virus (PEDV) is a coronavirus that causes serious and highly contagious enteric disease in swine worldwide. In this study, we constructed a recombinant baculovirus (S-Bac) expressing full-length spike protein of the virulent epidemic genotype 2b (G2b) PEDV strain for serological studies of infected pigs. We found that most spike-specific antibodies produced upon PEDV infection in pigs are conformation-specific and they could be detected on S-Bac-infected insect cells by immunofluorescent assay, but they were insensitive to Western blot analysis, the typical method for antiserum analysis. These results indicated that spike conformation is crucial for serum recognition. Since it is difficult to purify trimeric spike membrane protein for conventional enzyme-linked immunosorbent assay (ELISA), we used S-Bac to generate a novel cell-based ELISA for convenient PEDV detection. We analyzed 100 pig serum samples, and our cell-based ELISA exhibited a sensitivity of 100%, a specificity of 97%, and almost perfect agreement [Cohen's kappa coefficient value (κ) = 0.98] with immunocytochemical staining results. Our cell-based ELISA rapidly presented antigen for proper detection of conformation-specific antibodies, making PEDV detection more convenient, and it will be useful for detecting many viral diseases in the future.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , Infecções por Coronavirus/veterinária , Ensaio de Imunoadsorção Enzimática , Vírus da Diarreia Epidêmica Suína/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Baculoviridae/imunologia , Chlorocebus aethiops , Infecções por Coronavirus/imunologia , Proteínas Recombinantes/imunologia , Spodoptera , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Células Vero
16.
Virus Res ; 297: 198382, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33705799

RESUMO

Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.


Assuntos
Infecções por Coronavirus , Coronavirus , Especificidade de Hospedeiro , Zoonoses Virais , Animais , Coronavirus/química , Coronavirus/genética , Coronavirus/fisiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Genoma Viral , Humanos , Fases de Leitura Aberta , RNA Viral , Proteínas Virais , Estruturas Virais , Transcrição Viral , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Montagem de Vírus , Replicação Viral
17.
Prev Vet Med ; 190: 105323, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33756433

RESUMO

Calf gastrointestinal disease remains one of the main causes of productivity and economic losses on dairy operations. The majority of pre-weaned calf mortality is attributed to diarrhea or other digestive problems. Five enteric pathogens are commonly associated with diarrhea in dairy calves, including bovine rotavirus, bovine coronavirus, Escherichia coli, Salmonella spp., and Cryptosporidium parvum. Pathogen-associated differences in health outcomes and case fatality rates have not been well-characterized. Additionally, updated prevalence estimates may reflect important changes in the epidemiology of the pathogens on dairy farms. For this cohort study, fecal samples were collected from 276 clinically ill calves across 5 central Ohio dairy farms on the first day of diarrheal diagnosis. Genomic techniques, including reverse transcription polymerase chain reaction (RT-PCR) and droplet digital polymerase chain reaction (ddPCR) were used to test for the presence of the five enteric pathogens. A Poisson regression model was used to estimate the relative risk of mortality, and a survival analysis with a Cox regression model was used to analyze time to return to a healthy clinical status by pathogen. Rotavirus was the most frequently identified at 68.1 % (188/276), followed by F5 (K99)+E. coli at 42.5 % (114/268), C. parvum at 28.4 % (66/232), coronavirus at 5.8 % (16/276), and Salmonella had the lowest prevalence at 3.7 % (10/268). Risk of mortality tended to be higher for calves infected with Salmonella (RR = 3.83; 95 %CI: 0.93, 16.02, p = 0.062); however, the time to return to a healthy clinical status was not different for different pathogens. Only farm was a significant predictor of time to return to health (p = 0.017); the within-farm median duration of signs substantially varied between 2 and 7 days. The results suggest that the prevalence and distribution of rotaviral infections is higher than reported in prior studies. With the exception of infections caused by Salmonella spp., pathogen diagnosis on the first day of diarrhea was a poor predictor of the outcome and duration of disease. These results are critical to guide the implementation of prevention measures to detect, treat, and prevent calf diarrhea.


Assuntos
Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/virologia , Diarreia/veterinária , Animais , Animais Recém-Nascidos , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Coronavirus Bovino/isolamento & purificação , Criptosporidiose/epidemiologia , Cryptosporidium parvum/isolamento & purificação , Indústria de Laticínios , Diarreia/epidemiologia , Diarreia/microbiologia , Diarreia/virologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Fazendas , Estudos Longitudinais , Ohio/epidemiologia , Prevalência , Rotavirus/isolamento & purificação , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/veterinária , Salmonella/isolamento & purificação , Salmonelose Animal/epidemiologia , Resultado do Tratamento , Desmame
18.
Zoonoses Public Health ; 68(4): 353-357, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33565270

RESUMO

Dromedary camels are playing essential roles in the evolution and transmission of MERS-CoV. MERS-CoV shedding in some dromedary camel secretions, particularly nasal swabs, were studied in more detail. However, the roles of viral shedding in saliva and ocular secretions are still required further detailed studies. We performed a longitudinal study on a farm of dromedary camel herd from 10th March until 7th April, 2019, in eastern Saudi Arabia. This is a closed management herd including a large number of colour-based breed animals and include animals of both sexes. We collected saliva and ocular swabs from 18% of the target animal population. Detection of the MERS-CoV-RNAs in these samples was conducted by the real-time PCR technique. We detected the viral RNAs in the saliva of and conjunctival swabs of some of the tested animals at 33%, 77% and 88% during the three-time points, respectively. Moreover, we also detected the viral RNAs in the conjunctival swabs at 11%, 22% and 33% at similar time intervals. Our results are suggesting the possibility of MERS-CoV shedding in the saliva and the ocular discharges of the infected dromedary camels. This explains, at least in part, the mechanism of transmission of MERS-CoV from animals to humans. More studies are needed for a better understanding of the transmission of MERS-CoV from animals to humans; thus, the risk of virus spread can be mitigated.


Assuntos
Camelus/virologia , Túnica Conjuntiva/química , Infecções por Coronavirus/veterinária , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , RNA Viral/análise , Saliva/química , Animais , Filogenia , Arábia Saudita/epidemiologia , Eliminação de Partículas Virais
19.
Prev Vet Med ; 188: 105281, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33530012

RESUMO

Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based control planning against emerging zoonoses. Pigs have high contact rates with humans and other animals, transmit similar pathogens as humans including CoVs, and serve as reservoirs and intermediate hosts for notable human pandemics. Wild and domestic pigs both interface with humans and each other but have unique ecologies that demand different surveillance strategies. Three fundamental questions shape any surveillance program: where, when, and how can surveillance be conducted to optimize the surveillance objective? Using theory of mechanisms of zoonotic spillover and data on risk factors, we propose a framework for determining where surveillance might begin initially to maximize a detection in each host species at their interface. We illustrate the utility of the framework using data from the United States. We then discuss variables to consider in refining when and how to conduct surveillance. Recent advances in accounting for opportunistic sampling designs and in translating serology samples into infection times provide promising directions for extracting spatio-temporal estimates of disease risk from typical surveillance data. Such robust estimates of population-level disease risk allow surveillance plans to be updated in space and time based on new information (adaptive surveillance) thus optimizing allocation of surveillance resources to maximize the quality of risk assessment insight.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Vigilância em Saúde Pública/métodos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Zoonoses/epidemiologia , Animais , Animais Selvagens/virologia , Coronavirus/isolamento & purificação , Reservatórios de Doenças/virologia , Humanos , Sus scrofa/virologia , Suínos/virologia , Zoonoses/transmissão
20.
Arch Virol ; 166(4): 1113-1124, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33576898

RESUMO

Avian influenza virus (AIV), Newcastle disease virus (NDV), and avian infectious bronchitis virus (IBV) inflict immense damage on the global poultry industry annually. Serological diagnostic methods are fundamental for the effective control and prevention of outbreaks caused by these viruses. In this study, a novel triplex protein microarray assay was developed and validated for the rapid and simultaneous visualized detection of antibodies against AIV, NDV, and IBV in chicken sera. The AIV nuclear protein (NP), NDV phosphoprotein (P), and IBV nonstructural protein 5 (nsp5) were produced in a prokaryotic expression system, purified, and immobilized onto an initiator integrated poly(dimethylsiloxane) (iPDMS) film as probes to detect antibodies against these viruses in chicken sera. After optimization of the reaction conditions, no cross-reactivity was detected with infectious bursal disease virus, avian leukosis virus subgroup J and chicken anemia virus antisera. The lowest detectable antibody titers in this assay corresponded to hemagglutination inhibition (HI) titers of 24 and 21 for AIV and NDV, respectively, and to an IDEXX antibody titer of 103 for IBV, using the HI assay and IDEXX commercial ELISA kit as the reference methods. When156 serum samples were tested using the new assay, the HI test and the IBV IDEXX ELISA kit, the assay showed 96.8% (151/156), 97.4% (152/156) and 99.4% (155/156) diagnostic accuracy for detection of AIV, NDV and IBV antibody, respectively. The current study suggests that the newly developed triplex microarray is rapid, sensitive, and specific, providing a viable alternative assay for AIV, NDV, and IBV antibody screening in epidemiological investigations and vaccination evaluations.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Bronquite Infecciosa/isolamento & purificação , Vírus da Influenza A/isolamento & purificação , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/diagnóstico , Análise Serial de Proteínas/veterinária , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Galinhas , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/veterinária , Imunoensaio/normas , Imunoensaio/veterinária , Vírus da Bronquite Infecciosa/imunologia , Vírus da Influenza A/imunologia , Influenza Aviária/diagnóstico , Doença de Newcastle/diagnóstico , Vírus da Doença de Newcastle/imunologia , Doenças das Aves Domésticas/virologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Testes Sorológicos/normas , Testes Sorológicos/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...