Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
Filtros adicionais











Intervalo de ano
1.
Cell Physiol Biochem ; 53(1): 121-140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31230428

RESUMO

Infections with Coxsackievirus B3 and other members of the enterovirus genus are a common reason for myocarditis and sudden cardiac death in modern society. Despite intensive scientific efforts to cure enterovirus infections, there is still no standardized treatment option. The complexity of Coxsackievirus B3´s effects on the host cell make well defined studies on this topic very challenging. However, recent publications report newly found effects of CVB3´s structural and non-structural proteins on infected cells. For the first time, the viral capsid protein VP1 was shown to have direct influence on the viral life-cycle. By shortening the G0 and the G2 phase and simultaneously prolonging the G1 and G1-S phase, the translation of viral proteins is enhanced and the production of viable CVB3 particles is promoted. Coxsackievirus B3´s viroporin, protein 2B, was recently studied in more detail as well. Structural and physiological analyses identified two hydrophilic α-helices in the structure of 2B, enabling it to insert into cellular membranes of host cells. As main target of 2B the endoplasmatic reticulum was identified. The insertion of 2B into the ER membranes leads to an uncontrolled calcium outflow into the cytoplasm. Additional insertion of 2B into the cell membrane leads to host cell destabilization and in the end to release of viral progeny. The importance of the Coxsackievirus B3´s proteases 2A and 3C in pathogenicity is observed since years. Recently, DAP5 and eIf4G were identified as new cleavage targets for protease 2A. Cleavage of DAP-5 into DAP5-N and DAP5-C changes the gene expression of the host cell and promotes cell death. Additionally, protease 3C targets and cleaves procaspase 8 promoting the mitochondrial apoptosis pathway and cell death. Recent studies identified significant effects of CVB3 on mitochondria of infected cells. Mouse cardiomyocytes showed decreased activities of respiratory chain complexes I-III and changed transcription of important subunits of the complexes I-IV. A disrupted energy metabolism may be one of the main causes of cardiac insufficiency and death in CVB3 infected patients. In addition to a modified energy metabolism, CVB3 affects cardiac ion channels, KCNQ1 in particular. SGK1, which is an important mediator in KCNQ1 membrane insertions, is highly upregulated during CVB3 infections. This results in an increased insertion of KCNQ1 into the cell membrane of cardiac cells. Under stress conditions, this KCNQ1 overshoot may lead to a disturbed cardiac action potential and therefore to sudden cardiac death, as it is often observed in CVB3 infected persons.


Assuntos
Infecções por Coxsackievirus/patologia , Enterovirus Humano B/fisiologia , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coxsackievirus/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Enterovirus Humano B/patogenicidade , Humanos , Canal de Potássio KCNQ1/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/virologia , Proteínas não Estruturais Virais/metabolismo
2.
Medicine (Baltimore) ; 98(19): e15629, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31083261

RESUMO

OBJECTIVE: To determine the effects and mechanism of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1, CC1)-mediated regulation of the Coxsackie and Adenovirus Receptor (CAR) after Coxsackievirus B3 (CVB3) infection. METHODS: A mouse CC1 overexpression recombinant virus was constructed, followed by insertion of a pLVX-CEACAM 1-zsgreen-puro (rLV-CEACAM 1) plasmid into the recombinant retrovirus. Cardiac myocytes were assigned into different groups according to various treatments. The apoptosis rate and cell activity in each group were observed. Further, CAR expression and SYK, IL-1ß, and p-SYK levels were measured. RESULTS: The recombinant retrovirus titer was measured as 1.5 × 10 TUs/ml. The apoptosis rate of cardiac myocytes in the CC1 overexpression plus CVB3 group was significantly elevated, and the relative expression of the CAR gene was the highest in the CC1 overexpression plus CVB3 group. TNF-α and IL-1ß levels increased due to CC1 overexpression and further increased after CVB3 infection. CAR protein expression also changed along with the levels of CC1, SYK, and TNF-α after infection. CONCLUSION: CC1 may promote CAR expression after CVB3 infection and regulate CAR protein expression by activating the CC1-SYK-TNF-α signaling axis during the infection process.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Infecções por Coxsackievirus/metabolismo , Cardiopatias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Apoptose/fisiologia , Antígeno Carcinoembrionário/genética , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Cardiopatias/etiologia , Cardiopatias/patologia , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Células Musculares/metabolismo , Células Musculares/patologia , Organismos Livres de Patógenos Específicos , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
3.
PLoS Pathog ; 15(4): e1007674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30958867

RESUMO

Viral myocarditis is a serious disease, commonly caused by type B coxsackieviruses (CVB). Here we show that innate immune protection against CVB3 myocarditis requires the IFIT (IFN-induced with tetratricopeptide) locus, which acts in a biphasic manner. Using IFIT locus knockout (IFITKO) cardiomyocytes we show that, in the absence of the IFIT locus, viral replication is dramatically increased, indicating that constitutive IFIT expression suppresses CVB replication in this cell type. IFNß pre-treatment strongly suppresses CVB3 replication in wild type (wt) cardiomyocytes, but not in IFITKO cardiomyocytes, indicating that other interferon-stimulated genes (ISGs) cannot compensate for the loss of IFITs in this cell type. Thus, in isolated wt cardiomyocytes, the anti-CVB3 activity of IFITs is biphasic, being required for protection both before and after T1IFN signaling. These in vitro findings are replicated in vivo. Using novel IFITKO mice we demonstrate accelerated CVB3 replication in pancreas, liver and heart in the hours following infection. This early increase in virus load in IFITKO animals accelerates the induction of other ISGs in several tissues, enhancing virus clearance from some tissues, indicating that-in contrast to cardiomyocytes-other ISGs can offset the loss of IFITs from those cell types. In contrast, CVB3 persists in IFITKO hearts, and myocarditis occurs. Thus, cardiomyocytes have a specific, biphasic, and near-absolute requirement for IFITs to control CVB infection.


Assuntos
Proteínas de Transporte/fisiologia , Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/patogenicidade , Miocardite/prevenção & controle , Miócitos Cardíacos/enzimologia , Animais , Células Cultivadas , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/metabolismo , Miocardite/virologia , Replicação Viral
4.
Nat Commun ; 10(1): 746, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765691

RESUMO

Excessive or uncontrolled release of proinflammatory cytokines caused by severe viral infections often results in host tissue injury or even death. Phospholipase C (PLC)s degrade phosphatidylinositol-4, 5-bisphosphate (PI(4,5)P2) lipids and regulate multiple cellular events. Here, we report that PLCß2 inhibits the virus-induced expression of pro-inflammatory cytokines by interacting with and inhibiting transforming growth factor-ß-activated kinase 1 (TAK1) activation. Mechanistically, PI(4,5)P2 lipids directly interact with TAK1 at W241 and N245, and promote its activation. Impairing of PI(4,5)P2's binding affinity or mutation of PIP2-binding sites on TAK1 abolish its activation and the subsequent production of pro-inflammatory cytokines. Moreover, PLCß2-deficient mice exhibit increased expression of proinflammatory cytokines and a higher frequency of death in response to virus infection, while the PLCß2 activator, m-3M3FBS, protects mice from severe Coxsackie virus A 16 (CVA16) infection. Thus, our findings suggest that PLCß2 negatively regulates virus-induced pro-inflammatory responses by inhibiting phosphoinositide-mediated activation of TAK1.


Assuntos
Infecções por Coxsackievirus/metabolismo , Citocinas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/metabolismo , Animais , Células Cultivadas , Cercopithecus aethiops , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Citocinas/genética , Enterovirus/fisiologia , Ativação Enzimática , Regulação da Expressão Gênica , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipase C beta/genética , Ligação Proteica , Células Vero
5.
Basic Res Cardiol ; 114(2): 11, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30673858

RESUMO

Coxsackieviruses of group B (CVB) are well-known causes of acute and chronic myocarditis. Chronic myocarditis can evolve into dilated cardiomyopathy (DCM) characterized by fibrosis and cardiac remodeling. Interleukin-1ß (IL-1ß) plays a decisive role in the induction of the inflammatory response as a consequence of viral replication. In this study, we analyzed the effects of IL-1ß neutralization on the transition of acute to chronic myocarditis in a mouse model of CVB3 myocarditis. Mice were treated with an anti-murine IL-1ß antibody as a surrogate for Canakinumab at different time points post CVB3 infection. Treatment was performed in the early phase (day 1-14 pi, day 3-14 pi) or at a later stage of myocarditis (day 14-28 pi). Subsequently, the hearts were examined histologically, immunohistochemically and by molecular biology. A significant reduction of viral replication, cardiac damage and inflammation was found after administration of the antibody in the early phase and in the later phase of infection. Furthermore, less collagen I deposition and a considerable reduction of fibrosis were found in antibody-treated mice. Using microarray analysis, a significant upregulation of various extracellular matrix and fibrosis-associated molecules was found in CVB3-infected mice, including TGF-ß, TIMP-1 and MMP12, as well as diverse matricellular proteins, whereas, these molecules were significantly downregulated in all IL-1ß antibody-treated infected mice. Neutralization of IL-1ß at different stages of enteroviral infection prevents the development of chronic viral myocarditis by reducing inflammation, interstitial fibrosis and adverse cardiac remodeling. These findings are relevant for the treatment of patients with acute and chronic myocarditis.


Assuntos
Interleucina-1beta/antagonistas & inibidores , Miocardite/patologia , Remodelação Ventricular/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Doença Crônica , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Enterovirus Humano B , Camundongos , Miocardite/metabolismo , Miocardite/virologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Biochim Biophys Acta Mol Basis Dis ; 1864(8): 2579-2589, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29730342

RESUMO

Acute viral myocarditis (VM), characterised by leukocyte infiltration and dysfunction of the heart, is an important cause of sudden cardiac death in young adults. Unfortunately, to date, the pathological mechanisms underlying cardiac failure in VM remain incompletely understood. In the current study, we investigated if acute VM leads to cardiac metabolic rewiring and if this process is driven by local inflammation. Transcriptomic analysis of cardiac biopsies from myocarditis patients and a mouse model of VM revealed prominent reductions in the expression of a multitude of genes involved in mitochondrial oxidative energy metabolism. In mice, this coincided with reductions in high-energy phosphate and NAD levels, as determined by Imaging Mass Spectrometry, as well as marked decreases in the activity, protein abundance and mRNA levels of various enzymes and key regulators of cardiac oxidative metabolism. Indicative of fulminant cardiac inflammation, NF-κB signalling and inflammatory cytokine expression were potently induced in the heart during human and mouse VM. In cultured cardiomyocytes, cytokine-mediated NF-κB activation impaired cardiomyocyte oxidative gene expression, likely by interfering with the PGC-1 (peroxisome proliferator-activated receptor (PPAR)-γ co-activator) signalling network, the key regulatory pathway controlling cardiomyocyte oxidative metabolism. In conclusion, we provide evidence that acute VM is associated with extensive cardiac metabolic remodelling and our data support a mechanism whereby cytokines secreted primarily from infiltrating leukocytes activate NF-κB signalling in cardiomyocytes thereby inhibiting the transcriptional activity of the PGC-1 network and consequently modulating myocardial energy metabolism.


Assuntos
Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Musculares/metabolismo , Miocardite/metabolismo , NF-kappa B/metabolismo , Doença Aguda , Animais , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Miocardite/patologia , Miocardite/virologia , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo
7.
Mol Cell Biochem ; 442(1-2): 11-18, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28887702

RESUMO

In this study, we investigated the roles of RIP1/RIP3 mediated cardiomyocyte necroptosis in CVB3-induced acute myocarditis. Serum concentrations of creatinine kinase (CK), CK-MB, and cardiac troponin I were detected using a Hitachi Automatic Biochemical Analyzer in a mouse model of acute VMC. Histological changes in cardiac tissue were observed by light microscope and expression levels of RIP1/RIP3 in the cardiac tissue were detected via Western blot and immunohistochemistry. The data showed that RIP1/RIP3 was highly expressed in cardiomyocytes in the acute VMC mouse model and that the necroptosis pathway specific blocker, Nec-1, dramatically reduced the myocardial damage by downregulating the expression of RIP1/RIP3. These findings provide evidence that necroptosis plays a significant role in cardiomyocyte death and it is a major pathway for cell death in acute VMC. Blocking the necroptosis pathway may serve as a new therapeutic option for the treatment of acute viral myocarditis.


Assuntos
Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Doença Aguda , Animais , Morte Celular , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Enterovirus Humano B/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/patologia , Miocardite/virologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
8.
Inflammation ; 41(1): 232-239, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29039143

RESUMO

The cluster of differentiation protein complex, CD80/CD86, regulates Th1/Th2 differentiation in autoimmune disease. In order to establish the effects of CD80/CD86 on Th17 cell differentiation in acute viral myocarditis (VMC), we infected C57BL/6 mice with Coxsackie virus B3 (CVB3) and examined the effects of the treatment with anti-CD80/CD86 monoclonal antibodies (mAbs) on Th17 cell differentiation in vivo. The effects of anti-CD80/CD86 mAbs on Th17 cell differentiation were further evaluated in vitro. The treatment with anti-CD80 mAb induced marked suppression of Th17 cell differentiation and ROR-γt mRNA expression, whereas anti-CD86 mAb alone had no effect, both in vivo and in vitro. Our finding that CD80 regulates Th17 differentiation supports the potential utility of anti-CD80 mAb as an effective new immunotherapeutic target in acute VMC.


Assuntos
Antígeno B7-1/imunologia , Diferenciação Celular , Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Miocardite/imunologia , Miocárdio/imunologia , Baço/imunologia , Células Th17/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Antígeno B7-1/antagonistas & inibidores , Antígeno B7-1/metabolismo , Antígeno B7-2/imunologia , Antígeno B7-2/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Interações Hospedeiro-Patógeno , Masculino , Camundongos Endogâmicos C57BL , Miocardite/tratamento farmacológico , Miocardite/metabolismo , Miocardite/virologia , Miocárdio/metabolismo , Miocárdio/patologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/metabolismo , Baço/virologia , Células Th17/efeitos dos fármacos , Células Th17/metabolismo , Células Th17/virologia
9.
Biomed Environ Sci ; 31(12): 867-875, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30636656

RESUMO

OBJECTIVE: Autophagy is a highly conserved intracellular degradation pathway. Many picornaviruses induce autophagy to benefit viral replication, but an understanding of how autophagy occurs remains incomplete. In this study, we explored whether coxsackievirus B3 (CVB3) infection induced autophagy through endoplasmic reticulum (ER) stress. METHODS: In CVB3-infected HeLa cells, the specific molecules of ER stress and autophagy were detected using Western blotting, reverse transcription polymerase chain reaction (RT-PCR), and confocal microscopy. Then PKR-like ER protein kinase (PERK) inhibitor, inositol-requiring protein-1 (IRE1) inhibitor, or activating transcription factor-6 (ATF6) inhibitor worked on CVB3-infected cells, their effect on autophagy was assessed by Western blotting for detecting microtubule-associated protein light chain 3 (LC3). RESULTS: CVB3 infection induced ER stress, and ER stress sensors PERK/eIF2α, IRE1/XBP1, and ATF6 were activated. CVB3 infection increased the accumulation of green fluorescent protein (GFP)-LC3 punctuation and induced the conversion from LC3-I to phosphatidylethanolamine-conjugated LC3-1 (LC3-II). CVB3 infection still decreased the expression of mammalian target of rapamycin (mTOR) and p-mTOR. Inhibition of PERK, IRE1, or ATF6 significantly decreased the ratio of LC3-II to LC3-I in CVB3-infected HeLa cells. CONCLUSION: CVB3 infection induced autophagy through ER stress in HeLa cells, and PERK, IRE1, and ATF6a pathways participated in the regulation of autophagy. Our data suggested that ER stress may inhibit mTOR signaling pathway to induce autophagy during CVB3 infection.


Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Autofagia , Infecções por Coxsackievirus/metabolismo , Estresse do Retículo Endoplasmático , Endorribonucleases/metabolismo , Enterovirus Humano B , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo , Células HeLa , Humanos , Transdução de Sinais
10.
PLoS Pathog ; 13(12): e1006744, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29220410

RESUMO

Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP) is a transcription factor induced by hypertonic stress in the kidney. However, the function of NFAT5 in other organs has rarely been studied, even though it is ubiquitously expressed. Indeed, although NFAT5 was reported to be critical for heart development and function, its role in infectious heart diseases has remained obscure. In this study, we aimed to understand the mechanism by which NFAT5 interferes with infection of Coxsackievirus B3 (CVB3), a major cause of viral myocarditis. Our initial results demonstrated that although the mRNA level of NFAT5 remained constant during CVB3 infection, NFAT5 protein level decreased because the protein was cleaved. Bioinformatic prediction and verification of the predicted site by site-directed mutagenesis experiments determined that the NFAT5 protein was cleaved by CVB3 protease 2A at Glycine 503. Such cleavage led to the inactivation of NFAT5, and the 70-kDa N-terminal cleavage product (p70-NFAT5) exerted a dominant negative effect on the full-length NFAT5 protein. We further showed that elevated expression of NFAT5 to counteract viral protease cleavage, especially overexpression of a non-cleavable mutant of NFAT5, significantly inhibited CVB3 replication. Ectopic expression of NFAT5 resulted in elevated expression of inducible nitric oxide synthase (iNOS), a factor reported to inhibit CVB3 replication. The necessity of iNOS for the anti-CVB3 effect of NFAT5 was supported by the observation that inhibition of iNOS blocked the anti-CVB3 effect of NFAT5. In a murine model of viral myocarditis, we observed that treatment with hypertonic saline or mannitol solution upregulated NFAT5 and iNOS expression, inhibited CVB3 replication and reduced tissue damage in the heart. Taken together, our data demonstrate that the anti-CVB3 activity of NFAT5 is impaired during CVB3 infection due to 2A-mediated cleavage of NFAT5. Thus induction of NFAT5 by hypertonic agents may be a promising strategy for the development of anti-CVB3 therapeutics.


Assuntos
Infecções por Coxsackievirus/virologia , Cisteína Endopeptidases/metabolismo , Enterovirus Humano B/enzimologia , Miocardite/virologia , Miócitos Cardíacos/virologia , Fatores de Transcrição/metabolismo , Proteínas Virais/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Enterovirus Humano B/imunologia , Enterovirus Humano B/fisiologia , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos A , Mutação , Miocardite/imunologia , Miocardite/metabolismo , Miocardite/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteólise , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Especificidade por Substrato , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Replicação Viral
11.
Circ Heart Fail ; 10(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29158436

RESUMO

BACKGROUND: The alarmins S100A8 and S100A9 are damage-associated molecular patterns, which play a pivotal role in cardiovascular diseases, inflammation, and viral infections. We aimed to investigate their role in Coxsackievirus B3 (CVB3)-induced myocarditis. METHODS AND RESULTS: S100A8 and S100A9 mRNA expression was 13.0-fold (P=0.012) and 5.1-fold (P=0.038) higher in endomyocardial biopsies from patients with CVB3-positive myocarditis compared with controls, respectively. Elimination of CVB3 led to a downregulation of these alarmins. CVB3-infected mice developed an impaired left ventricular function and displayed an increased left ventricular S100A8 and S100A9 protein expression versus controls. In contrast, CVB3-infected S100A9 knockout mice, which are also a complete knockout for S100A8 on protein level, showed an improved left ventricular function, which was associated with a reduced cardiac inflammatory and oxidative response, and lower CVB3 copy number compared with wild-type CVB3 mice. Exogenous application of S100A8 to S100A9 knockout CVB3 mice induced a severe myocarditis similar to wild-type CVB3 mice. In CVB3-infected HL-1 cells, S100A8 and S100A9 enhanced oxidative stress and CVB3 copy number compared with unstimulated infected cells. In CVB3-infected RAW macrophages, both alarmins increased MIP-2 (macrophage inflammatory protein-2) chemokine expression, which was reduced in CVB3 S100A8 knockdown versus scrambled siRNA CVB3 cells. CONCLUSIONS: S100A8 and S100A9 aggravate CVB3-induced myocarditis and might serve as therapeutic targets in inflammatory cardiomyopathies.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/patogenicidade , Miocardite/metabolismo , Miócitos Cardíacos/metabolismo , Adulto , Animais , Calgranulina A/deficiência , Calgranulina A/genética , Calgranulina B/genética , Estudos de Casos e Controles , Quimiocina CXCL2/metabolismo , Infecções por Coxsackievirus/diagnóstico , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Feminino , Fibrose , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Miocardite/diagnóstico , Miocardite/genética , Miocardite/virologia , Miócitos Cardíacos/patologia , Miócitos Cardíacos/virologia , Infiltração de Neutrófilos , Estresse Oxidativo , Células RAW 264.7 , Interferência de RNA , RNA Mensageiro/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais , Transfecção , Função Ventricular Esquerda
12.
PLoS One ; 12(10): e0185819, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28973047

RESUMO

Type B coxsackievirus (CVB) is a common cause of acute and chronic myocarditis, meningitis and pancreatitis, often leading to heart failure and pancreatic deficiency. The polarization of CD4+ T lymphocytes and their cytokine milieu are key factors in the outcome of CVB-induced diseases. Thus, sensing the virus and driving the adaptive immune response are essential for the establishment of a protective immune response. TLR3 is a crucial virus recognition receptor that confers the host with resistance to CVB infection. In the current study, we found that TLR3 expression in dendritic cells plays a role in their activation upon CVB3 infection in vitro, as TLR3-deficient dendritic cells up-regulate CD80 and CD86 to a less degree than WT cells. Instead, they up-regulated the inhibitory molecule PD-L1 and secreted considerably lower levels of TNF-α and IL-10 and a higher level of IL-23. T lymphocyte proliferation in co-culture with CVB3-infected dendritic cells was increased by TLR3-expressing DCs and other cells. Furthermore, in the absence of TLR3, the T lymphocyte response was shifted toward a Th17 profile, which was previously reported to be deleterious for the host. TLR3-deficient mice were very susceptible to CVB3 infection, with increased pancreatic injury and extensive inflammatory infiltrate in the heart that was associated with uncontrolled viral replication. Adoptive transfer of TLR3+ dendritic cells slightly improved the survival of TLR-deficient mice following CVB3 infection. Therefore, our findings highlight the importance of TLR3 signaling in DCs and in other cells to induce activation and polarization of the CD4+ T lymphocyte response toward a Th1 profile and consequently for a better outcome of CVB3 infection. These data provide new insight into the immune-mediated mechanisms by which CVBs are recognized and cleared in order to prevent the development of myocarditis and pancreatitis and may contribute to the design of therapies for enteroviral infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Coxsackievirus/imunologia , Células Dendríticas/imunologia , Enterovirus Humano B , Ativação Linfocitária/fisiologia , Receptor 3 Toll-Like/metabolismo , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/metabolismo , Infecções por Coxsackievirus/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Camundongos , Camundongos Knockout
13.
Circ Heart Fail ; 10(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28912259

RESUMO

BACKGROUND: The cytoplasmatic pattern recognition receptor, NOD2 (nucleotide-binding oligomerization domain 2), belongs to the innate immune system and is among others responsible for the recognition of single-stranded RNA. With Coxsackievirus B3 (CVB3) being a single-stranded RNA virus, and the recent evidence that the NOD2 target, NLRP3 (NOD-like receptor family, pyrin domain containing 3) is of importance in the pathogenesis of CVB3-induced myocarditis, we aimed to unravel the role of NOD2 in CVB3-induced myocarditis. METHODS AND RESULTS: Endomyocardial biopsy NOD2 mRNA expression was higher in CVB3-positive patients compared with patients with myocarditis but without evidence of persistent CVB3 infection. Left ventricular NOD2 mRNA expression was also induced in CVB3-induced myocarditis versus healthy control mice. NOD2 knockdown(-/-) mice were rescued from the detrimental CVB3-mediated effects as shown by a reduced cardiac inflammation (less cardiac infiltrates and suppression of proinflammatory cytokines), cardiac fibrosis, apoptosis, lower CAR (Coxsackievirus and adenovirus receptor) expression and CVB3 copy number, and an improved left ventricular function in NOD2-/- CVB3 mice compared with wild-type CVB3 mice. In agreement, NOD2-/- decreased the CVB3-induced inflammatory response, CVB3 copy number, and apoptosis in vitro. NOD2-/- was further associated with a reduction in CVB3-induced NLRP3 expression and activity as evidenced by lower ASC (apoptosis-associated speck-like protein containing a CARD) expression, caspase 1 activity, or IL-1ß (interleukin-1ß) protein expression under in vivo and in vitro CVB3 conditions. CONCLUSIONS: NOD2 is an important mediator in the viral uptake and inflammatory response during the pathogenesis of CVB3 myocarditis.


Assuntos
Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Estudos de Casos e Controles , Caspase 1/metabolismo , Linhagem Celular , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/prevenção & controle , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Enterovirus Humano B/imunologia , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/imunologia , Miocardite/prevenção & controle , Miocardite/virologia , Miocárdio/imunologia , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Fenótipo , Interferência de RNA , Transdução de Sinais , Transfecção , Regulação para Cima
14.
Int J Mol Med ; 40(1): 182-192, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28560385

RESUMO

Recent studies have found that viral myocarditis (VMC) associated with coxsackievirus B3 (CVB3) causes autophagy activation after infection, but the specific mechanism is not clear. The present study demonstrated that the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway participates in CVB3­induced autophagy. We found that the light chain 3 (LC3)­â…¡/LC3­I ratio was increased and p62 and p­mTOR were altered at different times during CVB3 infection. To further assess the effects of this signaling pathway on CVB3 infection and viral replication, we selected 24 h post­inoculation (h.p.i.) as our research time point to conduct our next study. We inhibited the function of PI3K, Akt1 and mTOR. The outcome showed that inhibition of PI3K with ZSTK474 alleviated autophagy and decreased CVB3 mRNA replication and VP1 expression. Inhibition of mTOR with rapamycin promoted autophagy and viral mRNA replication but did not impact VP1 expression. Inhibition of Akt with MK2206 aggravated autophagy induced by viral infection. In our research, p62 exhibited a decrease at the beginning of infection but then increased as infection time increased. This finding may serve as a clue to elucidate the function of autophagy at different times of infection. However, the details merit further study. In conclusion, our findings suggest that the PI3K/Akt/mTOR signaling pathway participates in the process of autophagy induced by CVB3 infection. This finding may provide a new perspective of CVB3-induced autophagy.


Assuntos
Autofagia , Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Infecções por Coxsackievirus/genética , Enterovirus Humano B/genética , Células HeLa , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética
15.
PLoS One ; 12(3): e0173259, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28278207

RESUMO

The function of the proteasome is modulated at the level of subunit expression and by association with its regulatory complexes. During coxsackievirus B3 (CVB3) myocarditis, IFN-induced formation of immunoproteasomes (ip) is known to be critical for regulating immune modulating molecules. The function of the IFN-γ-inducible proteasome regulator subunits PA28 α and ß, however, in this context was unknown. During viral myocarditis, we found an increased abundance of PA28ß subunits in heart tissue. PA28α/ß exists in PA28-20S-PA28 and PA700-20S-PA28 hybrid proteasome complexes in cells both with either predominant ip and standard proteasome (sp) expression. Being in line with reduced proteasome activity in PA28α/ß-deficient cells, we observed increased levels of oxidized and poly-ubiquitinated proteins upon TLR3-activation in these cells. Moreover, PA28α/ß is capable to interfere directly with viral replication of CVB3 and facilitates the generation of CVB3-derived MHC class I epitopes by the proteasome. In contrast to a distinct function of PA28α/ß in vitro, gene ablation of PA28α/ß in mice being on a genetic background with resistance towards the development of severe infection had no significant impact on disease progression. Other than reported for the ip, in this host PA28α/ß is dispensable to meet the demand of increased peptide hydrolysis capacity by the proteasome during viral myocarditis.


Assuntos
Infecções por Coxsackievirus/imunologia , Enterovirus Humano B/imunologia , Miocardite/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Replicação Viral , Animais , Apresentação do Antígeno , Autoantígenos/imunologia , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Epitopos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/metabolismo , Miocardite/virologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia
16.
PLoS One ; 12(2): e0169412, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28146569

RESUMO

Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower 'vascular' channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis.


Assuntos
Enterovirus Humano B/fisiologia , Mucosa Intestinal/virologia , Dispositivos Lab-On-A-Chip , Apoptose , Células CACO-2 , Caspases/metabolismo , Células Cultivadas , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Citocinas/metabolismo , Efeito Citopatogênico Viral , Humanos , Ensaio de Placa Viral , Replicação Viral
17.
Mol Cell Proteomics ; 16(4 suppl 1): S244-S262, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28174228

RESUMO

Cellular responses to stimuli involve dynamic and localized changes in protein kinases and phosphatases. Here, we report a generalized functional assay for high-throughput profiling of multiple protein phosphatases with subcellular resolution and apply it to analyze coxsackievirus B3 (CVB3) infection counteracted by interferon signaling. Using on-plate cell fractionation optimized for adherent cells, we isolate protein extracts containing active endogenous phosphatases from cell membranes, the cytoplasm, and the nucleus. The extracts contain all major classes of protein phosphatases and catalyze dephosphorylation of plate-bound phosphosubstrates in a microtiter format, with cellular activity quantified at the end point by phosphospecific ELISA. The platform is optimized for six phosphosubstrates (ERK2, JNK1, p38α, MK2, CREB, and STAT1) and measures specific activities from extracts of fewer than 50,000 cells. The assay was exploited to examine viral and antiviral signaling in AC16 cardiomyocytes, which we show can be engineered to serve as susceptible and permissive hosts for CVB3. Phosphatase responses were profiled in these cells by completing a full-factorial experiment for CVB3 infection and type I/II interferon signaling. Over 850 functional measurements revealed several independent, subcellular changes in specific phosphatase activities. During CVB3 infection, we found that type I interferon signaling increases subcellular JNK1 phosphatase activity, inhibiting nuclear JNK1 activity that otherwise promotes viral protein synthesis in the infected host cell. Our assay provides a high-throughput way to capture perturbations in important negative regulators of intracellular signal-transduction networks.


Assuntos
Infecções por Coxsackievirus/metabolismo , Miócitos Cardíacos/virologia , Fosfoproteínas Fosfatases/metabolismo , Proteômica/métodos , Linhagem Celular , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Infecções por Coxsackievirus/virologia , Citoplasma/metabolismo , Células HT29 , Células HeLa , Humanos , Miócitos Cardíacos/metabolismo , Fosforilação , Mapas de Interação de Proteínas , Transdução de Sinais
18.
Virulence ; 8(7): 1229-1244, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28112573

RESUMO

INTRODUCTION: Although known as cytolytic viruses, group B coxackieviruses (CVB) are able to establish a persistent infection in vitro and in vivo. Viral persistence has been reported as a key mechanism in the pathogenesis of CVB-associated chronic diseases such as type 1 diabetes (T1D). The impact of CVB4 persistence on human pancreas ductal-like cells was investigated. METHODS: A persistent CVB4 infection was established in ductal-like cells. PDX-1 expression, resistance to CVB4-induced lysis and CAR expression were evaluated. The profile of cellular microRNAs (miRNAs) was investigated through miRNA-sequencing. Viral phenotypic changes were examined, and genomic modifications were assessed by sequencing of the viral genome. RESULTS: The CVB4 persistence in ductal-like cells was productive, with continuous release of infectious particles. Persistently infected cells displayed a resistance to CVB4-induced lysis upon superinfection and expression of PDX-1 and CAR was decreased. These changes were maintained even after virus clearance. The patterns of cellular miRNA expression in mock-infected and in CVB4-persistently infected ductal-like cells were clearly different. The persistent infection-derived virus (PIDV) was still able to induce cytopathic effect but its plaques were smaller than the parental virus. Several mutations appeared in various PIDV genome regions, but amino acid substitutions did not affect the predicted site of interaction with CAR. CONCLUSION: Cellular and viral changes occur during persistent infection of human pancreas ductal-like cells with CVB4. The persistence of cellular changes even after virus clearance supports the hypothesis of a long-lasting impact of persistent CVB infection on the cells.


Assuntos
Infecções por Coxsackievirus/virologia , Enterovirus Humano B/fisiologia , Ductos Pancreáticos/citologia , Ductos Pancreáticos/virologia , Linhagem Celular Tumoral , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pâncreas/metabolismo , Pâncreas/virologia , Transativadores/genética , Transativadores/metabolismo , Replicação Viral
19.
J Mol Cell Cardiol ; 103: 22-30, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28041873

RESUMO

Viral myocarditis is the inflammation caused by myocardial virus infection, and the coxsackievirus group B3 virus (CVB3) is the most common pathogen. An efficient therapeutic agent against viral myocarditis is currently unavailable. IL-33, a new member of the IL-1 cytokine superfamily, exhibits potential immunotherapeutic effect against inflammatory and autoimmune diseases. However, the functional role of IL-33 in viral myocarditis has not been investigated. To examine the therapeutic role of IL-33 in viral myocarditis, an IL-33 overexpression plasmid (pDisplay-IL-33) and IL-33 knockdown plasmid (pLL3.7-IL-33) were packaged with polyethylenimine and delivered intravenously at the orbital area of BALB/c male mice after CVB3 infection. Then, myocarditis severity was assessed 7days after infection. Results showed that IL-33 up-regulation significantly alleviated the severity of viral myocarditis with an increased cardiac contractive function and survival rate. Mechanistic studies demonstrated that IL-33 can stimulate ST2L+F4/80+ macrophages and ST2L+CD4+T cells in cardiac tissue to express IL-4, which is a potent inducer for macrophage M2 polarization. Mice with adoptive transfer of M2 macrophages exhibited less cardiac inflammation and attenuated myocarditis, suggesting the protective role of M2 macrophage in viral myocarditis. Additionally, IL-4 neutralization abolished the IL-33-mediated cardiac functional improvement in myocarditis mice. Collectively, our findings provide a novel therapeutic role for IL-33 in CVB3-induced myocarditis.


Assuntos
Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Enterovirus Humano B , Interleucina-33/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Miocardite/etiologia , Miocardite/metabolismo , Transferência Adotiva , Animais , Biomarcadores , Infecções por Coxsackievirus/diagnóstico , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Ecocardiografia , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Miocardite/diagnóstico , Fenótipo
20.
Biochem Biophys Res Commun ; 484(3): 550-556, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28131843

RESUMO

Viral myocarditis (VMC) is closely related to apoptosis, oxidative stress, innate immunity, and energy metabolism, which are all linked to mitochondrial dysfunction. A close nexus between mitochondrial dynamics and cardiovascular disease with mitochondrial dysfunction has been deeply researched, but there is still no relevant report in viral myocarditis. In this study, we aimed to explore the role of Dynamin-related protein 1 (Drp1)-linked mitochondrial fission in VMC. Mice were inoculated with the Coxsackievirus B3 (CVB3) and treated with mdivi1 (a Drp1 inhibitor). Protein expression of Drp1 was increased in mitochondria while decreased in cytoplasm and accompanied by excessive mitochondrial fission in VMC mice. In addition, midivi1 treatment attenuate inflammatory cells infiltration in myocardium of the mice, serum Cardiac troponin I (CTnI) and Creatine kinase-MB (CK-MB) level. Mdivi1 also could improved the survival rate of mice and mitochondrial dysfunction reflected as the up-regulated mitochondrial marker enzymatic activities of succinate dehydrogenase (SDH), cytochrome c oxidase (COX) and mitochondrial membrane potential (MMP). At the same time, mdivi1 rescued the body weight loss, myocardial injury and apoptosis of cardiomyocyte. Furthermore, decease in LVEDs and increase in EF and FS were detected by echocardiogram, which indicated the improved myocardial function. Thus, Drp1-linked excessive mitochondrial fission contributed to VMC and midivi1 may be a potential therapeutic approach.


Assuntos
Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B , Mitocôndrias/metabolismo , Miocardite/metabolismo , Miocardite/patologia , Miocárdio/patologia , Animais , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , Regulação para Baixo , Coração/virologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/patologia , Miocardite/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA