Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
mSphere ; 5(4)2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641430

RESUMO

Nipah disease is listed as one of the WHO priority diseases that pose the greatest public health risk due to their epidemic potential. More than 200 experts from around the world convened in Singapore last year to mark the 20th anniversary of the first Nipah virus outbreaks in Malaysia and Singapore. Most of these experts are now involved in responding to the coronavirus disease 2019 (COVID-19) pandemic. Here, members of the Organizing Committee of the 2019 Nipah Virus International Conference review highlights from the Nipah@20 Conference and reflect on key lessons learned from Nipah that could be applied to the understanding of the COVID-19 pandemic and to preparedness against future emerging infectious diseases (EIDs) of pandemic potential.


Assuntos
Infecções por Henipavirus , Vírus Nipah/patogenicidade , Animais , Betacoronavirus/patogenicidade , Congressos como Assunto , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/terapia , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/terapia , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/diagnóstico , Pneumonia Viral/prevenção & controle , Pneumonia Viral/terapia , Zoonoses/epidemiologia
2.
Trop Doct ; 50(3): 174-175, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476600

RESUMO

Without a vaccine or proven therapeutic options in COVID-19, the World Health Organization (WHO) recommends a combination of measures: rapid diagnosis and immediate isolation of cases; rigorous contact tracing; and precautionary self-isolation of close contacts to curb the spread of COVID-19. During a Nipah outbreak in Kerala, India in 2019, it was confined to a single case. The authors were involved in the in-hospital contact tracing. With a single patient producing a contact list of 98 in a healthcare setting, the implications in a community setting during a pandemic of the scale of COVID-19 are huge but it proves that early and rigorous tracing with quarantining is an effective strategy to limit clusters. We believe that if the public is encouraged to maintain their own contact list on a daily basis, it would help in significantly reducing the time and effort invested into contact tracing in the event of a person contracting COVID-19.


Assuntos
Busca de Comunicante , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Vírus Nipah , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Infecções por Coronavirus/epidemiologia , Infecções por Henipavirus/epidemiologia , Humanos , Índia/epidemiologia , Pneumonia Viral/epidemiologia
3.
Epidemiol Infect ; 148: e90, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32321607

RESUMO

Nipah virus (NiV) outbreak occurred in Kozhikode district, Kerala, India in 2018 with a case fatality rate of 91% (21/23). In 2019, a single case with full recovery occurred in Ernakulam district. We described the response and control measures by the Indian Council of Medical Research and Kerala State Government for the 2019 NiV outbreak. The establishment of Point of Care assays and monoclonal antibodies administration facility for early diagnosis, response and treatment, intensified contact tracing activities, bio-risk management and hospital infection control training of healthcare workers contributed to effective control and containment of NiV outbreak in Ernakulam.


Assuntos
Controle de Doenças Transmissíveis/organização & administração , Emergências , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/prevenção & controle , Vírus Nipah , Saúde Pública , Restos Mortais , Surtos de Doenças , Humanos , Índia/epidemiologia , Eliminação de Resíduos de Serviços de Saúde , Equipamento de Proteção Individual
4.
Viruses ; 12(4)2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32325930

RESUMO

Viral outbreaks of varying frequencies and severities have caused panic and havoc across the globe throughout history. Influenza, small pox, measles, and yellow fever reverberated for centuries, causing huge burden for economies. The twenty-first century witnessed the most pathogenic and contagious virus outbreaks of zoonotic origin including severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus, Middle East respiratory syndrome coronavirus (MERS-CoV) and Nipah virus. Nipah is considered one of the world's deadliest viruses with the heaviest mortality rates in some instances. It is known to cause encephalitis, with cases of acute respiratory distress turning fatal. Various factors contribute to the onset and spread of the virus. All through the infected zone, various strategies to tackle and enhance the surveillance and awareness with greater emphasis on personal hygiene has been formulated. This review discusses the recent outbreaks of Nipah virus in Malaysia, Bangladesh and India, the routes of transmission, prevention and control measures employed along with possible reasons behind the outbreaks, and the precautionary measures to be ensured by private-public undertakings to contain and ensure a lower incidence in the future.


Assuntos
Encefalite Viral/epidemiologia , Encefalite Viral/transmissão , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/transmissão , Vírus Nipah/classificação , Animais , Bangladesh/epidemiologia , Quirópteros/virologia , Surtos de Doenças , Encefalite Viral/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Índia/epidemiologia , Controle de Infecções , Malásia/epidemiologia , Vírus Nipah/genética , Proteínas Estruturais Virais/genética
5.
Vet Microbiol ; 241: 108549, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31928698

RESUMO

Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.


Assuntos
Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Vacinas Virais/normas , Administração Oral , Animais , Animais Lactentes , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Imunidade Humoral , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Vírus da Raiva/genética , Vírus da Raiva/crescimento & desenvolvimento , Vírus da Raiva/patogenicidade , Suínos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/normas , Proteínas Virais/genética , Vacinas Virais/administração & dosagem , Virulência , Zoonoses
6.
Epidemiol Rev ; 41(1): 28-33, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673694

RESUMO

The Coalition for Epidemic Preparedness Innovations (CEPI) was formed in the aftermath of the 2014-2015 Ebola outbreak in west Africa to support the development of vaccines that could improve the world's preparedness against outbreaks of epidemic infectious diseases. Since its launch in 2017, CEPI has mobilized more than US$750 million to support its mission to develop vaccines against agents such as Lassa virus, Middle East respiratory syndrome coronavirus, and Nipah virus, as well as several rapid-response vaccine platforms to accelerate response times to unexpected epidemic threats. CEPI has also played a leading role in fostering institutional partnerships between public- and private-sector organizations to optimize allocation of resources for vaccine development against its priority pathogens. CEPI's priorities include diversification of its current vaccine research and development investment portfolio to include additional pathogens, such as Rift Valley fever and chikungunya; establishment of technical and regulatory pathways for vaccine development across CEPI's portfolio; development of sustainable manufacturing solutions for vaccine candidates nearing completion of safety and immunogenicity testing in humans; and creation of investigational stockpiles of its vaccine candidates for use in emergency situations. This commentary provides an overview of the global health challenges CEPI was established to address and its achievements to date, and indicates priorities for funding and coordination in the coming years.


Assuntos
Doenças Transmissíveis/epidemiologia , Epidemias , Vacinas , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Surtos de Doenças , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio
7.
Public Health ; 173: 97-104, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31261032

RESUMO

OBJECTIVES: The objectives of this article are to highlight the properties of the Nipah virus (NiV) and discuss its epidemiological determinants. STUDY DESIGN: A review of conjectures, epidemiological and clinically related studies, and identification and discussion of preventive approaches is conducted. METHODS: A review of the current literature is performed going through online search engines: PubMed and Google Scholar. The search strategy was focused on two main components, first on the NiV ('Nipah' OR 'Nipah Virus') and subsequently on its epidemiology, including determinants and preventive measures ('Epidemiology/determinants' OR 'Epidemiology/prevention'). RESULTS: NiV infection is an emerging zoonotic infectious disease causing sporadic outbursts in many developing countries within Asia, Africa, and South America. Pteroid bats are the natural reservoirs, but human-to-human transmission is possible. Clinical course ranges from non-specific influenza-like symptoms to rapidly progressive respiratory and neurologic complications. Vector control has been challenging because of its widely distributed ecological niche. Currently, no definitive treatment protocols are available in humans, but profound breakthrough in vaccine technology and successful equine vaccines has shown the way for the development of NiV vaccine and immunization in the near future. CONCLUSIONS: The NiV poses a significant public health risk because of its intricate transmission cycle, unpredictable viral course, murky management protocol, and unavailability of vaccine. Complicated by emergence and subsequent reemergence, prevention and containment are the two most important public health promotion strategies. Early anticipation, intergovernmental preparedness and cooperation, and surveillance of zoonotic infections still remain the key to mitigate the risk.


Assuntos
Surtos de Doenças , Infecções por Henipavirus/epidemiologia , Vírus Nipah , Animais , Surtos de Doenças/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Vacinas Virais , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
8.
PLoS Negl Trop Dis ; 13(6): e0007462, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31170144

RESUMO

Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.


Assuntos
Adenovirus dos Símios/genética , Portadores de Fármacos , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Estruturas Animais/virologia , Animais , Modelos Animais de Doenças , Feminino , Infecções por Henipavirus/imunologia , Mesocricetus , Vírus Nipah/genética , Análise de Sobrevida , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
9.
N Engl J Med ; 380(19): 1804-1814, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31067370

RESUMO

BACKGROUND: Nipah virus is a highly virulent zoonotic pathogen that can be transmitted between humans. Understanding the dynamics of person-to-person transmission is key to designing effective interventions. METHODS: We used data from all Nipah virus cases identified during outbreak investigations in Bangladesh from April 2001 through April 2014 to investigate case-patient characteristics associated with onward transmission and factors associated with the risk of infection among patient contacts. RESULTS: Of 248 Nipah virus cases identified, 82 were caused by person-to-person transmission, corresponding to a reproduction number (i.e., the average number of secondary cases per case patient) of 0.33 (95% confidence interval [CI], 0.19 to 0.59). The predicted reproduction number increased with the case patient's age and was highest among patients 45 years of age or older who had difficulty breathing (1.1; 95% CI, 0.4 to 3.2). Case patients who did not have difficulty breathing infected 0.05 times as many contacts (95% CI, 0.01 to 0.3) as other case patients did. Serologic testing of 1863 asymptomatic contacts revealed no infections. Spouses of case patients were more often infected (8 of 56 [14%]) than other close family members (7 of 547 [1.3%]) or other contacts (18 of 1996 [0.9%]). The risk of infection increased with increased duration of exposure of the contacts (adjusted odds ratio for exposure of >48 hours vs. ≤1 hour, 13; 95% CI, 2.6 to 62) and with exposure to body fluids (adjusted odds ratio, 4.3; 95% CI, 1.6 to 11). CONCLUSIONS: Increasing age and respiratory symptoms were indicators of infectivity of Nipah virus. Interventions to control person-to-person transmission should aim to reduce exposure to body fluids. (Funded by the National Institutes of Health and others.).


Assuntos
Infecções por Henipavirus/transmissão , Vírus Nipah , Adolescente , Adulto , Fatores Etários , Animais , Bangladesh/epidemiologia , Líquidos Corporais/virologia , Criança , Busca de Comunicante , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem , Zoonoses/transmissão
10.
Emerg Infect Dis ; 25(6): 1144-1152, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31107231

RESUMO

Nipah virus (NiV) is a zoonotic pathogen that causes high case-fatality rates (CFRs) in humans. Two NiV strains have caused outbreaks: the Malaysia strain (NiVM), discovered in 1998-1999 in Malaysia and Singapore (≈40% CFR); and the Bangladesh strain (NiVB), discovered in Bangladesh and India in 2001 (≈80% CFR). Recently, NiVB in African green monkeys resulted in a more severe and lethal disease than NiVM. No NiV vaccines or treatments are licensed for human use. We assessed replication-restricted single-injection recombinant vesicular stomatitis vaccine NiV vaccine vectors expressing the NiV glycoproteins against NiVB challenge in African green monkeys. All vaccinated animals survived to the study endpoint without signs of NiV disease; all showed development of NiV F Ig, NiV G IgG, or both, as well as neutralizing antibody titers. These data show protective efficacy against a stringent and relevant NiVB model of human infection.


Assuntos
Chlorocebus aethiops , Infecções por Henipavirus/veterinária , Vírus Nipah , Vesiculovirus/imunologia , Vacinas Virais/imunologia , Zoonoses , Animais , Feminino , Infecções por Henipavirus/mortalidade , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos , Imunidade Humoral , Masculino , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , Carga Viral
11.
Vet Q ; 39(1): 26-55, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31006350

RESUMO

Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.


Assuntos
Infecções por Henipavirus/veterinária , Vírus Nipah/imunologia , Vacinas Virais , Zoonoses , Animais , Doenças do Gato/epidemiologia , Doenças do Gato/prevenção & controle , Doenças do Gato/virologia , Gatos , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos , Vírus Nipah/classificação , Vacinas Virais/administração & dosagem , Vacinas Virais/análise , Vacinas Virais/uso terapêutico , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Zoonoses/virologia
12.
Microbes Infect ; 21(7): 278-286, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30817995

RESUMO

Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.


Assuntos
Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Vírus Nipah/isolamento & purificação , Animais , Antivirais/uso terapêutico , Técnicas de Laboratório Clínico , Surtos de Doenças/prevenção & controle , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/terapia , Humanos , Modelos Biológicos , Vírus Nipah/genética , Vírus Nipah/patogenicidade , Vacinas Virais/imunologia , Zoonoses/epidemiologia , Zoonoses/transmissão
13.
Epidemiol Infect ; 147: e95, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869046

RESUMO

Nipah virus (NiV) is an emerging bat-borne pathogen. It was first identified 20 years ago in Malaysia and has since caused outbreaks in other parts of South and Southeast Asia. It causes severe neurological and respiratory disease which is highly lethal. It is highly infectious and spreads in the community through infected animals or other infected people. Different strains of the virus show differing clinical and epidemiological features. Rapid diagnosis and implementation of infection control measures are essential to contain outbreaks. A number of serological and molecular diagnostic techniques have been developed for diagnosis and surveillance. Difficulties in diagnosis and management arise when a new area is affected. The high mortality associated with infection and the possibility of spread to new areas has underscored the need for effective management and control. However, no effective treatment or prophylaxis is readily available, though several approaches show promise. Given the common chains of transmission from bats to humans, a One Health approach is necessary for the prevention and control of NiV infection.


Assuntos
Doenças Transmissíveis Emergentes , Infecções por Henipavirus , Vírus Nipah/fisiologia , Doenças Transmissíveis Emergentes/diagnóstico , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/transmissão , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/transmissão
14.
Emerg Microbes Infect ; 8(1): 272-281, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866781

RESUMO

Because of its high infectivity in humans and the lack of effective vaccines, Nipah virus is classified as a category C agent and handling has to be performed under biosafety level 4 conditions in non-endemic countries, which has hindered the development of vaccines. Based on a highly efficient pseudovirus production system using a modified HIV backbone vector, a pseudovirus-based mouse model has been developed for evaluating the efficacy of Nipah vaccines in biosafety level 2 facilities. For the first time, the correlates of protection have been identified in a mouse model. The limited levels of neutralizing antibodies against immunogens fusion protein (F), glycoprotein (G), and combination of F and G (FG) were found to be 148, 275, and 115, respectively, in passive immunization. Relatively lower limited levels of protection of 52, and 170 were observed for immunogens F, and G, respectively, in an active immunization model. Although the minimal levels for protection of neutralizing antibody in passive immunization were slightly higher than those in active immunization, neutralizing antibody played a key role in protection against Nipah virus infection. The immunogens F and G provided similar protection, and the combination of these immunogens did not provide better outcomes. Either immunogen F or G would provide sufficient protection for Nipah vaccine. The Nipah pseudovirus mouse model, which does not involve highly pathogenic virus, has the potential to greatly facilitate the standardization and implementation of an assay to propel the development of NiV vaccines.


Assuntos
Infecções por Henipavirus/prevenção & controle , Vírus Nipah/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Animais , Anticorpos Neutralizantes/metabolismo , Contenção de Riscos Biológicos , Cães , Infecções por Henipavirus/imunologia , Humanos , Células Madin Darby de Rim Canino , Camundongos , Vacinas Virais/imunologia
15.
J Infect Public Health ; 12(5): 634-639, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30808593

RESUMO

The objectives of this review were to understand the epidemiology and outbreak of NiV infection and to discuss the preventive and control measures across different regions. We searched PubMed and Scopus for relevant articles from January 1999 to July 2018 and identified 927 articles which were screened for titles, abstracts and full texts by two review authors independently. The screening process resulted in 44 articles which were used to extract relevant information. Information on epidemiology of NiV, outbreaks in Malaysia, Singapore, Bangladesh, India and Philippines, including diagnosis, prevention, treatment, vaccines, control, surveillance and economic burden due to NiV were discussed. Interdisciplinary and multi sectoral approach is vital in preventing the emergence of NiV. It is necessary to undertake rigorous research for developing vaccines and medicines to prevent and treat NiV.


Assuntos
Tomada de Decisões , Surtos de Doenças/prevenção & controle , Reservatórios de Doenças/veterinária , Infecções por Henipavirus/epidemiologia , Saúde Pública , Animais , Bangladesh/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Reservatórios de Doenças/virologia , Infecções por Henipavirus/prevenção & controle , Humanos , Índia/epidemiologia , Malásia/epidemiologia , Vírus Nipah , Filipinas/epidemiologia
16.
J Virol ; 93(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30429347

RESUMO

Ebola virus (EBOV) and Nipah virus (NiV) infection of humans can cause fatal disease and constitutes a public health threat. In contrast, EBOV and NiV infection of fruit bats, the putative (EBOV) or proven (NiV) natural reservoir, is not associated with disease, and it is currently unknown how these animals control the virus. The human interferon (IFN)-stimulated antiviral effector protein tetherin (CD317, BST-2) blocks release of EBOV- and NiV-like particles from cells and is counteracted by the EBOV glycoprotein (GP). In contrast, it is unknown whether fruit bat tetherin restricts virus infection and is susceptible to GP-driven antagonism. Here, we report the sequence of fruit bat tetherin and show that its expression is IFN stimulated and associated with strong antiviral activity. Moreover, we demonstrate that EBOV-GP antagonizes tetherin orthologues of diverse species but fails to efficiently counteract fruit bat tetherin in virus-like particle (VLP) release assays. However, unexpectedly, tetherin was dispensable for robust IFN-mediated inhibition of EBOV spread in fruit bat cells. Thus, the VLP-based model systems mimicking tetherin-mediated inhibition of EBOV release and its counteraction by GP seem not to adequately reflect all aspects of EBOV release from IFN-stimulated fruit bat cells, potentially due to differences in tetherin expression levels that could not be resolved by the present study. In contrast, tetherin expression was essential for IFN-dependent inhibition of NiV infection, demonstrating that IFN-induced fruit bat tetherin exerts antiviral activity and may critically contribute to control of NiV and potentially other highly virulent viruses in infected animals.IMPORTANCE Ebola virus and Nipah virus (EBOV and NiV) can cause fatal disease in humans. In contrast, infected fruit bats do not develop symptoms but can transmit the virus to humans. Why fruit bats but not humans control infection is largely unknown. Tetherin is an antiviral host cell protein and is counteracted by the EBOV glycoprotein in human cells. Here, employing model systems, we show that tetherin of fruit bats displays higher antiviral activity than human tetherin and is largely resistant against counteraction by the Ebola virus glycoprotein. Moreover, we demonstrate that induction of tetherin expression is critical for interferon-mediated inhibition of NiV but, for at present unknown reasons, not EBOV spread in fruit bat cells. Collectively, our findings identify tetherin as an antiviral effector of innate immune responses in fruit bats, which might allow these animals to control infection with NiV and potentially other viruses that cause severe disease in humans.


Assuntos
Antivirais/farmacologia , Antígeno 2 do Estroma da Médula Óssea/farmacologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/virologia , Infecções por Henipavirus/prevenção & controle , Vírus Nipah/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Quirópteros , Doença pelo Vírus Ebola/metabolismo , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferons/farmacologia , Primatas , Roedores , Liberação de Vírus
17.
Curr Top Med Chem ; 18(26): 2202-2208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30417788

RESUMO

We briefly review the situations arising out of epidemics that erupt rather suddenly, threatening life and livelihoods of humans. Ebola, Zika and the Nipah virus outbreaks are recent examples where the viral epidemics have led to considerably high degree of fatalities or debilitating consequences. The problems are accentuated by a lack of drugs or vaccines effective against the new and emergent viruses, and the inordinate amount of temporal and financial resources that are required to combat the novel pathogens. Progress in computational, biological and informational sciences have made it possible to consider design of synthetic vaccines that can be rapidly developed and deployed to help stem the damages. In this review, we consider the pros and cons of this new paradigm and suggest a new system where the manufacturing process can be decentralized to provide more targeted vaccines to meet the urgent needs of protection in case of a rampaging epidemic.


Assuntos
Doença pelo Vírus Ebola/epidemiologia , Infecções por Henipavirus/epidemiologia , Peptídeos/imunologia , Vacinas Virais/imunologia , Infecção por Zika virus/epidemiologia , Animais , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/virologia , Infecções por Henipavirus/imunologia , Infecções por Henipavirus/prevenção & controle , Humanos , Vírus Nipah/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
20.
Int J Infect Dis ; 72: 69-72, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29879523

RESUMO

The Nipah virus has been transmitted from person-to-person via close contact in non-urban parts of India (including Kerala May 2018), Bangladesh, and the Philippines. It can cause encephalitis and pneumonia, and has a high case fatality rate. Nipah is a One Health zoonotic infectious disease linked to fruit bats, and sometimes pigs or horses. We advocate anticipating and preparing for urban and larger rural outbreaks of Nipah. Immediate enhanced preparations would include standardized guidance on infection prevention and control, and personal protective equipment, from the World Health Organization (WHO) on their OpenWHO website and 2018 "Managing Epidemics" handbook, along with adding best clinical practices by experts in countries with multiple outbreaks such as Bangladesh and India. Longer-term enhanced preparations include accelerating development of field diagnostics, antiviral drugs, immune-based therapies, and vaccines. WHO-coordinated multi-partner protocols to test investigational treatments, diagnostics, and vaccines are needed, by analogy to such protocols for Ebola during the unanticipated pan-epidemic in Guinea, Liberia, and Sierra Leone. Anticipating and preparing now for urban and rural Nipah outbreaks in nations with no experience with Nipah will help avoid the potential for what the United Nations 2016 report on Ebola in West Africa called a "preventable tragedy".


Assuntos
Doenças Transmissíveis Emergentes/transmissão , Surtos de Doenças/prevenção & controle , Epidemias/prevenção & controle , Fidelidade a Diretrizes , Infecções por Henipavirus/transmissão , Vírus Nipah/fisiologia , Organização Mundial da Saúde/organização & administração , Zoonoses/transmissão , Animais , Bangladesh , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/virologia , Reservatórios de Doenças/virologia , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/virologia , Humanos , Vírus Nipah/isolamento & purificação , Zoonoses/prevenção & controle , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...