Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 466
Filtrar
1.
Mol Immunol ; 116: 180-190, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31704501

RESUMO

Infectious pancreatic necrosis virus (IPNV) and infectious hematopoietic necrosis virus (IHNV) are two common viral pathogens that cause severe economic losses in all salmonid species in culture, but especially in rainbow trout. Although vaccines against both diseases have been commercialized in some countries, no such vaccines are available for them in China. In this study, a recombinant virus was constructed using the IHNV U genogroup Blk94 virus as a backbone vector to express the antigenic gene, VP2, from IPNV via the reverse genetics system. The resulting recombinant virus (rBlk94-VP2) showed stable biological characteristics as confirmed by virus growth kinetic analyses, pathogenicity analyses, indirect immunofluorescence assays and western blotting. Rainbow trout were immunized with rBlk94-VP2 and then challenged with the IPNV ChRtm213 strain and the IHNV Sn1203 strain on day 45 post-vaccination. A significantly higher survival rate against IHNV was obtained in the rBlk94-VP2 group on day 45 post-vaccination (86%) compared with the PBS mock immunized group (2%). Additionally, IPNV loads decreased significantly in the rBlk94-VP2 immunized group in the liver (28.6-fold to 36.5-fold), anterior kidney (21.7-fold to 44.2-fold), and spleen (14.9-fold to 22.7-fold), as compared with the PBS mock control group. The mRNA transcripts for several innate and adaptive immune-related proteins (IFN-γ, IFN-1, Mx-1, CD4, CD8, IgM, and IgT) were also significantly upregulated after rBlk94-VP2 vaccination, and neutralizing antibodies against both IHNV and IPNV were induced on day 45 post-vaccination. Collectively, our results suggest that this recombinant virus could be developed as a vaccine vector to protect rainbow trout against two or more diseases, and our approach lays the foundations for developing live vaccines for rainbow trout.


Assuntos
Doenças dos Peixes/imunologia , Vírus da Necrose Hematopoética Infecciosa/imunologia , Oncorhynchus mykiss/imunologia , Oncorhynchus mykiss/virologia , Animais , Anticorpos Antivirais/imunologia , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/virologia , China , Rim Cefálico/imunologia , Rim Cefálico/virologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Pancreatite Necrosante Aguda/imunologia , Pancreatite Necrosante Aguda/virologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Baço/imunologia , Baço/virologia , Vacinação/métodos , Vacinas de DNA/imunologia , Carga Viral/métodos , Vacinas Virais/imunologia
2.
Aquat Toxicol ; 215: 105282, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31509759

RESUMO

Aquatic ecosystems are now chronically polluted by a cocktail of many chemical substances. There is now clear evidence of associations between exposure to pollutants and greater susceptibility to pathogens. The aim of the present study was to characterize the defense capacities of rainbow trout (Oncorhynchus mykiss), chronically exposed to pendimethalin (PD), to subsequent experimental challenge with the infectious hematopoietic necrosis virus (IHNV). Immunological responses were examined at different organizational levels, from individuals to gene expression. No negative effects of PD were noted on the Fulton index nor on the liver or spleen somatic indices (LSI; SSI) before viral infection, but the infectious stress seems to generate a weak but significant decrease in Fulton and LSI values, which could be associated with consumption of energy reserves. During the viral challenges, the distribution of cumulative mortality was slightly different between infected groups. The impact of the virus on fish previously contaminated by PD started earlier and lasted longer than controls. The proportion of seropositive fish was lower in the fish group exposed to PD than in the control group, with similar quantities of anti-IHNV antibodies secreted in positive fish, regardless of the treatment. While no significant differences in C3-1 expression levels were detected throughout the experiment, TNF1&2, TLR3, Il-1ß and IFN expression levels were increased in all infected fish, but the difference was more significant in fish groups previously exposed to herbicide. On the other hand, ß-def expression was decreased in the pendimethalin-IHNV group compared to that in fish only infected by the virus (control-IHNV group).


Assuntos
Herbicidas/toxicidade , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Compostos de Anilina/toxicidade , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Regulação da Expressão Gênica/efeitos dos fármacos , Oncorhynchus mykiss/virologia , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/patologia , Poluentes Químicos da Água/toxicidade
3.
Fish Shellfish Immunol ; 94: 525-538, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31539572

RESUMO

Aquatic rhabdoviruses are globally significant pathogens associated with disease in both wild and cultured fish. Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus that causes the internationally regulated disease infectious hematopoietic necrosis (IHN) in most species of salmon. Yet not all naïve salmon exposed to IHNV become diseased, and the mechanisms by which some individuals evade or rapidly clear infection following exposure are poorly understood. Here we used RNA-sequencing to evaluate transcriptomic changes in sockeye salmon, a keystone species in the North Pacific and natural host for IHNV, to evaluate the consequences of IHNV exposure and/or infection on host cell transcriptional pathways. Immersion challenge of sockeye salmon smolts with IHNV resulted in approximately 33% infection prevalence, where both prevalence and viral kidney load peaked at 7 days post challenge (dpc). De novo assembly of kidney transcriptomes at 7 dpc revealed that both infected and exposed but noninfected individuals experienced substantial transcriptomic modification; however, stark variation in gene expression patterns were observed between exposed but noninfected, infected, and unexposed populations. GO and KEGG pathway enrichment in concert with differential expression analysis identified that kidney responses in exposed but noninfected fish emphasised a global pattern of transcriptional down-regulation, particularly for pathways involved in DNA transcription, protein biosynthesis and macromolecule metabolism. In contrast, transcriptomes of infected fish demonstrated a global emphasis of transcriptional up-regulation highlighting pathways involved in antiviral response, inflammation, apoptosis, and RNA processing. Quantitative PCR was subsequently used to highlight differential and time-specific regulation of acute phase, antiviral, inflammatory, cell boundary, and metabolic responsive transcripts in both infected and exposed but noninfected groups. This data demonstrates that waterborne exposure with IHNV has a dramatic effect on the sockeye salmon kidney transcriptome that is discrete between resistant and acutely susceptible individuals. We identify that metabolic, acute phase and cell boundary pathways are transcriptionally affected by IHNV and kidney responses to local infection are highly divergent from those generated as part of a disseminated response. These data suggest that primary resistance of naïve fish to IHNV may involve global responses that encourage reduced cellular signaling rather than promoting classical innate antiviral responses.


Assuntos
Resistência à Doença/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Salmão/genética , Salmão/imunologia , Transcriptoma/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Rim/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Carga Viral/fisiologia
4.
Fish Shellfish Immunol ; 94: 685-696, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31546038

RESUMO

The S100 family proteins are a group of small acidic polypeptides and have diverse functions in regulating many aspects of physiological processes. They are structurally conserved and possess two EF-hands which are central for calcium-mediated functions. In this study, 14 S100 cDNA sequences were determined in zebrafish and their genomic organizations confirmed. Re-analyzing the gene synteny of the S100 loci identified two major S100 loci in Chr16 and Chr19 which share remarkable conservation with the S100 locus in human Chr1, suggesting they may have evolved from a single locus during the teleost specific whole genome duplication event. It appears that the homologues of human S100G and S100P have been lost in zebrafish. Expression analysis reveals that S100W, ICN1 and ICN2 are markedly expressed in embryos. Further, the transcripts of S100 genes are relatively abundant in mucosal tissues such as gills and gut. Intraperitoneal injection of poly(I:C) resulted in up-regulation of most S100 genes in the gut and spleen, with highest induction of S100V2 and S100Z detected. In fish challenged with spring viremia of carp virus (SVCV), expression of most S100 family genes was increased in the spleen between day 1 and 7 post infection, with consistent induction seen for the S100A1, S100A10b, S100B, S100ICN1, S100T, S100U, S100V1 and S100Z. Interestingly, intraperitoneal injection of Edwardsiella tarda down-regulated S100 expression in the gut but resulted in induction in the spleen. The results demonstrate that the S100 family genes are differentially modulated by bacterial and viral pathogens in zebrafish.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas S100/genética , Transcriptoma/imunologia , Peixe-Zebra/imunologia , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Poli I-C/farmacologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas S100/química , Proteínas S100/metabolismo
5.
Fish Shellfish Immunol ; 93: 406-415, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31369857

RESUMO

Mandarin fish (Siniperca chuatsi) is a universally farmed fish species in China and has a large farming scale and economic value. With the high-density cultural mode in mandarin fish, viral diseases, such as infectious spleen and kidney necrosis virus (ISKNV) and Siniperca chuatsi rhabdovirus (SCRV), have increased loss, which has seriously restricted the development of aquaculture. Y-Box binding protein 1 (YB-1) is a member of cold shock protein family that regulates multiple cellular processes. The roles of mammalian YB-1 protein in environmental stress and innate immunity have been studied well, but its roles in teleost fishes remain unknown. In the present study, the characteristic of S. chuatsi YB-1 (scYB-1) and its roles in cold stress and virus infection were investigated. The scYB-1 obtained an 1541 bp cDNA that contains a 903 bp open reading frame encoding a protein of 300 amino acids. Tissue distribution results showed that the scYB-1 is a ubiquitously expressed gene found among tissues from mandarin fish. Overexpression of scYB-1 can increase the expression levels of cold shock-responsive genes, such as scHsc70a, scHsc70b, and scp53. Furthermore, the role of scYB-1 in innate immunity was also investigated in mandarin fish fry (MFF-1) cells. The expression level of scYB-1 was significant change in response to poly (I:C), poly (dG:dC), PMA, ISKNV, or SCRV stimulation. The overexpression of scYB-1 can significantly increase the expression levels of NF-κB-responsive genes, including scIL-8, scTNF-α, and scIFN-h. The NF-κB-luciferase report assay results showed that the relative expression of luciferin was significantly increased in the cells overexpressed with scYB-1 compared with those in cells overexpressed with control plasmid. These results indicate that scYB-1 can induce the NF-κB signaling pathway in MFF-1 cells. Overexpressed scYB-1 can downregulate the expression of ISKNV viral major capsid protein (mcp) gene but upregulates the expression of SCRV mcp gene. Moreover, knockdown of scYB-1 using siRNA can upregulate the expression of ISKNV mcp gene but downregulates the expression of SCRV mcp gene. These results indicate that scYB-1 suppresses ISKNV infection while enhancing SCRV infection. The above observations suggest that scYB-1 is involved in cold stress and virus infection. Our study will provide an insight into the roles of teleost fish YB-1 protein in stress response and innate immunity.


Assuntos
Doenças dos Peixes/imunologia , Peixes/genética , Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Iridoviridae/fisiologia , Filogenia , Poli I-C/farmacologia , Polidesoxirribonucleotídeos/farmacologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária , Acetato de Tetradecanoilforbol/farmacologia , Proteína 1 de Ligação a Y-Box/química
6.
Fish Shellfish Immunol ; 92: 833-841, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31299463

RESUMO

In cytokinetic abscission, phagophore formation, and enveloped virus budding are mediated by the endosomal sorting complex required for transport (ESCRT). Many retroviruses and RNA viruses encode "late-domain" motifs that can interact with the components of the ESCRT pathway to mediate the viral assembly and budding. However, the rhabdovirus in fish has been rarely investigated. In this study, inhibition the protein expression of the ESCRT components reduces the extracellular virion production, which preliminarily indicates that the ESCRT pathway is involved in IHNV release. The respective interactions of IHNV proteins including M, G, L protein with Nedd4, Tsg101, and Alix suggest the underlying molecular mechanism by which IHNV gets access to the ESCRT pathway. These results are the first observation that rhabdovirus in fish gains access to the ESCRT pathway through three ways of interactions between viral proteins and host proteins. In addition, the results show that IHNV is released from host cells through the ESCRT pathway. Taken together, our study provides a theoretical basis for studying the budding mechanism of IHNV.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Salmão/imunologia , Proteínas Virais/metabolismo , Animais , Embrião não Mamífero/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Vírion/fisiologia , Liberação de Vírus
7.
Fish Shellfish Immunol ; 93: 108-115, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31326582

RESUMO

Protein arginine methylation is a prevalent posttranslational modification and protein arginine methyltransferases 6 (PRMT6) has been identified as a suppressor of TBK1/IRF3 in human and mammals. To explore the role of PRMT6 in teleost fish, PRMT6 homologue of black carp (Mylopharyngodon piceus) has been cloned and characterized in this study. Black carp PRMT6 (bcPRMT6) transcription in host cells varies in response to different stimuli and bcPRMT6 migrates around 43 kDa in the immunoblot assay. Like its mammalian counterpart, bcPRMT6 has been identified to distribute majorly in the nucleus through the immunofluorescent staining assay. bcPRMT6 shows little interferon (IFN) promoter-inducing activity in the reporter assay and bcPRMT6 shows no antiviral activity against either grass carp reovirus (GCRV) or spring viremia of carp virus (SVCV) in plaque assay. When co-expressed with bcPRMT6, the IFN promoter-inducing abilities of black carp TBK1 (bcTBK1) and IRF3/7 (bcIRF3/7) are fiercely attenuated. Accordingly, bcTBK1-mediated antiviral activity in EPC cells is obviously dampened by bcPRMT6. The interaction between bcPRMT6 and bcIRF3/7 has been identified by co-immunoprecipitation assay; however, no direct association between bcPRMT6 and bcTBK1 has been detected. Taken together, our data elucidates for the first time in teleost fish that PRMT6 suppresses TBK1-IRF3/7 signaling during host antiviral innate immune activation.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Sequência de Aminoácidos , Animais , Proteínas de Peixes/química , Perfilação da Expressão Gênica/veterinária , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Filogenia , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/imunologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária , Transdução de Sinais
8.
Fish Shellfish Immunol ; 93: 55-65, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31319204

RESUMO

Interleukin-2 (IL-2) is mainly produced by CD4+ T helper lymphocytes, which is an important immunomodulatory cytokine that primarily promotes activation, proliferation and differentiation of T cells. In the present study, flounder (Paralichthys olivaceus) interleukin 2 homologue (poIL-2) was identified for the first time, and its expression patterns were characterized in healthy, virus- or bacteria-infected flounder. The full-length cDNA sequences of poIL-2 was 989 bp with an open reading frame of 423 bp coding a polypeptide of 140 amino acids (aa). The deduced aa sequences shared low similarities (<53%) with other known fish IL-2s. Multiple alignment of aa sequences revealed that poIL-2 own the classical IL-2 family signature of "C-X(3)-EL-X(2)-(T/V)-(V/M/L)-(K/T/R)-X-EC" and "DS-X-(F/L)Y(A/T/S)P". In healthy flounder, IL-2 mRNA was highly expressed in PBLs, spleen and hindgut, and moderately expressed in gill, trunk kidney and stomach. PHA, LPS and Con-A could effectively induce poIL-2 expression in primary cultured peripheral blood leukocytes in vitro. poIL-2 transcripts were significantly up-regulated in spleen, kidney, gill and hindgut post infections with Edwardsiella tarda and Hirame novirhabdovirus (HIRRV). The eukaryotic expression vector encoding poIL-2 (pcIL-2) was constructed and intramuscularly injected, which could be successfully expressed in flounders and induced significantly higher expressions of six immune related genes including poIL-2, ß-defensin, CD4-1, CD8α, IFN-γ and TNF-α compared with the injection with control plasmid. Moreover, pretreatment with pcIL-2 could markedly increase the survival rate of flounder challenged with HIRRV. Our results demonstrated that poIL-2 plays an important role in the induction of immune responses and immune defense against bacterial and virus infection, which indicated its potential use as an immunopotentiator to prevent diseases in flounder.


Assuntos
Doenças dos Peixes/imunologia , Linguados/genética , Linguados/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Interleucina-2/genética , Interleucina-2/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Interleucina-2/química , Novirhabdovirus/fisiologia , Filogenia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária
9.
Fish Shellfish Immunol ; 92: 224-229, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200068

RESUMO

Fibroblast growth factor receptor (FGFR) 3 is one of the four distinct membrane-spanning tyrosine kinases required for proper skeletal development. In fish, the role of FGFR3 is still unclear. In this article, we reveal that zebrafish FGFR3 is a negative regulator of interferon (IFN) production in the innate immune response by suppressing the activity of TANK-binding kinase 1 (TBK1) in the process of virus infection. qPCR experiments demonstrate that the transcriptional level of cellular FGFR3 was upregulated by infection with spring viremia of carp virus (SVCV), indicating that FGFR3 might be involved in the process of host cell response to viral infection. Then, overexpression of FGFR3 significantly impeded the IFN promoter activity induced by a stimulator. In addition, the capabilities of a retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) system to activate IFN promoter were decreased during the overexpression of FGFR3. Subsequently, FGFR3 decreased the phosphorylation of interferon regulatory factor 3 (IRF3) and mediator of IRF3 activation (MITA) by TBK1. These findings suggest that zebrafish FGFR3 is a negative regulator of IFN by attenuating the kinase activity of TBK1, leading to the suppression of IFN expression.


Assuntos
Doenças dos Peixes/imunologia , Imunidade Inata/genética , Interferons/genética , Proteínas Serina-Treonina Quinases/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Interferons/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/imunologia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Transdução de Sinais/imunologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia , Proteínas de Peixe-Zebra/fisiologia
10.
Fish Shellfish Immunol ; 92: 125-132, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31125665

RESUMO

Cytidine/uridine monophosphate kinase 2 (CMPK2) is known as a nucleoside monophosphate kinase in mitochondria to maintains intracellular UTP/CTP, and could be induced by immunostimulants LPS and Poly (I:C) in mammals, suggesting its potential antiviral and antibacterial role. In this study, CMPK2 was cloned and characterized in Fathead minnow (FHM) cells. In vivo analysis of tissue distribution revealed that CMPK2 transcript was detected in all the tissues of zebrafish (Danio rerio) examined in this study, particularly abundant in liver, spleen and kidney. In addition, indirect immunofluorescence showed that CMPK2 was localized in the cytoplasm of FHM cells. Expression of CMPK2 mRNA was significantly up-regulated following challenge with Spring viraemia of carp virus (SVCV), poly(I:C), or zebrafish IFN1 and IFN3 both in vitro and in vivo. Furthermore, overexpression and RNA interference of CMPK2 in SVCV-infected FHM cells showed significantly antiviral effect. In summary, this study for the first time shows the presence and distribution of CMPK2 in different tissues of zebrafish, but also demonstrates its antiviral potential against SVCV infection in vivo. These new findings could contribute to explain the molecular mechanism of the CMPK2 mediated antiviral function.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/imunologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica/veterinária , Interferons/metabolismo , Filogenia , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária
11.
Fish Shellfish Immunol ; 89: 537-547, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30991145

RESUMO

Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis in salmonid fish, resulting in substantial economic losses to the aquaculture industry worldwide. The G protein, which harbors the major antigenic determinants of IHNV, is an envelope glycoprotein that plays an important role in both pathogenicity and immunogenicity of IHNV. Previous studies have demonstrated that changes to viral glycosylation sites may affect replication and immunogenicity, but little is known about the specific contributions of G protein glycosylation to IHNV replication and pathogenicity. In this study, we predicted four N-linked glycosylation sites at position 56, 379, 401, and 438 Asp (N) in G protein, and using a reverse genetics system developed in our laboratory, constructed nine recombinant viruses with single, triple, or quadruple glycosylation site disruptions using alanine substitutions in the following combinations: rIHNV-N56A, rIHNV-N379A, rIHNV-N401A, rIHNV-N438A, rIHNV-N56A-N379A-N401A, rIHNV-N56A-N379A-N438A, rIHNV-N56A-N401A-N438A, rIHNV-N379A-N401A-N438A, and rIHNV-N56A-N379A-N401A-N438A. Our results confirmed that all four asparagines are sites of N-linked glycosylation, and Western blot confirmed that mutation of each predicted N-glycosylation sited impaired glycosylation. Among the nine recombinant IHNVs, replication levels decreased significantly in vitro and in vivo in the triple and quadruple mutants that combined mutation of asparagines 401 and 438, indicating the importance of glycosylation at these sites for efficient replication. Moreover, juvenile rainbow trout mortality after challenge by each of the nine mutants showed that, while eight mutants suffered almost 100% cumulative mortality over 30 days, the mutant with a single alanine substitution at position 438 resulted in cumulative mortality of less than 50% over 30 days. This mutant also elicited specific anti-IHNV IgM production earlier than other mutants, suggesting that glycosylation of asparagine 438 may be important for viral immune escape. In conclusion, our study reveals the effect of G protein glycosylation on the pathogenicity and immunogenicity of IHNV and provides a foundation for developing a live-attenuated vaccine.


Assuntos
Doenças dos Peixes/prevenção & controle , Glicoproteínas/imunologia , Vírus da Necrose Hematopoética Infecciosa/imunologia , Vírus da Necrose Hematopoética Infecciosa/patogenicidade , Oncorhynchus mykiss , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/imunologia , Animais , Doenças dos Peixes/imunologia , Glicosilação , Imunogenicidade da Vacina/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Virulência
12.
Fish Shellfish Immunol ; 89: 516-524, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30986537

RESUMO

Infectious hematopoietic necrosis virus (IHNV) leads to serious disease and economic losses in the salmonid aquaculture industry. The present study aimed to develop an effective and efficient vaccine to protect rainbow trout (Oncorhynchus mykiss) against IHNV infection. Administered via the immersion route, a live vector vaccine containing the regions of the IHNV glycoprotein (G) induced immune responses in rainbow trout. Use of the immersion route induced more-efficient mucosal immunity than intramuscular injection vaccination. IHNV G gene expression was detected in the spleens of rainbow trout at 3, 7 and 15 days post-vaccination (dpv). The G gene expression continuously decreased between 3 and 15 dpv. In addition, the expression of TLR-3, TLR-7 and TLR-8 was upregulated after vaccination, and the highest expression levels of IFN-1, Mx-1, Mx-3, Vig-1 and Vig-2 were observed at 3 dpv. Four markers of the adaptive immune response (CD4, CD8, IgM and IgT) gradually increased. When experimental fish were challenged with IHNV by immersion, significant differences in cumulative percentage mortality were observed in the vaccinated fish and the unvaccinated (empty-plasmid-vaccinated) fish. The relative survival rate was 92% and 6% in the vaccinated group and empty-plasmid group, respectively. Serum antibody levels gradually increased in the vaccinated fish, unlike in the unvaccinated fish, after 7 dpv. Our results suggest there was a significant increase in fish immune responses and resistance to infection with IHNV following administration of the live vector vaccine. Therefore, this live vector vaccine is a promising vaccine that may be utilized to protect rainbow trout against IHNV.


Assuntos
Imunidade Adaptativa , Doenças dos Peixes/prevenção & controle , Vírus da Necrose Hematopoética Infecciosa/fisiologia , Oncorhynchus mykiss , Infecções por Rhabdoviridae/veterinária , Vacinas Virais/imunologia , Animais , Doenças dos Peixes/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Baço/imunologia , Vacinas Atenuadas/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
13.
Fish Shellfish Immunol ; 89: 736-744, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31002927

RESUMO

TAK1-binding protein 1 (TAB1) forms the protein complex with TAK1 and enhances its kinase activity in human and mammals. To elucidate the role of TAB1 in the innate immunity of teleost sfih, the TAB1 homologue of black carp (Mylopharyngodon piceus) (bcTAB1) has been cloned and characterized in this paper. bcTAB1 is composed of 498 amino acids and contains a typical PP2Cc domain like its mammalian counterpart. The transcription of bcTAB1 gene in vivo and ex vivo varied in response to different stimuli; and the immunofluorescence staining showed that bcTAB1 was distributed in both cytoplasm and nucleus of host cell. The reporter assay showed that neither bcTAB1-expression alone nor co-expression of bcTAB1 and bcTAK1 could activate the transcription of IFN in EPC cells. Accordingly, EPC cells expressing bcTAB1 or co-expressing bcTAB1 and bcTAK1 showed no improved antiviral activity against grass carp reovirus (GCRV) and spring viremia of carp virus (SVCV). However, EPC cells co-expressing bcTAB1, bcTAK1 and bcIRF7 showed fiercely increased IFN-inducing ability in reporter assay and obviously improved antiviral activity in plaque assay compared with EPC cells co-expressing bcTAK1 and bcIRF7. The subsequent co-immunoprecipitation assay identified that bcTAB1 associated with bcTAK1 but not interacted with bcIRF7. Based on our previous finding that bcTAK1 up-regulates bcIRF7-mediated IFN signaling during host innate immune activation, the data generated in this study support the conclusion that bcTAB1 interacts with bcTAK1 and boosts bcTAK1-activated bcIRF7/IFN signaling during host antiviral innate immune response against GCRV and SVCV.


Assuntos
Carpas/genética , Carpas/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Peptídeos e Proteínas de Sinalização Intracelular/química , Filogenia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Alinhamento de Sequência/veterinária
14.
Dev Comp Immunol ; 96: 135-143, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30885554

RESUMO

CD44 gene is a cell surface receptor which undergoes complex alternative splicing and extensive post-translational modifications. Although many studies have showed that CD44 is involved in the process of host defense, the function of piscine CD44 in antibacterial or antiviral defense response remains unclear. In the present study, we report the functional characterization of zebrafish CD44c, which is more similar to CD44b antigen isoforms rather than CD44a based on amino acid composition and phylogenetic analysis. The expression of zebrafish CD44c was inducible in response to bacterial and viral infections. During SVCV infection, the in vivo studies revealed that CD44c overexpression led to the increased virus loads and decreased survival rate. The attenuated response by zebrafish CD44c in response to SVCV infection were characterized by the impaired production of inflammatory cytokines and the impaired expressions of IFNs, IFN-stimulated genes, MHC class I and II genes. During Edwardsiella piscicida infection, the overexpression of zebrafish CD44c facilitated bacterial growth and dissemination, but did not impact on larvae survival. The detrimental role of CD44c in host defense against E. piscicida infection was supported by a decreased production of several antibacterial molecules including defbl2, defbl3, NK-lysin and RNase3. All together, these results firstly demonstrate the negative regulation of piscine CD44c in viral and bacterial infection.


Assuntos
Infecções por Enterobacteriaceae/imunologia , Doenças dos Peixes/imunologia , Receptores de Hialuronatos/imunologia , Infecções por Rhabdoviridae/imunologia , Peixe-Zebra/imunologia , Processamento Alternativo/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Edwardsiella/imunologia , Edwardsiella/patogenicidade , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Imunidade Inata , Larva/imunologia , Larva/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Rhabdoviridae/imunologia , Rhabdoviridae/patogenicidade , Infecções por Rhabdoviridae/virologia , Relação Estrutura-Atividade , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Peixe-Zebra/virologia
15.
Fish Shellfish Immunol ; 89: 18-26, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30905838

RESUMO

Triploid hybrid (3n = 150) of red crucian carp (♀, 2n = 100) and allotetraploid (♂, 4n = 200) presents the obviously stronger disease resistance than its parents. To elucidate the innate immunity of triploid hybrid, the MAVS homologues of triploid hybrid (3nMAVS), red crucian carp (2nMAVS) and allotetraploid (4nMAVS) have been identified and characterized separately in this study. 2nMAVS and 4nMAVS were evolutionarily conserved; however, 3nMAVS showed lower amino acid similarity and differently predicted structure to 2nMAVS or 4nMAVS. 3nMAVS transcription increase rate in host cells were obviously higher than 2nMAVS or 4nMAVS in response to different stimuli, which included spring viraemia of carp virus (SVCV), grass carp reovirus (GCRV) and poly (I:C). The reporter assay in EPC cells showed that 3nMAVS owned much stronger ability to induce the production of DrIFNφ1 and eIFN than either 2nMAVS or 4nMAVS. Accordingly, EPC cells transfected with 3nMAVS presented obviously stronger antiviral activity against both GCRV and SVCV than the cells expressing 2nMAVS or 4nMAVS. All the data support the conclusion that 3nMAVS-mediated antiviral signaling during innate immune activation was stronger than those of 2nMAVS and 4nMAVS, which provided us the new insight on the innate immune system of triploid hybrid.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Carpas/genética , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Imunidade Inata/genética , Animais , Cruzamento , Doenças dos Peixes/imunologia , Poli I-C/farmacologia , Reoviridae/fisiologia , Infecções por Reoviridae/imunologia , Infecções por Reoviridae/veterinária , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Tetraploidia , Triploidia
16.
Fish Shellfish Immunol ; 88: 403-406, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30862516

RESUMO

IFN-γ is a pleiotropic cytokine with significant roles in antiviral, antitumor and immune regulation. It could be used as an immuno-enhancer to improve fish protectiveness against pathogens. In this study, the prokaryotic expression plasmid pTwin1-N-IFN-γ was constructed to express Cyprinus carpio (common carp) IFN-γ fused with a chitin binding domain (CBD) and a self-cleavable intein-tag, Synechocystis sp DnaB. The recombinant protein CBD-DnaB-IFN-γ with the molecular weight of 44.25 kD was successfully expressed in soluble form, and the rIFN-γ (approximate 18.61 kD) was further cleaved and eluted under pH = 7.0 at 25 °C. rIFN-γ could be recognized by western blotting with rabbit anti-grass carp IFN-γ polyclonal antibody. Cytotoxicity studies on EPC cells showed that only 500 ng/ml rIFN-γ had a subtle effect on cells growth and its proliferation rate was reduced to 76.2%. EPC cells incubated with 100 ng/ml rIFN-γ showed significantly higher resistance against SVCV, reducing the TCID50/ml by more than 800-fold. In vivo studies suggested that intraperitoneal injection of rIFN-γ significantly improved the survival rate of common carps compared with SVCV challenge alone. These results implied that rIFN-γ would act as an immuno-enhancer in carp aquaculture.


Assuntos
Carpas/virologia , Doenças dos Peixes/prevenção & controle , Inteínas/genética , Interferon gama/imunologia , Infecções por Rhabdoviridae/veterinária , Animais , Aquicultura , Carpas/imunologia , Linhagem Celular Tumoral , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Imunidade Inata , Interferon gama/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Viremia/imunologia
17.
J Fish Dis ; 42(5): 631-642, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30874325

RESUMO

Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are important pathogens in rainbow trout farming worldwide. Their co-infection is also common, which causes great economic loss in juvenile salmon species. Development of a universal virus vaccine providing broadly cross-protective immunity will be of great importance. In this study, we generated two recombinant (r) virus (rIHNV-N438A-ΔNV-EGFP and rIHNV-N438A-ΔNV-VP2) replacing the NV gene of the backbone of rIHNV at the single point mutation at residue 438 with an efficient green fluorescent protein (EGFP) reporter gene and antigenic VP2 gene of IPNV. Meanwhile, we tested their efficacy against the wild-type (wt) IHNV HLJ-09 virus and IPNV serotype Sp virus challenge. The relative per cent survival rates of two recombinant viruses against (wt) IHNV HLJ-09 virus challenge were 84.6% and 81.5%, respectively. Simultaneously, the relative per cent survival rate of rIHNV-N438A-ΔNV-VP2 against IPNV serotype Sp virus challenge was 88.9%. It showed the two recombinant viruses had high protection rates and induced a high level of antibodies against IHNV or IPNV. Taken together, these results suggest the VP2 gene of IPNV can act as candidate gene for vaccine and attenuated multivalent live vaccines and molecular marker vaccines have potential application for viral vaccine.


Assuntos
Imunidade Adaptativa , Doenças dos Peixes/prevenção & controle , Vírus da Necrose Hematopoética Infecciosa/imunologia , Vírus da Necrose Pancreática Infecciosa/imunologia , Oncorhynchus mykiss , Vacinas Virais/imunologia , Animais , Infecções por Birnaviridae/imunologia , Infecções por Birnaviridae/prevenção & controle , Infecções por Birnaviridae/veterinária , Doenças dos Peixes/imunologia , Vírus da Necrose Hematopoética Infecciosa/genética , Vírus da Necrose Pancreática Infecciosa/genética , Distribuição Aleatória , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/veterinária , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
18.
Fish Shellfish Immunol ; 87: 871-878, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30776542

RESUMO

Viral infection is often accompanied with alteration of intracellular redox state, especially an imbalance between reactive oxygen species (ROS) production and antioxidant cellular defenses. The previous studies showed that an antioxidant cellular defense system, the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), played an important role against spring viraemia of carp virus (SVCV) infection in fish. To further reveal the mediated mechanism that Nrf2 active state was affected by protein kinase C (PKC), here we evaluated SVCV replication in host cells by treated with a strong activator of PKC phorbol-12-myristate-13-acetate (PMA) and an inhibitor staurosporine. Our results showed that PMA significantly repressed SVCV replication and viral-induced apoptosis in Epithelioma papulosum cyprini (EPC) cell, suggesting that PKC may exhibit an anti-SVCV effect. Likewise, PMA resulted in a higher phosphorylation levels of PKCε rather than PKCα/ß to participate in the activation of Nrf2, mainly involved in the activation of Nrf2 phosphorylation of Ser40 to favor Nrf2 translocation to nucleus. Furthermore, the data revealed that PMA up-regulated an antiviral response heme oxygenase-1 (HO1) gene expression that was confirmed as the key player against SVCV infection by HO1 specific siRNA. Overall, this study provided a new therapeutic target for the treatment of SVCV infection, and modulating PKC activity could be used for the prevention and treatment of SVCV.


Assuntos
Carpas/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Fator 2 Relacionado a NF-E2/imunologia , Proteína Quinase C-épsilon/imunologia , Rhabdoviridae/fisiologia , Acetato de Tetradecanoilforbol/análogos & derivados , Animais , Antioxidantes/metabolismo , Carpas/genética , Linhagem Celular , Proteínas de Peixes/genética , Fator 2 Relacionado a NF-E2/genética , Proteína Quinase C-épsilon/genética , Espécies Reativas de Oxigênio/metabolismo , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Acetato de Tetradecanoilforbol/farmacologia
19.
Fish Shellfish Immunol ; 87: 809-819, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30776543

RESUMO

Carp from breeding strains with different genetic background present diverse levels of resistance to viral pathogens. Carp strains of Asian origin, currently being treated as Cyprinus rubrofuscus L., especially Amur wild carp (AS), were proven to be more resistant to koi herpesvirus disease (KHVD; caused by cyprinid herpesvirus 3, CyHV-3) than strains originating from Europe and belonging to Cyprinus carpio L., like the Prerov scale carp (PS) or koi carp from a breed in the Czech Republic. We hypothesised that it can be associated with a higher magnitude of type I interferon (IFN) response as a first line of innate defence mechanisms against viral infections. To evaluate this hypothesis, four strains of common carp (AS, Rop, PS and koi) were challenged using two viral infection models: Rhabdovirus SVCV (spring viremia of carp virus) and alloherpesvirus CyHV-3. The infection with SVCV induced a low mortality rates and the most resistant was the Rop strain (no mortalities), whereas the PS strain was the most susceptible (survival rate of 78%). During CyHV-3 infection, Rop and AS strains performed better (survival rates of 78% and 53%, respectively) than PS and koi strains (survival rates of 35% and 10%, respectively). The evaluation of virus loads and virus replication showed significant differences between the carp strains, which correlated with the mortality rate. The evaluation of type I IFN responses showed that there were fundamental differences between the virus infection models. While responses to the SVCV were high, the CyHV-3 generally induced low responses. Furthermore, the results demonstrated that the magnitude of type I IFN responses did not correlate with a higher resistance in infected carp. In the case of a CyHV-3 infection, reduced type I IFN responses could be related to the potential ability of the virus to interfere with cellular sensing of foreign nucleic acids. Taken together, the results broaden our understanding of how common carp from different genetic strains interact with various viral pathogens.


Assuntos
Carpas/genética , Carpas/imunologia , Resistência à Doença/genética , Doenças dos Peixes/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Herpesviridae/fisiologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/veterinária , Rhabdoviridae/fisiologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária
20.
PLoS One ; 14(1): e0201509, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30653529

RESUMO

C-reactive proteins (CRPs) are among the faster acute-phase inflammation-responses proteins encoded by one gene (hcrp) in humans and seven genes (crp1-7) in zebrafish (Danio rerio) with importance in bacterial and viral infections. In this study, we described novel preferential bindings of 25-hydroxycholesterol (25HOCh) to CRP1-7 compared with other lipids and explored the antiviral effects of both 25HOCh and CRP1-7 against spring viremia carp virus (SVCV) infection in zebrafish. Both in silico and in vitro results confirmed the antiviral effect of 25HOCh and CRP1-7 interactions, thereby showing that the crosstalk between them differed among the zebrafish isoforms. The presence of oxidized cholesterols in human atherosclerotic plaques amplifies the importance that similar interactions may occur for vascular and/or neurodegenerative diseases during viral infections. In this context, the zebrafish model offers a genetic tool to further investigate these interactions.


Assuntos
Proteína C-Reativa/imunologia , Doenças dos Peixes , Hidroxicolesteróis/imunologia , Infecções por Rhabdoviridae , Rhabdoviridae/imunologia , Proteínas de Peixe-Zebra/imunologia , Peixe-Zebra , Animais , Linhagem Celular , Doenças dos Peixes/imunologia , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/veterinária , Infecções por Rhabdoviridae/virologia , Peixe-Zebra/imunologia , Peixe-Zebra/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA