Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.774
Filtrar
1.
Int Heart J ; 62(4): 837-842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34334582

RESUMO

Chronic inflammation due to abdominal obesity plays a major role in the development of cardiovascular disease (CVD). Gender differences are well characterized in the development of CVD; however, in the association among abdominal obesity, chronic inflammation, and preclinical atherosclerosis, gender differences in the general population remain to be clarified. We retrospectively analyzed 1,163 subjects who underwent voluntary health checkups at our institute. We defined carotid artery plaque formation as carotid intima-media thickness ≥ 1.1 mm. Multiple regression analysis showed that waist circumference was a major independent predictor of increase in serum C-reactive protein (CRP) level in both men and women. Serum CRP level was significantly increased in men with carotid artery plaque formation, but not in women. Multivariable logistic regression analysis demonstrated that serum CRP level, as well as age and hypertension, was independently associated with carotid artery plaque formation only in men. This result may suggest a potential of gender-specific difference in the association between serum CRP level and the prevalence of carotid artery plaque formation. Further investigations are required to confirm our results and to clarify the underlying mechanism.


Assuntos
Aterosclerose/complicações , Inflamação/complicações , Obesidade Abdominal/complicações , Caracteres Sexuais , Idoso , Proteína C-Reativa/metabolismo , Espessura Intima-Media Carotídea , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Circunferência da Cintura
2.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445635

RESUMO

Currently, migraine is treated mainly by targeting calcitonin gene-related peptides, although the efficacy of this method is limited and new treatment strategies are desired. Neuroinflammation has been implicated in the pathogenesis of migraine. In patients with migraine, peripheral levels of pro-inflammatory cytokines, such as interleukin-1ß (IL-1ß) and tumor necrosis factor-α, are known to be increased. Additionally, animal models of headache have demonstrated that immunological responses associated with cytokines are involved in the pathogenesis of migraine. Furthermore, these inflammatory mediators might alter the function of tight junctions in brain vascular endothelial cells in animal models, but not in human patients. Based on clinical findings showing elevated IL-1ß, and experimental findings involving IL-1ß and both the peripheral trigeminal ganglion and central trigeminal vascular pathways, regulation of the Il-1ß/IL-1 receptor type 1 axis might lead to new treatments for migraine. However, the integrity of the blood-brain barrier is not expected to be affected during attacks in patients with migraine.


Assuntos
Barreira Hematoencefálica/patologia , Encéfalo/patologia , Permeabilidade da Membrana Celular , Inflamação/complicações , Transtornos de Enxaqueca/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/imunologia , Humanos , Transtornos de Enxaqueca/etiologia
3.
Zool Res ; 42(5): 633-636, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34423606

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent responsible for the global coronavirus disease 2019 (COVID-19) pandemic. Numerous studies have demonstrated that cardiovascular disease may affect COVID-19 progression. In the present study, we investigated the effect of hypertension on viral replication and COVID-19 progression using a hypertensive mouse model infected with SARS-CoV-2. Results revealed that SARS-CoV-2 replication was delayed in hypertensive mouse lungs. In contrast, SARS-CoV-2 replication in hypertensive mice treated with the antihypertensive drug captopril demonstrated similar virus replication as SARS-CoV-2-infected normotensive mice. Furthermore, antihypertensive treatment alleviated lung inflammation induced by SARS-CoV-2 replication (interleukin (IL)-1ß up-regulation and increased immune cell infiltration). No differences in lung inflammation were observed between the SARS-CoV-2-infected normotensive mice and hypertensive mice. Our findings suggest that captopril treatment may alleviate COVID-19 progression but not affect viral replication.


Assuntos
Anti-Hipertensivos/uso terapêutico , COVID-19/complicações , Captopril/uso terapêutico , Hipertensão/complicações , Pneumopatias/tratamento farmacológico , SARS-CoV-2 , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Animais , Anti-Hipertensivos/farmacologia , Captopril/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pneumopatias/etiologia , Pneumopatias/virologia , Camundongos , Replicação Viral/efeitos dos fármacos
4.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445357

RESUMO

The biological activities of interleukins, a group of circulating cytokines, are linked to the immuno-pathways involved in many diseases. Mounting evidence suggests that interleukin-1ß (IL-1ß) plays a significant role in the pathogenesis of various types of hypertension. In this review, we summarized recent findings linking IL-1ß to systemic arterial hypertension, pulmonary hypertension, and gestational hypertension. We also outlined the new progress in elucidating the potential mechanisms of IL-1ß in hypertension, focusing on it's regulation in inflammation, vascular smooth muscle cell function, and extracellular remodeling. In addition, we reviewed recent studies that highlight novel findings examining the function of non-coding RNAs in regulating the activity of IL-1ß and its associated proteins in the setting of hypertension. The information collected in this review provides new insights into understanding the pathogenesis of hypertension and could lead to the discovery of new anti-hypertensive therapies to combat this highly prevalent disease.


Assuntos
Hipertensão/etiologia , Interleucina-1beta/fisiologia , Animais , Matriz Extracelular/patologia , Matriz Extracelular/fisiologia , Feminino , Regulação da Expressão Gênica , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertensão Induzida pela Gravidez/etiologia , Hipertensão Induzida pela Gravidez/patologia , Hipertensão Induzida pela Gravidez/fisiopatologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Inflamação/complicações , Inflamação/fisiopatologia , Interleucina-1beta/genética , Músculo Liso Vascular/fisiopatologia , Gravidez , RNA não Traduzido/fisiologia , Remodelação Vascular/fisiologia
5.
Int J Mol Sci ; 22(15)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34361102

RESUMO

Interactions between the intestinal microbiota, immune system and nervous system are essential for homeostasis in the gut. Inflammasomes contribute to innate immunity and brain-gut interactions, but their role in microbiota-neuro-immune interactions is not clear. Therefore, we investigated the effect of the inflammasome on visceral pain and local and systemic neuroimmune responses after antibiotic-induced changes to the microbiota. Wild-type (WT) and caspase-1/11 deficient (Casp1 KO) mice were orally treated for 2 weeks with an antibiotic cocktail (Abx, Bacitracin A and Neomycin), followed by quantification of representative fecal commensals (by qPCR), cecal short chain fatty acids (by HPLC), pathways implicated in the gut-neuro-immune axis (by RT-qPCR, immunofluorescence staining, and flow cytometry) in addition to capsaicin-induced visceral pain responses. Abx-treatment in WT-mice resulted in an increase in colonic macrophages, central neuro-immune interactions, colonic inflammasome and nociceptive receptor gene expression and a reduction in capsaicin-induced visceral pain. In contrast, these responses were attenuated in Abx-treated Casp1 KO mice. Collectively, the data indicate an important role for the inflammasome pathway in functional and inflammatory gastrointestinal conditions where pain and alterations in microbiota composition are prominent.


Assuntos
Caspase 1/fisiologia , Microbioma Gastrointestinal , Inflamassomos/imunologia , Inflamação/complicações , Neuroimunomodulação , Dor Visceral/patologia , Animais , Antibacterianos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/microbiologia , Encéfalo/patologia , Capsaicina/toxicidade , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Feminino , Inflamassomos/efeitos dos fármacos , Inflamação/imunologia , Inflamação/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Dor Visceral/etiologia , Dor Visceral/metabolismo
6.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360544

RESUMO

The abnormal mislocalisation and ubiquitinated protein aggregation of the TAR DNA binding protein 43 (TDP-43) within the cytoplasm of neurons and glia in the central nervous system (CNS) is a pathological hallmark of early-onset neurodegenerative disorders amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathomechanisms underlying abnormal mislocalisation and aggregation of TDP-43 remain unknown. However, there is a growing body of evidence implicating neuroinflammation and immune-mediated mechanisms in the pathogenesis of neurodegeneration. Importantly, most of the evidence for an active role of immunity and inflammation in the pathogenesis of ALS and FTD relates specifically to TDP-43, posing the question as to whether immune-mediated mechanisms could hold the key to understanding TDP-43's underlying role in neurodegeneration in both diseases. Therefore, this review aims to piece together key lines of evidence for the specific association of TDP-43 with key immune and inflammatory pathways to explore the nature of this relationship and the implications for potential pathomechanisms underlying neurodegeneration in ALS and FTD.


Assuntos
Esclerose Amiotrófica Lateral/patologia , Proteínas de Ligação a DNA/genética , Demência Frontotemporal/patologia , Inflamação/complicações , Mutação , Esclerose Amiotrófica Lateral/etiologia , Esclerose Amiotrófica Lateral/metabolismo , Animais , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Humanos , Inflamação/classificação
7.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360591

RESUMO

FREM1 (Fras-related extracellular matrix 1) and its splice variant TILRR (Toll-like interleukin-1 receptor regulator) have been identified as integral components of innate immune systems. The potential involvement of FREM1 in HIV-1 (human immunodeficiency virus 1) acquisition was suggested by a genome-wide SNP (single nucleotide polymorphism) analysis of HIV-1 resistant and susceptible sex workers enrolled in the Pumwani sex worker cohort (PSWC) in Nairobi, Kenya. The studies showed that the minor allele of a FREM1 SNP rs1552896 is highly enriched in the HIV-1 resistant female sex workers. Subsequent studies showed that FREM1 mRNA is highly expressed in tissues relevant to mucosal HIV-1 infection, including cervical epithelial tissues, and TILRR is a major modulator of many genes in the NF-κB signal transduction pathway. In this article, we review the role of FREM1 and TILRR in modulating inflammatory responses and inflammation, and how their influence on inflammatory responses of cervicovaginal tissue could enhance the risk of vaginal HIV-1 acquisition.


Assuntos
Infecções por HIV/virologia , HIV-1/patogenicidade , Inflamação/complicações , Polimorfismo de Nucleotídeo Único , Receptores de Interleucina/metabolismo , Profissionais do Sexo/estatística & dados numéricos , Vagina/virologia , Feminino , Infecções por HIV/epidemiologia , Humanos , Isoformas de Proteínas , Receptores de Interleucina/genética
8.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34299052

RESUMO

The human body is highly complex and comprises a variety of living cells and extracellular material, which forms tissues, organs, and organ systems. Human cells tend to turn over readily to maintain homeostasis in tissues. However, postmitotic nerve cells exceptionally have an ability to regenerate and be sustained for the entire life of an individual, to safeguard the physiological functioning of the central nervous system. For efficient functioning of the CNS, neuronal death is essential, but extreme loss of neurons diminishes the functioning of the nervous system and leads to the onset of neurodegenerative diseases. Neurodegenerative diseases range from acute to chronic severe life-altering conditions like Parkinson's disease and Alzheimer's disease. Millions of individuals worldwide are suffering from neurodegenerative disorders with little or negligible treatment available, thereby leading to a decline in their quality of life. Neuropathological studies have identified a series of factors that explain the etiology of neuronal degradation and its progression in neurodegenerative disease. The onset of neurological diseases depends on a combination of factors that causes a disruption of neurons, such as environmental, biological, physiological, and genetic factors. The current review highlights some of the major pathological factors responsible for neuronal degradation, such as oxidative stress, cell death, and neuroinflammation. All these factors have been described in detail to enhance the understanding of their mechanisms and target them for disease management.


Assuntos
Morte Celular , Inflamação/complicações , Doenças Neurodegenerativas/patologia , Estresse Oxidativo , Animais , Humanos , Doenças Neurodegenerativas/etiologia
9.
Clin Immunol ; 229: 108797, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34273585

RESUMO

The global obesity epidemic is contributing to increased prevalence of diseases fuelled by chronic inflammation, including cancer. Oesophageal adenocarcinoma (OAC) is an obesity-associated malignancy with increasing prevalence, dismal prognosis, and severely dysregulated immune processes. We previously reported that αß T cells migrate to omentum and liver in OAC and contribute to inflammation in these tissues. Here, we assessed the tissue distribution and phenotype of gamma/delta (γδ) T cells in the blood, omentum, liver and tumour of OAC patients. Our data show that the Vδ1 and Vδ3 subsets of γδ T cells are most prevalent in omentum and liver of OAC patients. Furthermore, γδ T cells are predominantly pro-inflammatory in these tissues, and co-express IFN-γ and IL-17. Moreover, γδ T cells exhibit cytotoxic capabilities in OAC omentum and liver. This study provides the first indication that γδ T cells contribute to obesity-associated inflammation in OAC and might be exploited therapeutically.


Assuntos
Adenocarcinoma/imunologia , Neoplasias Esofágicas/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subpopulações de Linfócitos T/imunologia , Adenocarcinoma/etiologia , Adenocarcinoma/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Degranulação Celular , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/patologia , Feminino , Humanos , Imunofenotipagem , Inflamação/complicações , Interferon gama/metabolismo , Interleucina-17/metabolismo , Fígado/imunologia , Fígado/patologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Omento/imunologia , Omento/patologia , Receptores CCR6/metabolismo , Subpopulações de Linfócitos T/patologia , Subpopulações de Linfócitos T/fisiologia , Distribuição Tecidual
10.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203675

RESUMO

Recently, we found that the deletion of TRPC5 leads to increased inflammation and pain-related behaviour in two animal models of arthritis. (-)-Englerin A (EA), an extract from the East African plant Phyllanthus engleri has been identified as a TRPC4/5 agonist. Here, we studied whether or not EA has any anti-inflammatory and analgesic properties via TRPC4/5 in the carrageenan model of inflammation. We found that EA treatment in CD1 mice inhibited thermal hyperalgesia and mechanical allodynia in a dose-dependent manner. Furthermore, EA significantly reduced the volume of carrageenan-induced paw oedema and the mass of the treated paws. Additionally, in dorsal root ganglion (DRG) neurons cultured from WT 129S1/SvIm mice, EA induced a dose-dependent cobalt uptake that was surprisingly preserved in cultured DRG neurons from 129S1/SvIm TRPC5 KO mice. Likewise, EA-induced anti-inflammatory and analgesic effects were preserved in the carrageenan model in animals lacking TRPC5 expression or in mice treated with TRPC4/5 antagonist ML204.This study demonstrates that while EA activates a sub-population of DRG neurons, it induces a novel TRPC4/5-independent analgesic and anti-inflammatory effect in vivo. Future studies are needed to elucidate the molecular and cellular mechanisms underlying EA's anti-inflammatory and analgesic effects.


Assuntos
Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Sesquiterpenos de Guaiano/farmacologia , Canais de Cátion TRPC/metabolismo , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Carragenina , Células Cultivadas , Cobalto/metabolismo , Modelos Animais de Doenças , Edema/patologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/patologia , Masculino , Camundongos Knockout , Dor/complicações , Dor/tratamento farmacológico , Dor/patologia , Fenótipo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Sesquiterpenos de Guaiano/uso terapêutico
11.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206086

RESUMO

Tuberculosis (TB) is an important infectious disease and a public health problem. The organs most frequently affected by TB are the lungs; despite this, it has been reported that TB patients suffer from depression and anxiety, which have been attributed to social factors. In previous experimental work, we observed that the extensive pulmonary inflammation characteristic of TB with high cytokine production induces neuroinflammation, neuronal death and behavioral abnormalities in the absence of brain infection. The objective of the present work was to reduce this neuroinflammation and avoid the psycho-affective disorders showed during pulmonary TB. Glucocorticoids (GCs) are the first-line treatment for neuroinflammation; however, their systemic administration generates various side effects, mostly aggravating pulmonary TB due to immunosuppression of cellular immunity. Intranasal administration is a route that allows drugs to be released directly in the brain through the olfactory nerve, reducing their doses and side effects. In the present work, dexamethasone's (DEX) intranasal administration was evaluated in TB BALB /c mice comparing three different doses (0.05, 0.25 and 2.5 mg/kg BW) on lung disease evolution, neuroinflammation and behavioral alterations. Low doses of dexamethasone significantly decreased neuroinflammation, improving behavioral status without aggravating lung disease.


Assuntos
Encéfalo/efeitos dos fármacos , Dexametasona/farmacologia , Inflamação/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Administração Intranasal , Animais , Ansiedade/complicações , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Encéfalo/patologia , Depressão/complicações , Depressão/tratamento farmacológico , Depressão/patologia , Modelos Animais de Doenças , Glucocorticoides/farmacologia , Humanos , Inflamação/complicações , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Tuberculose Pulmonar/complicações , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia
12.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206129

RESUMO

Endometriosis is a common disease. Its pathogenesis still remains uncertain, but it is clear that cell proliferation, apoptosis and chronic inflammation play an important role in its development. This paper aimed to investigate the anti-proliferative and anti-inflammatory effects of a combined therapy with fotemustine and dexamethasone. Endometriosis was induced by intraperitoneal injections of uterine fragments from donor animals to recipient animals. Next, the pathology was allowed to develop for 7 days. On the seventh day, fotemustine was administered once and dexamethasone was administered daily for the next 7 days. On Day 14, the animals were sacrificed, and peritoneal fluids and lesions were explanted. In order to evaluate the gastrointestinal side effects of the drugs, stomachs were harvested as well. The combined therapy of fotemustine and dexamethasone reduced the proinflammatory mediator levels in the peritoneal fluid and reduced the lesions' area and diameter. In particular, fotemustine and dexamethasone administration reduced the heterogeneous development of endometrial stroma and glands (histological analysis of lesions) and hyperproliferation of endometriotic cells (immunohistochemical analysis of Ki67 and Western blot analysis of PCNA) through the mitogen-activated protein kinase (MAPK) signaling pathway. Combined fotemustine and dexamethasone therapy showed anti-inflammatory effects by inducing the synthesis of anti-inflammatory mediators at the transcriptional and post-transcriptional levels (Western blot analysis of NFκB, COX-2 and PGE2 expression). Fotemustine and dexamethasone administration had anti-apoptotic activity, restoring the impaired mechanism (TUNEL assay and Western blot analysis of Bax and Bcl-2). Moreover, no gastric disfunction was detected (histological analysis of stomachs). Thus, our data showed that the combined therapy of fotemustine and dexamethasone reduced endometriosis-induced inflammation, hyperproliferation and apoptosis resistance.


Assuntos
Dexametasona/farmacologia , Endometriose/tratamento farmacológico , Inflamação/tratamento farmacológico , Compostos de Nitrosoureia/farmacologia , Compostos Organofosforados/farmacologia , Animais , Apoptose/efeitos dos fármacos , Líquido Ascítico/metabolismo , Proliferação de Células/efeitos dos fármacos , Endometriose/complicações , Endometriose/genética , Endometriose/patologia , Endométrio/efeitos dos fármacos , Endométrio/patologia , Feminino , Humanos , Inflamação/complicações , Inflamação/genética , Inflamação/patologia , NF-kappa B/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/genética
13.
Int J Mol Sci ; 22(11)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204098

RESUMO

Ocular graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. Ocular GVHD affects recipients' visual function and quality of life. Recent advanced research in this area has gradually attracted attention from a wide range of physicians and ophthalmologists. This review highlights the mechanism of immune processes and the molecular mechanism, including several inflammation cascades, pathogenic fibrosis, and stress-induced senescence related to ocular GVHD, in basic spectrum topics in this area. How the disease develops and what kinds of cells participate in ocular GVHD are discussed. Although the classical immune process is a main pathological pathway in this disease, senescence-associated changes in immune cells and stem cells may also drive this disease. The DNA damage response, p16/p21, and the expression of markers associated with the senescence-associated secretory phenotype (SASP) are seen in ocular tissue in GVHD. Macrophages, T cells, and mesenchymal cells from donors or recipients that increasingly infiltrate the ocular surface serve as the source of increased secretion of IL-6, which is a major SASP driver. Agents capable of reversing the changes, including senolytic reagents or those that can suppress the SASP seen in GVHD, provide new potential targets for the treatment of GVHD. Creating innovative therapies for ocular GVHD is necessary to treat this intractable ocular disease.


Assuntos
Envelhecimento/patologia , Síndromes do Olho Seco/etiologia , Doença Enxerto-Hospedeiro/complicações , Inflamação/complicações , Estresse Fisiológico , Animais , Doença Crônica , Fibrose , Doença Enxerto-Hospedeiro/imunologia , Humanos , Inflamação/imunologia
14.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299201

RESUMO

The COVID-19 pandemic examines not only the state of actual health care but also the state of fundamental medicine in various countries. Pro-inflammatory processes extend far beyond the classical concepts of inflammation. They manifest themselves in a variety of ways, beginning with extreme physiology, then allostasis at low-grade inflammation, and finally the shockogenic phenomenon of "inflammatory systemic microcirculation". The pathogenetic core of critical situations, including COVID-19, is this phenomenon. Microcirculatory abnormalities, on the other hand, lie at the heart of a specific type of general pathological process known as systemic inflammation (SI). Systemic inflammatory response, cytokine release, cytokine storm, and thrombo-inflammatory syndrome are all terms that refer to different aspects of SI. As a result, the metabolic syndrome model does not adequately reflect the pathophysiology of persistent low-grade systemic inflammation (ChSLGI). Diseases associated with ChSLGI, on the other hand, are risk factors for a severe COVID-19 course. The review examines the role of hypoxia, metabolic dysfunction, scavenger receptors, and pattern-recognition receptors, as well as the processes of the hemophagocytic syndrome, in the systemic alteration and development of SI in COVID-19.


Assuntos
COVID-19/patologia , Síndrome da Liberação de Citocina/complicações , Inflamação/complicações , Linfo-Histiocitose Hemofagocítica/complicações , SARS-CoV-2/isolamento & purificação , COVID-19/imunologia , COVID-19/terapia , COVID-19/virologia , Humanos
15.
Nat Commun ; 12(1): 4559, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315896

RESUMO

Activating mutations in the BRAF-MAPK pathway have been reported in histiocytoses, hematological inflammatory neoplasms characterized by multi-organ dissemination of pro-inflammatory myeloid cells. Here, we generate a humanized mouse model of transplantation of human hematopoietic stem and progenitor cells (HSPCs) expressing the activated form of BRAF (BRAFV600E). All mice transplanted with BRAFV600E-expressing HSPCs succumb to bone marrow failure, displaying myeloid-restricted hematopoiesis and multi-organ dissemination of aberrant mononuclear phagocytes. At the basis of this aggressive phenotype, we uncover the engagement of a senescence program, characterized by DNA damage response activation and a senescence-associated secretory phenotype, which affects also non-mutated bystander cells. Mechanistically, we identify TNFα as a key determinant of paracrine senescence and myeloid-restricted hematopoiesis and show that its inhibition dampens inflammation, delays disease onset and rescues hematopoietic defects in bystander cells. Our work establishes that senescence in the human hematopoietic system links oncogene-activation to the systemic inflammation observed in histiocytic neoplasms.


Assuntos
Senescência Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Histiocitose/patologia , Inflamação/patologia , Células Mieloides/patologia , Oncogenes , Animais , Medula Óssea/patologia , Pontos de Checagem do Ciclo Celular/genética , Senescência Celular/genética , Doença Crônica , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Histiocitose/complicações , Humanos , Inflamação/complicações , Lentivirus/genética , Camundongos , Mutação/genética , Comunicação Parácrina , Análise de Componente Principal , Proteínas Proto-Oncogênicas B-raf/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199845

RESUMO

Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1ß and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.


Assuntos
Inflamassomos/metabolismo , Inflamação/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuromusculares/patologia , Animais , Humanos , Inflamação/complicações , Inflamação/metabolismo , Doenças Neuromusculares/etiologia , Doenças Neuromusculares/metabolismo
17.
Int J Mol Sci ; 22(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200240

RESUMO

The term neuroinflammation refers to inflammation of the nervous tissue, in general, and in the central nervous system (CNS), in particular. It is a driver of neurotoxicity, it is detrimental, and implies that glial cell activation happens prior to neuronal degeneration and, possibly, even causes it. The inflammation-like glial responses may be initiated in response to a variety of cues such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. The inflammatory response of activated microglia engages the immune system and initiates tissue repair. Through translational research the role played by neuroinflammation has been acknowledged in different disease entities. Intriguingly, these entities include both those directly related to the CNS (commonly designated neuropsychiatric disorders) and those not directly related to the CNS (e.g., cancer and diabetes type 2). Interestingly, all the above-mentioned entities belong to the same group of "complex disorders". This review aims to summarize cumulated data supporting the hypothesis that neuroinflammation is a common denominator of a wide variety of complex diseases. We will concentrate on cancer, type 2 diabetes (T2DM), and neuropsychiatric disorders (focusing on mood disorders).


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Inflamação/complicações , Transtornos Mentais/etiologia , Neoplasias/etiologia , Neurônios/patologia , Animais , Diabetes Mellitus Tipo 2/patologia , Humanos , Transtornos Mentais/patologia , Neoplasias/patologia
19.
Cytokine ; 146: 155627, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237556

RESUMO

BACKGROUND: One of the main pathophysiological mechanisms underlying the severe course of COVID-19 is the hyper-inflammatory syndrome associated with progressive damage of lung tissue and multi-organ dysfunction. IL-17 has been suggested to be involved in hyper-inflammatory syndrome. OBJECTIVE: To evaluate the efficacy and safety of the IL-17 inhibitor netakimab in patients with severe COVID-19. STUDY DESIGN: In our retrospective case-control study we evaluated the efficacy of netakimab in hospitalized patients with severe COVID-19 outside the intensive care unit (ICU). Patients in the experimental group were treated with standard of care therapy and netakimab at a dose of 120 mg subcutaneously. RESULTS: 171 patients with severe COVID-19 were enrolled in our study, and 88 of them received netakimab. On the 3 day of therapy, body temperature, SpO2/FiO2, NEWS2 score, and CRP improved significantly in the netakimab group compared to the control group. Other clinical outcomes such as transfer to ICU (11.4% vs 9.6%), need for mechanical ventilation (10.2% vs 9.6%), 28-day mortality (10.2% vs 8.4%), did not differ between the groups. CONCLUSION: In hospitalized patients with severe COVID-19, anti-IL-17 therapy might mitigate the inflammatory response and improve oxygenation, but do not affect the need for mechanical ventilation and mortality.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , COVID-19/terapia , Hospitalização/estatística & dados numéricos , Pacientes Internados/estatística & dados numéricos , Interleucina-17/antagonistas & inibidores , SARS-CoV-2/efeitos dos fármacos , Idoso , Anticorpos Monoclonais Humanizados/efeitos adversos , COVID-19/complicações , COVID-19/virologia , Estudos de Casos e Controles , Diarreia/induzido quimicamente , Dispneia/induzido quimicamente , Feminino , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Interleucina-17/imunologia , Interleucina-17/metabolismo , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Respiração Artificial , Estudos Retrospectivos , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Resultado do Tratamento
20.
Cytokine ; 146: 155634, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34247039

RESUMO

Thrombopoietin (TPO) is most recognized for its function as the primary regulator of megakaryocyte (MK) expansion and differentiation. MKs, in turn, are best known for their role in platelet production. Research indicates that MKs and platelets play an extensive role in the pathologic thrombosis at sites of high inflammation. TPO, therefore, is a key mediator of thromboinflammation. Silencing of TPO has been shown to decrease platelets levels and rates of pathologic thrombosis in patients with various inflammatory disorders (Barrett et al, 2020; Bunting et al, 1997; Desai et al, 2018; Kaser et al, 2001; Shirai et al, 2019). Given the high rates of thromboinflammmation in the novel coronavirus 2019 (COVID-19), as well as the well-documented aberrant MK activity in affected patients, TPO silencing offers a potential therapeutic modality in the treatment of COVID-19 and other pathologies associated with thromboinflammation. The current review explores the current clinical applications of TPO silencing and offers insight into a potential role in the treatment of COVID-19.


Assuntos
COVID-19/terapia , Inativação Gênica , Inflamação/genética , Trombocitose/genética , Trombopoetina/genética , Trombose/genética , COVID-19/complicações , COVID-19/virologia , Humanos , Inflamação/complicações , Inflamação/metabolismo , Megacariócitos/metabolismo , SARS-CoV-2/fisiologia , Trombocitose/complicações , Trombocitose/metabolismo , Trombopoese/genética , Trombopoetina/metabolismo , Trombose/complicações , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...