Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.062
Filtrar
1.
Cardiovasc Ther ; 2020: 9397109, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821285

RESUMO

Chronic systemic inflammation contributes to cardiovascular disease (CVD) and correlates with the abundance of acute phase response (APR) proteins in the liver and plasma. Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate inflammatory gene transcription. We show that BET inhibition by the small molecule apabetalone reduces APR gene and protein expression in human hepatocytes, mouse models, and plasma from CVD patients. Steady-state expression of serum amyloid P, plasminogen activator inhibitor 1, and ceruloplasmin, APR proteins linked to CVD risk, is reduced by apabetalone in cultured hepatocytes and in humanized mouse liver. In cytokine-stimulated hepatocytes, apabetalone reduces the expression of C-reactive protein (CRP), alpha-2-macroglobulin, and serum amyloid P. The latter two are also reduced by apabetalone in the liver of endotoxemic mice. BET knockdown in vitro also counters cytokine-mediated induction of the CRP gene. Mechanistically, apabetalone reduces the cytokine-driven increase in BRD4 BET occupancy at the CRP promoter, confirming that transcription of CRP is BET-dependent. In patients with stable coronary disease, plasma APR proteins CRP, IL-1 receptor antagonist, and fibrinogen γ decrease after apabetalone treatment versus placebo, resulting in a predicted downregulation of the APR pathway and cytokine targets. We conclude that CRP and components of the APR pathway are regulated by BET proteins and that apabetalone counters chronic cytokine signaling in patients.


Assuntos
Anti-Inflamatórios/farmacologia , Proteína C-Reativa/metabolismo , Doenças Cardiovasculares/tratamento farmacológico , Citocinas/metabolismo , Endotoxemia/tratamento farmacológico , Epigênese Genética/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Quinazolinonas/farmacologia , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteína C-Reativa/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Citocinas/genética , Modelos Animais de Doenças , Endotoxemia/genética , Endotoxemia/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Nucleares/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas , Componente Amiloide P Sérico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(36): 22351-22356, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32826331

RESUMO

Cytokine release syndrome (CRS) is a life-threatening complication induced by systemic inflammatory responses to infections, including bacteria and chimeric antigen receptor T cell therapy. There are currently no immunotherapies with proven clinical efficacy and understanding of the molecular mechanisms of CRS pathogenesis is limited. Here, we found that patients diagnosed with CRS from sepsis, acute respiratory distress syndrome (ARDS), or burns showed common manifestations: strikingly elevated levels of the four proinflammatory cytokines interleukin (IL)-6, IL-8, monocyte chemotactic protein-1 (MCP-1), and IL-10 and the coagulation cascade activator plasminogen activator inhibitor-1 (PAI-1). Our in vitro data indicate that endothelial IL-6 trans-signaling formed an inflammation circuit for robust IL-6, IL-8, and MCP-1 production and promoted PAI-1 production; additionally, an IL-6 signaling blockade by the human monoclonal antibody tocilizumab blunted endothelial cell activation. Plasma from severe COVID-19 patients similarly exhibited increased IL-6, IL-10, and MCP-1 levels, but these levels were not as high as those in patients with CRS from other causes. In contrast, the PAI-1 levels in COVID-19 patients were as highly elevated as those in patients with bacterial sepsis or ARDS. Tocilizumab treatment decreased the PAI-1 levels and alleviated critical illness in severe COVID-19 patients. Our findings suggest that distinct levels of cytokine production are associated with CRS induced by bacterial infection and COVID-19, but both CRS types are accompanied by endotheliopathy through IL-6 trans-signaling. Thus, the present study highlights the crucial role of IL-6 signaling in endothelial dysfunction during bacterial infection and COVID-19.


Assuntos
Síndrome da Liberação de Citocina/metabolismo , Células Endoteliais/metabolismo , Interleucina-6/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transdução de Sinais , Adulto , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Betacoronavirus , Queimaduras/metabolismo , Queimaduras/patologia , Células Cultivadas , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/patologia , Citocinas/sangue , Citocinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Inibidor 1 de Ativador de Plasminogênio/sangue , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , Receptores de Interleucina-6/antagonistas & inibidores , Receptores de Interleucina-6/metabolismo , Síndrome do Desconforto Respiratório do Adulto/metabolismo , Síndrome do Desconforto Respiratório do Adulto/patologia , Sepse/metabolismo , Sepse/patologia
3.
Clin Sci (Lond) ; 134(12): 1433-1448, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478392

RESUMO

Recent identification of an RNA-binding protein (HuR) that regulates mRNA turnover and translation of numerous transcripts via binding to an ARE in their 3'-UTR involved in inflammation and is abnormally elevated in varied kidney diseases offers a novel target for the treatment of renal inflammation and subsequent fibrosis. Thus, we hypothesized that treatment with a selective inhibition of HuR function with a small molecule, KH-3, would down-regulate HuR-targeted proinflammatory transcripts thereby improving glomerulosclerosis in experimental nephritis, where glomerular cellular HuR is elevated. Three experimental groups included normal and diseased rats treated with or without KH-3. Disease was induced by the monoclonal anti-Thy 1.1 antibody. KH-3 was given via daily intraperitoneal injection from day 1 after disease induction to day 5 at the dose of 50 mg/kg BW/day. At day 6, diseased animals treated with KH-3 showed significant reduction in glomerular HuR levels, proteinuria, podocyte injury determined by ameliorated podocyte loss and podocin expression, glomerular staining for periodic acid-Schiff positive extracellular matrix proteins, fibronectin and collagen IV and mRNA and protein levels of profibrotic markers, compared with untreated disease rats. KH-3 treatment also reduced disease-induced increases in renal TGFß1 and PAI-1 transcripts. Additionally, a marked increase in renal NF-κB-p65, Nox4, and glomerular macrophage cell infiltration observed in disease control group was largely reversed by KH-3 treatment. These results strongly support our hypothesis that down-regulation of HuR function with KH-3 has therapeutic potential for reversing glomerulosclerosis by reducing abundance of pro-inflammatory transcripts and related inflammation.


Assuntos
Proteína Semelhante a ELAV 1/antagonistas & inibidores , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Nefrite/metabolismo , Nefrite/patologia , Animais , Biomarcadores/metabolismo , Peso Corporal , Polaridade Celular , Colágeno/genética , Colágeno/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Humanos , Inflamação/patologia , Testes de Função Renal , Glomérulos Renais/fisiopatologia , Macrófagos/metabolismo , Masculino , Monócitos/metabolismo , NADPH Oxidase 4/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Antígenos Thy-1 , Fator de Transcrição RelA/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(17): 9497-9507, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32300005

RESUMO

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Disponibilidade Biológica , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Piperazinas/farmacologia , Inibidor 1 de Ativador de Plasminogênio/genética , Ligação Proteica , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , para-Aminobenzoatos/farmacologia
5.
J Toxicol Sci ; 45(4): 237-243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238698

RESUMO

Blood coagulation and the fibrinolytic system contribute to vascular lesions. Fibrinolysis in normal circulating blood strongly depends on the balance between tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) secreted from vascular endothelial cells; however, the mechanisms by which endothelial fibrinolysis is regulated remain to be fully understood. In the present study, human vascular endothelial EA.hy926 cells were transfected with small interfering RNA for nuclear factor erythroid 2-related factor 2 (NRF2) and the expression of t-PA and PAI-1 and fibrinolytic activity in the conditioned medium were examined. EA.hy926 cells were also treated with sulforaphane, an NRF2 activator, and fibrinolytic activity was examined to confirm the NRF2 signaling pathway's effect. Enhanced fibrinolytic activity in the conditioned medium was observed in association with increased expression and secretion levels of t-PA in NRF2 knockdown EA.hy926 cells. However, sulforaphane inhibited fibrinolytic activity and t-PA synthesis in EA.hy926 cells without any cell damage. The expression level of PAI-1 did not change in either NRF2 knockdown or sulforaphane treated cells. These results suggest that transcription factor NRF2 may play a role in down-regulating endothelial t-PA synthesis and fibrinolytic activity.


Assuntos
Regulação para Baixo/genética , Células Endoteliais/metabolismo , Fator 2 Relacionado a NF-E2/fisiologia , Ativador de Plasminogênio Tecidual/metabolismo , Células Cultivadas , Fibrinólise/genética , Expressão Gênica/genética , Humanos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tecidual/genética
6.
Am J Respir Cell Mol Biol ; 63(2): 234-243, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243761

RESUMO

Pseudomonas aeruginosa is a lethal pathogen that causes high mortality and morbidity in immunocompromised and critically ill patients. The type III secretion system (T3SS) of P. aeruginosa mediates many of the adverse effects of infection with this pathogen, including increased lung permeability in a Toll-like receptor 4/RhoA/PAI-1 (plasminogen activator inhibitor-1)-dependent manner. α-Tocopherol has antiinflammatory properties that may make it a useful adjunct in treatment of this moribund infection. We measured transendothelial and transepithelial resistance, RhoA and PAI-1 activation, stress fiber formation, P. aeruginosa T3SS exoenzyme (ExoY) intoxication into host cells, and survival in a murine model of pneumonia in the presence of P. aeruginosa and pretreatment with α-tocopherol. We found that α-tocopherol alleviated P. aeruginosa-mediated alveolar endothelial and epithelial paracellular permeability by inhibiting RhoA, in part, via PAI-1 activation, and increased survival in a mouse model of P. aeruginosa pneumonia. Furthermore, we found that α-tocopherol decreased the activation of RhoA and PAI-1 by blocking the injection of T3SS exoenzymes into alveolar epithelial cells. P. aeruginosa is becoming increasingly antibiotic resistant. We provide evidence that α-tocopherol could be a useful therapeutic agent for individuals who are susceptible to infection with P. aeruginosa, such as those who are immunocompromised or critically ill.


Assuntos
Pneumonia/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , alfa-Tocoferol/farmacologia , Animais , Proteínas de Bactérias/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Pseudomonas aeruginosa/metabolismo , Ratos , Sistemas de Secreção Tipo III/efeitos dos fármacos , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Cell Physiol Biochem ; 54(2): 195-210, 2020 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-32083406

RESUMO

BACKGROUND/AIMS: Idiopathic pulmonary fibrosis (IPF) is a specific form of progressive and chronic interstitial lung disease of unknown cause. IPF is characterized by excessive deposition of extracellular matrix (ECM) and destructive pathological remodeling due to epithelial-to-mesenchymal transition (EMT). Eventually, lung interstitium thickens and stiffens and breathing becomes difficult. It has been well established that the transforming growth factor-ß1 (TGF-ß1)/Smad signaling pathway plays a critical role in the pathogenesis of pulmonary fibrosis. TGF-ß1-mediated activation of mitogen activated protein kinase (MAPK) family affects Smad signaling. p90RSK is a serine/threonine kinase and is activated by the extracellular signal-regulated kinase (ERK) signaling pathway. However, the roles played by p90RSK in TGF-ß1 signaling and the pathogenesis of pulmonary fibrosis remain unknown. METHODS: We investigated whether p90RSK regulates the pathogenesis of pulmonary fibrosis using in vitro and in vivo systems and Western blotting, real-time quantitative PCR, transcriptional activity assays and immunofluorescence studies. RESULTS: Pharmacological inhibition of p90RSK by FMK or inhibition of p90RSK with adenoviral vector encoding a dominant negative form of p90RSK suppressed TGF-ß1-induced ECM accumulation and EMT in lung epithelial cells and fibroblasts. Interestingly, FMK significantly inhibited TGF-ß1-induced Smad3 nuclear translocation and smad binding element-dependent transcriptional activity, but not Smad3 phosphorylation. Furthermore, in a mouse model of bleomycin-induced lung fibrosis, FMK ameliorated pulmonary fibrosis. CONCLUSION: These findings indicate that p90RSK plays critical roles in pulmonary fibrosis, which suggests it be viewed as a novel therapeutic target for the treatment of lung fibrosis.


Assuntos
Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Proteína Smad3/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Humanos , Isoquinolinas/farmacologia , Cetonas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Piridinas/farmacologia , Pirróis/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/antagonistas & inibidores , Proteína Smad3/genética , Ativação Transcricional/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
8.
Arch Physiol Biochem ; 126(1): 31-40, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30320517

RESUMO

This study investigated the effect of acylated ghrelin (AG) deficiency after sleeve gastrectomy (SG) or chronic administration in control and SG-indiuced rats on platelet function, coagulation, and fibrinolysis. Administration of AG (100 µg/kg, subcutaneously) to control or SG rats significantly inhibited platelets aggregation and lowered levels of Von-Willebrand factor (vWF), fibrinogen, and thromboxane B2. Concomitantly, it decreased circulatory levels and aortic expression levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF) and increased the aortic expression of the endothelial nitric oxidase (eNOS). However, AG inhibited angiotensin-II (ANGII)-induced upregulation of tissue factor pathway inhibitor (TPAI) and TF and increased activity of TF and increases eNOS expression in cultured endothelial cells, an effect that was abolished by the addition of D-[lys3]-GHRP-6, a selective AG receptor (GHSR-1a) blocker or L-Name, a potent eNOS inhibitor. In conclusion, AG has an anti-platelet, anti-coagulant, and fibrinolytic roles mediated through GHSR-1a to enhance nitric oxide synthesis.


Assuntos
Aorta/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Gastrectomia/métodos , Grelina/farmacologia , Hemostáticos/farmacologia , Acilação , Angiotensina II/farmacologia , Animais , Aorta/citologia , Aorta/metabolismo , Esquema de Medicação , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Fibrinogênio/metabolismo , Expressão Gênica/efeitos dos fármacos , Grelina/análogos & derivados , Injeções Subcutâneas , Masculino , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Oligopeptídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/genética , Receptores de Grelina/metabolismo , Tromboxano B2/metabolismo , Fator de von Willebrand/metabolismo
9.
BJOG ; 127(5): 551-560, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876085

RESUMO

OBJECTIVE: Determining genetic and paracrine mechanisms behind endometrial regeneration in Asherman's syndrome and endometrial atrophy (AS/EA) patients after autologous CD133+ bone marrow-derived stem cell (CD133+ BMDSC) transplantation. DESIGN: Retrospective study using human endometrial biopsies and mouse models. SETTING: Fundación-IVI, IIS-La Fe, Valencia, Spain. SAMPLES: Endometrial biopsies collected before and after CD133+ BMDSC therapy, from eight women with AS/EA (NCT02144987) from the uterus of five mice with only left horns receiving CD133+ BMDSC therapy. METHODS: In human samples, haematoxylin and eosin (H&E) staining, RNA arrays, PCR validation, and neutrophil elastase (NE) immunohistochemistry (IHQ). In mouse samples, PCR validation and protein immunoarrays. MAIN OUTCOME MEASURES: H&E microscopic evaluation, RNA expression levels, PCR, and growth/angiogenic factors quantification, NE IHQ signal. RESULTS: Treatment improved endometrial morphology and thickness for all patients. In human samples, Jun, Serpine1, and Il4 were up-regulated whereas Ccnd1 and Cxcl8 were down-regulated after treatment. The significant decrease of NE signal corroborated Cxcl8 expression. Animal model analysis confirmed human results and revealed a higher expression of pro-angiogenic cytokines (IL18, HGF, MCP-1, MIP2) in treated uterine horns. CONCLUSIONS: CD133+ BMDSC seems to activate several factors through a paracrine mechanism to help tissue regeneration, modifying endometrial behaviour through an immunomodulatory milieu that precedes proliferation and angiogenic processes. Insight into these processes could bring us one step closer to a non-invasive treatment for AS/EA patients. TWEETABLE ABSTRACT: CD133+ BMDSC therapy regenerates endometrium, modifying the immunological milieu that precedes proliferation and angiogenesis.


Assuntos
Atrofia/terapia , Endométrio/patologia , Endométrio/fisiologia , Ginatresia/terapia , Regeneração , Transplante de Células-Tronco , Antígeno AC133/metabolismo , Animais , Ciclina D1/metabolismo , Citocinas/metabolismo , Regulação para Baixo , Feminino , Humanos , Interleucina-8/metabolismo , Elastase de Leucócito/metabolismo , Modelos Animais , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Estudos Retrospectivos , Transplante Autólogo , Regulação para Cima , Útero/metabolismo
10.
Yonsei Med J ; 61(1): 85-93, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31887804

RESUMO

PURPOSE: The aim of this study was to investigate the effect of FST gene on the inhibition of fibrosis in fibroblastic cells from scar tissue around repaired zone II flexor tendons. MATERIALS AND METHODS: Immunohistochemistry was conducted on fibroblast cells transfected with adenovirus-LacZ (Ad-LacZ) as a marker gene (control), or with adenovirus-FST (Ad-FST) as a therapeutic gene. Fibroblast cultures without adenoviral exposure served as controls. RESULTS: Fibroblastic cells transfected with Ad-FST demonstrated significant decrease in collagen type I, MMP-1, MMP2, and α-SMA mRNA expressions compared to those transfected with Ad-LacZ. In addition, fibroblastic cells transfected with Ad-FST exhibited significant decrease in MMP-1, TIMP-1, fibronectin, PAI-1, TRPV4, α-SMA, desmin, and PAX7 protein expressions. CONCLUSION: Based on these findings, we conclude that FST may be a novel therapeutic strategy for preventing scar adhesions around repaired tendons by inhibiting fibroblasts from differentiating into myofibroblasts, in addition to producing type I collagen and regulating extracellular matrix turnover via the downregulation of MMP-1 and TIMP-1. FST may also decrease contracture of the scar by inhibiting Ca2+-dependent cell contraction.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Cicatriz/metabolismo , Cicatriz/patologia , Colágeno Tipo I/biossíntese , Fibroblastos/metabolismo , Folistatina/metabolismo , Miofibroblastos/patologia , Traumatismos dos Tendões/patologia , Actinas/metabolismo , Animais , Células Cultivadas , Desmina/metabolismo , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Regulação da Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Tendões/patologia
11.
Blood ; 134(26): 2399-2413, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31877217

RESUMO

Patients with malignancy are at 4- to 7-fold higher risk of venous thromboembolism (VTE), a potentially fatal, yet preventable complication. Although general mechanisms of thrombosis are enhanced in these patients, malignancy-specific triggers and their therapeutic implication remain poorly understood. Here we examined a colon cancer-specific VTE model and probed a set of metabolites with prothrombotic propensity in the inferior vena cava (IVC) ligation model. Athymic mice injected with human colon adenocarcinoma cells exhibited significantly higher IVC clot weights, a biological readout of venous thrombogenicity, compared with the control mice. Targeted metabolomics analysis of plasma of mice revealed an increase in the blood levels of kynurenine and indoxyl sulfate (tryptophan metabolites) in xenograft-bearing mice, which correlated positively with the increase in the IVC clot size. These metabolites are ligands of aryl hydrocarbon receptor (AHR) signaling. Accordingly, plasma from the xenograft-bearing mice activated the AHR pathway and augmented tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) levels in venous endothelial cells in an AHR-dependent manner. Consistent with these findings, the endothelium from the IVC of xenograft-bearing animals revealed nuclear AHR and upregulated TF and PAI-1 expression, telltale signs of an activated AHR-TF/PAI-1 axis. Importantly, pharmacological inhibition of AHR activity suppressed TF and PAI-1 expression in endothelial cells of the IVC and reduced clot weights in both kynurenine-injected and xenograft-bearing mice. Together, these data show dysregulated tryptophan metabolites in a mouse cancer model, and they reveal a novel link between these metabolites and the control of the AHR-TF/PAI-1 axis and VTE in cancer.


Assuntos
Neoplasias do Colo/complicações , Modelos Animais de Doenças , Metaboloma , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Tromboplastina/metabolismo , Tromboembolia Venosa/etiologia , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Transdução de Sinais , Triptofano/metabolismo , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Life Sci ; 239: 117092, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31760103

RESUMO

AIMS: Type 2 diabetes mellitus (DM2) is associated with coronary heart disease (CHD) and is characterized by high levels of plasminogen activator inhibitor (PAI)-1. Circulating microRNAs have been reported as potential diagnostic biomarkers for DM2 and CHD. However, the underlying mechanisms have largely remained unclear. MAIN METHODS: The changes of circulating miR-30c, PAI-1 and vitronetin (VN) in plasma from CHD, noncomplicated (NC) + DM2, CHD + DM2 subjects and control individuals were assessed by quantitative reverse transcription PCR (qRT-PCR) and ELISA assays, respectively. The effects of miR-30c on VN expression by targeting PAI-1 were assessed in vitro SMC and in ex vivo plasma, using bioinformatic analysis, miRNA transfection, luciferase assays, qRT-PCR and western blot, respectively. KEY FINDINGS: We found that decreased circulating miR-30c was negatively correlated with the severity of coronary lesions and the resulting elevated PAI-1 and VN levels. Circulating miR-30c significantly distinguished between patients with CHD + DM2, NC + DM2, CHD and control subjects, and that were significantly associated with certain risk factors for progression from a normal individual to one with CHD + DM2. Furthermore, we also showed that miR-30c plays a previously unrecognized role in regulating the expression of VN levels via regulating PAI-1 levels in vitro SMC and in ex vivo plasma. SIGNIFICANCE: These findings provide a novel regulatory mechanism of miR-30c in regulating PAI-1/VN interactions and that may serve as a diagnostic biomarker of DM2 that is complicated with CHD.


Assuntos
Doença das Coronárias/genética , Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , Idoso , Biomarcadores/sangue , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Células Cultivadas , Doença das Coronárias/diagnóstico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Vitronectina/genética , Vitronectina/metabolismo
13.
Cancer Metastasis Rev ; 38(3): 483-492, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31734763

RESUMO

The paradoxical pro-tumorigenic function of plasminogen activator inhibitor 1 (PAI-1, aka Serpin E1) in cancer progression and metastasis has been the subject of an abundant scientific literature that has pointed to a pro-angiogenic role, a growth and migration stimulatory function, and an anti-apoptotic activity, all directed toward promoting tumor growth, cancer cell survival, and metastasis. With uPA, PAI-1 is among the most reliable biomarkers and prognosticators in many cancer types. More recently, a novel pro-tumorigenic function of PAI-1 in cancer-related inflammation has been demonstrated. These multifaceted activities of PAI-1 in cancer progression are explained by the complex structure of PAI-1 and its multiple functions that go beyond its anti-fibrinolytic and anti-plasminogen activation activities. However, despite the multiple evidences supporting a pro-tumorigenic role of PAI-1 in cancer, and the development of several inhibitors, targeting PAI-1, has remained elusive. In this article, the various mechanisms responsible for the pro-tumorigenic functions of PAI-1 are reviewed with emphasis on its more recently described contribution to cancer inflammation. The challenges of targeting PAI-1 in cancer therapy are then discussed.


Assuntos
Neoplasias/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Animais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Progressão da Doença , Humanos , Modelos Moleculares , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neoplasias/patologia , Inibidor 1 de Ativador de Plasminogênio/química , Inibidor 1 de Ativador de Plasminogênio/genética , Polimorfismo de Nucleotídeo Único , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Exp Brain Res ; 237(12): 3419-3430, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31734788

RESUMO

Plasminogen activator inhibitor 1 (PAI-1), which is elevated in numerous disease states, has been implicated as a stress-related protein involved in the pathogenesis of depression. We measured PAI-1 in the plasma of healthy and depressed individuals and assessed plasminogen activator (PA) expression and regulation by PAI-1 in cultured normal human astrocytes (NHA). Elevated plasma PAI-1 levels were found in depressed patients. Brain tissues from depressed individuals also showed stronger expression of hippocampal PAI-1 by confocal imaging in comparison to healthy individuals. Using a lipopolysaccharide-induced inflammatory model of depression in mice, we measured PAI-1 in murine plasma and brain, by ELISA and immunohistochemistry, respectively. Similar elevations were seen in plasma but not in brain homogenates of mice exposed to LPS. We further correlated the findings with depressive behavior. Ex vivo experiments with NHA treated with proinflammatory cytokines implicated in the pathogenesis of depression showed increased PAI-1 expression. Furthermore, these studies suggest that urokinase-type plasminogen activator may serve as an astrocyte PA reservoir, able to promote cleavage of brain-derived neurotrophic factor (BDNF) during stress or inflammation. In summary, our findings confirm that derangements of PAI-1 variably occur in the brain in association with the depressive phenotype. These derangements may impede the availability of active, mature (m)BDNF and thereby promote a depressive phenotype.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Encéfalo/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Transtorno Depressivo Maior/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Serpina E2/metabolismo , Animais , Células Cultivadas , Depressão/sangue , Transtorno Depressivo Maior/sangue , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Inibidor 1 de Ativador de Plasminogênio/sangue , Serpina E2/sangue
15.
BMC Mol Cell Biol ; 20(1): 47, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675913

RESUMO

BACKGROUND: In healthy subjects fibrinogen γ/γ' circulates at 8-15% of the total plasma fibrinogen concentration. Elevated levels of this variant have been associated with arterial thrombosis, and its diminution with venous thrombosis. The aims of the present work were to analyze the structure of the fibrin network formed on the top of human dermal microvascular endothelial cells (HMEC-1) at different fibrinogen γ/γ' concentrations, as well as its influence on the secretion of fibrinolytic components. The kinetics of fibrin polymerization on top of HMEC-1 cells with 3, 10, and 30% fibrinogen γ/γ' was followed at 350 nm. The secretion of urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (PAI 1) by HMEC-1 were measured in the supernatant and cell lysates, after incubation with 1 nM thrombin, fibrin with 3, and 30% fibrinogen γ/γ', using commercial kits. The influence of fibrinogen γ/γ' on fibrin structure on the surface of the HMEC-1 was followed with laser scanning confocal microscopy (LSCM). RESULTS: The kinetics of fibrin formation on HMEC-1 with 3 and 10% fibrinogen γ/γ' were similar. However, with 30% fibrinogen γ/γ' both the slope and final turbity were approximately 50% less. The LSCM images showed the dramatic effects of increasing fibrinogen γ/γ' from 3 to 30%. The uPA and PAI 1 concentrations in culture supernatants HMEC-1 cells treated with thrombin or 30% γ/γ' fibrin were two-fold increased as compared to basal culture supernatants and 3% γ/γ' fibrin-treated HMEC-1. In all stimulatory conditions the intracellular concentration of uPA was higher than in supernatants. In contrast, the intracellular PAI 1 concentration was decreased as compared to that measured in the supernatant, including the basal condition. CONCLUSION: A concentration of 30% fibrin γ/γ' alter drastically fibrin structure on the cell surface and affects the secretion of uPA and PAI 1 through its capacity to bind thrombin.


Assuntos
Células Endoteliais/metabolismo , Fibrinogênios Anormais/metabolismo , Fragmentos de Peptídeos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Trombose , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Coagulação Sanguínea , Linhagem Celular , Fibrina/química , Fibrinogênio/química , Fibrinólise/fisiologia , Humanos , Trombina/metabolismo , Trombose/metabolismo
16.
Nat Genet ; 51(11): 1574-1579, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31676865

RESUMO

Venous thromboembolism is a significant cause of mortality1, yet its genetic determinants are incompletely defined. We performed a discovery genome-wide association study in the Million Veteran Program and UK Biobank, with testing of approximately 13 million DNA sequence variants for association with venous thromboembolism (26,066 cases and 624,053 controls) and meta-analyzed both studies, followed by independent replication with up to 17,672 venous thromboembolism cases and 167,295 controls. We identified 22 previously unknown loci, bringing the total number of venous thromboembolism-associated loci to 33, and subsequently fine-mapped these associations. We developed a genome-wide polygenic risk score for venous thromboembolism that identifies 5% of the population at an equivalent incident venous thromboembolism risk to carriers of the established factor V Leiden p.R506Q and prothrombin G20210A mutations. Our data provide mechanistic insights into the genetic epidemiology of venous thromboembolism and suggest a greater overlap among venous and arterial cardiovascular disease than previously thought.


Assuntos
Loci Gênicos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Doenças Vasculares/genética , Tromboembolia Venosa/genética , Idoso , Animais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Fatores de Risco , Reino Unido/epidemiologia , Doenças Vasculares/epidemiologia , Doenças Vasculares/patologia , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/patologia
17.
Clin Lab ; 65(10)2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31625370

RESUMO

BACKGROUND: To explore the role of resistin (RE) on deep vein thrombosis (DVT) and the molecular mechanism. METHODS: ELISA assay was used to determine the concentration of RE, MMP-2, MMP-9, and PAI-1 in serum of DVT patients and controls. Rats were randomly divided into 4 groups: control, DVT, DVT + RE, and DVT + RE + SB203580 group. HE staining was used to observe the intravascular situation and thrombosis in the 4 groups. The relative mRNA levels and protein expression of RE, MMP-2, MMP-9, and PAI-1 in the 4 groups were determined by RT-PCR and western blotting. RESULTS: The concentration of RE, MMP-2, MMP-9, and PAI-1 in serum from DVT patients was significantly higher than that in controls. RE promoted thrombosis in rats with DVT, while SB203580 inhibited the promotion of RE on thrombosis. RE up-regulated the expression of MMP-2, MMP-9, and PAI-1 in DVT rat models. Introduction of SB203580 inhibited the expression of RE, which then abolished the up-regulation role of RE on the expression of MMP-2, MMP-9, and PAI-1. CONCLUSIONS: RE promoted thrombosis in DVT rat models by increasing the expression of MMP-2, MMP-9, and PAI-1.


Assuntos
Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Resistina/sangue , Trombose Venosa/sangue , Idoso , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/administração & dosagem , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/sangue , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Piridinas/administração & dosagem , Ratos Sprague-Dawley , Resistina/administração & dosagem , Resistina/genética , Regulação para Cima/efeitos dos fármacos , Trombose Venosa/genética , Trombose Venosa/metabolismo
18.
Int J Mol Sci ; 20(20)2019 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-31614900

RESUMO

Thrombin is an essential procoagulant and profibrotic mediator. However, its implication in tuberculous pleural effusion (TBPE) remains unknown. The effusion thrombin and plasminogen activator inhibitor-1 (PAI-1) levels were measured among transudative pleural effusion (TPE, n = 22) and TBPE (n = 24) patients. Pleural fibrosis, identified as radiological residual pleural thickening (RPT) and shadowing, was measured at 12-month follow-up. Moreover, in vivo and in vitro effects of thrombin on PAI-1 expression and mesothelial-mesenchymal transition (MMT) were assessed. We demonstrated the effusion thrombin levels were significantly higher in TBPE than TPE, especially greater in TBPE patients with RPT > 10mm than those without, and correlated positively with PAI-1 and pleural fibrosis area. In carbon black/bleomycin-treated mice, knockdown of protease-activated receptor-1 (PAR-1) markedly downregulated α-smooth muscle actin (α-SMA) and fibronectin, and attenuated pleural fibrosis. In pleural mesothelial cells (PMCs), thrombin concentration-dependently increased PAI-1, α-SMA, and collagen I expression. Specifically, Mycobacterium tuberculosis H37Ra (MTBRa) induced thrombin production by PMCs via upregulating tissue factor and prothrombin, and PAR-1 silencing considerably abrogated MTBRa-stimulated PAI-1 expression and MMT. Consistently, prothrombin/PAR-1 expression was evident in the pleural mesothelium of TBPE patients. Conclusively, thrombin upregulates PAI-1 and MMT and may contribute to tuberculous pleural fibrosis. Thrombin/PAR-1 inhibition may confer potential therapy for pleural fibrosis.


Assuntos
Inibidor 1 de Ativador de Plasminogênio/metabolismo , Pleura/patologia , Receptor PAR-1/metabolismo , Trombina/metabolismo , Tuberculose/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Exsudatos e Transudatos/metabolismo , Feminino , Fibrose , Seguimentos , Humanos , Masculino , Mesoderma/efeitos dos fármacos , Mesoderma/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium tuberculosis/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Derrame Pleural/metabolismo , Derrame Pleural/patologia , Transdução de Sinais , Tuberculose/patologia , Adulto Jovem
19.
Oxid Med Cell Longev ; 2019: 4591384, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31531183

RESUMO

Background: Among all the common complications that occur after abdominal surgery, intestinal adhesion is perhaps the most unpleasant one. However, current methods to treat and prevent intestinal adhesion are limited; thus, exploring new methods to prevent and treat intestinal adhesion is greatly needed. In this study, we demonstrated that Danhong injection (DHI) may be used as a promising method to prevent and treat intra-abdominal adhesion in a rat model. Materials and Methods: Forty-eight rats were randomly divided into six groups. Except for the sham-operated group, all rats underwent cecal abrasion to establish an adhesion model. After the operation, the rats in the DHI-treated groups received different doses of DHI via the tail vein daily, while the other group was treated with the same volume of saline solution. Seven days after the operation, all rats were sacrificed, and the degree of adhesion was evaluated by Nair's scoring system. The extent of inflammation in the adhesion tissue was detected by HE staining and the expression of tumor necrosis factor-α (TNF-α) and transforming growth factor-ß (TGF-ß). The collagen deposition was assessed by Sirius red staining and α-SMA, MMP9, t-PA, and PAI-1 levels. Oxidative stress was indicated by the level of reactive oxygen species (ROS) in adhesion tissues and by immunohistochemical labeling of Nrf2. Furthermore, rat primary peritoneal mesothelial cells (RPMCs) were treated with H2O2 and DHI, and NF-κB phosphorylation was detected to illustrate the effect of DHI on oxidative stress. Results: The intra-abdominal adhesion scores were significantly decreased in the groups treated with a high dose of DHI compared with the control groups, and the degree of inflammation, fibrosis, and oxidative stress was also significantly decreased. DHI treatment significantly reduced the levels of TNF-α, TGF-ß1, and PAI and increased the expression levels of MMP9, Nrf2, and t-PA in the adhesion tissues. ROS levels and NF-κB phosphorylation were significantly reduced in DHI-treated RPMCs compared with the control RPMCs. Conclusion: DHI alleviates the formation of postoperative intra-abdominal adhesions by inhibiting inflammation, collagen deposition, and oxidative stress in a rat model and may serve as a promising drug to prevent intra-abdominal adhesions.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Aderências Teciduais/tratamento farmacológico , Animais , Modelos Animais de Doenças , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia , Ativador de Plasminogênio Tecidual/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Transfus Apher Sci ; 58(5): 572-577, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31427261

RESUMO

Deficiencies or excessive activation of the fibrinolytic system can result in severe, lifelong bleeding disorders. The most severe clinical phenotype is caused by α2-Antiplasmin (α2-AP) deficiency which results in excess fibrinolysis due to the inability to inhibit plasmin. Another bleeding disorder due to a defect in the fibrinolytic pathway results from Plasminogen activator inhibitor-1 (PAI-1) deficiency causing enhanced fibrinolysis due to the decreased inhibition of plasminogen activators resulting in increased conversion of plasminogen to plasmin. Both these disorders are rare and have an autosomal recessive pattern of inheritance. They can remain undetected as routine coagulation and platelet function tests are normal. A unique gain-of-function defect in fibrinolysis causes the Quebec platelet disorder (QPD) which is characterized by profibrinolytic platelets containing increased urokinase-type plasminogen activator (uPA) in the α-granules. A high index of suspicion based on clinical phenotype along with the availability of specialized hemostasis testing is required for timely and accurate diagnosis. Antifibrinolytic agents, such as tranexamic acid or ε-aminocaproic acid, are the mainstays of treatment which inhibit fibrinolysis by preventing the binding of plasminogen to fibrin and thereby stabilizing the fibrin clot. The purpose of this review is to summarize the pathogenesis, clinical phenotype, approaches to diagnosis and treatment for these three major disorders of fibrinolysis.


Assuntos
Antifibrinolíticos/uso terapêutico , Deficiência do Fator V , Fibrinólise/genética , Transtornos Hemorrágicos , Inibidor 1 de Ativador de Plasminogênio/deficiência , Ácido Tranexâmico/uso terapêutico , alfa 2-Antiplasmina/deficiência , Plaquetas/metabolismo , Plaquetas/patologia , Deficiência do Fator V/tratamento farmacológico , Deficiência do Fator V/genética , Deficiência do Fator V/metabolismo , Deficiência do Fator V/patologia , Transtornos Hemorrágicos/sangue , Transtornos Hemorrágicos/tratamento farmacológico , Transtornos Hemorrágicos/genética , Transtornos Hemorrágicos/metabolismo , Transtornos Hemorrágicos/patologia , Humanos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , alfa 2-Antiplasmina/efeitos dos fármacos , alfa 2-Antiplasmina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA