Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.599
Filtrar
1.
Sci Rep ; 14(1): 7749, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565703

RESUMO

DPP4 inhibitors can control glucose homeostasis by increasing the level of GLP-1 incretins hormone due to dipeptidase mimicking. Despite the potent effects of DPP4 inhibitors, these compounds cause unwanted toxicity attributable to their effect on other enzymes. As a result, it seems essential to find novel and DPP4 selective compounds. In this study, we introduce a potent and selective DPP4 inhibitor via structure-based virtual screening, molecular docking, molecular dynamics simulation, MM/PBSA calculations, DFT analysis, and ADMET profile. The screened compounds based on similarity with FDA-approved DPP4 inhibitors were docked towards the DPP4 enzyme. The compound with the highest docking score, ZINC000003015356, was selected. For further considerations, molecular docking studies were performed on selected ligands and FDA-approved drugs for DPP8 and DPP9 enzymes. Molecular dynamics simulation was run during 200 ns and the analysis of RMSD, RMSF, Rg, PCA, and hydrogen bonding were performed. The MD outputs showed stability of the ligand-protein complex compared to available drugs in the market. The total free binding energy obtained for the proposed DPP4 inhibitor was more negative than its co-crystal ligand (N7F). ZINC000003015356 confirmed the role of the five Lipinski rule and also, have low toxicity parameter according to properties. Finally, DFT calculations indicated that this compound is sufficiently soft.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Simulação de Dinâmica Molecular , Inibidores da Dipeptidil Peptidase IV/farmacologia , Simulação de Acoplamento Molecular , Sítios de Ligação , Dipeptidil Peptidase 4 , Teoria da Densidade Funcional , Ligantes
2.
Drug Des Devel Ther ; 18: 1133-1141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618281

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the world's principal metabolic diseases characterized by chronic hyperglycemia. The gut incretin hormones, glucagon-like peptide 1 (GLP-1) and gastric inhibitory polypeptide (GIP), which has been proposed as a new treatment for T2DM, are extensively metabolized by Dipeptidyl peptidase 4 (DPP-4). Inhibitors of DPP-4 block the degradation of GLP-1 and GIP and may increase their natural circulating levels, favoring glycemic control in T2DM. A novel and potent selective inhibitor of DPP-4 with an 8-purine derived structure (1) has been developed and tested in vitro and in vivo in Zücker obese diabetic fatty (ZDF) rats, an experimental model of the metabolic syndrome and T2DM to assess the inhibitory activity using vildagliptin as reference standard. ZDF rats were subdivided into three groups (n = 7/group), control (C-ZDF), and those treated with compound 1 (Compound1-ZDF) and with vildagliptin (V-ZDF), both at 10 mg/kg/d rat body weight, in their drinking water for 12 weeks, and a group of lean littermates (ZL) was used. ZDF rats developed DM (fasting hyperglycemia, 425 ± 14.8 mg/dL; chronic hyperglycemia, HbA1c 8.5 ± 0.4%), compared to ZL rats. Compound 1 and vildagliptin reduced sustained HbAl1c (14% and 10.6%, P < 0.05, respectively) and fasting hyperglycemia values (24% and 19%, P < 0.05, respectively) compared to C-ZDF group (P < 0.001). Compound 1 and vildagliptin have shown a potent activity with an IC50 value of 4.92 and 3.21 µM, respectively. These data demonstrate that oral compound 1 administration improves diabetes in ZDF rats by the inhibitory effect on DPP-4, and the potential to be a novel, efficient and tolerable approach for treating diabetes of obesity-related T2DM, in ZDF rats.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Hiperglicemia , Animais , Ratos , Antivirais , Broncodilatadores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Obesidade/tratamento farmacológico , Inibidores de Proteases , Ratos Zucker , Vasodilatadores , Vildagliptina/farmacologia , Vildagliptina/uso terapêutico
3.
Medicina (Kaunas) ; 60(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38541119

RESUMO

This review summarizes the complex relationship between medications used to treat type 2 diabetes and bone health. T2DM patients face an increased fracture risk despite higher bone mineral density; thus, we analyzed the impact of key drug classes, including Metformin, Sulphonylureas, SGLT-2 inhibitors, DPP-4 inhibitors, GLP-1 agonists, and Thiazolidinediones. Metformin, despite promising preclinical results, lacks a clear consensus on its role in reducing fracture risk. Sulphonylureas present conflicting data, with potential neutral effects on bone. SGLT-2 inhibitors seem to have a transient impact on serum calcium and phosphorus, but evidence on their fracture association is inconclusive. DPP-4 inhibitors emerge as promising contributors to bone health, and GLP-1 agonists exhibit positive effects on bone metabolism, reducing fracture risk. Thiazolidinediones, however, demonstrate adverse impacts on bone, inducing loss through mesenchymal stem cell effects. Insulin presents a complex relationship with bone health. While it has an anabolic effect on bone mineral density, its role in fracture risk remains inconsistent. In conclusion, a comprehensive understanding of diabetes medications' impact on bone health is crucial. Further research is needed to formulate clear guidelines for managing bone health in diabetic patients, considering individual profiles, glycemic control, and potential medication-related effects on bone.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Fraturas Ósseas , Metformina , Inibidores do Transportador 2 de Sódio-Glicose , Tiazolidinedionas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Densidade Óssea , Hipoglicemiantes/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Fraturas Ósseas/etiologia , Fraturas Ósseas/prevenção & controle , Metformina/uso terapêutico , Compostos de Sulfonilureia/efeitos adversos , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Tiazolidinedionas/uso terapêutico
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542317

RESUMO

The probability of acute kidney injury (AKI) is higher in septic diabetic patients, which is associated with, among other factors, proximal tubular cell (PTC) injury induced by the hypoxic/hyperglycemic/inflammatory microenvironment that surrounds PTCs in these patients. Here, we exposed human PTCs (HK-2 cells) to 1% O2/25 mM glucose/inflammatory cytokines with the aim of studying the role of prostaglandin uptake transporter (PGT) and dipeptidyl peptidase-4 (DPP-4, a target of anti-hyperglycemic agents) as pharmacological targets to prevent AKI in septic diabetic patients. Our model reproduced two pathologically relevant mechanisms: (i) pro-inflammatory PTC activation, as demonstrated by the increased secretion of chemokines IL-8 and MCP-1 and the enhanced expression of DPP-4, intercellular leukocyte adhesion molecule-1 and cyclo-oxygenase-2 (COX-2), the latter resulting in a PGT-dependent increase in intracellular prostaglandin E2 (iPGE2); and (ii) epithelial monolayer injury and the consequent disturbance of paracellular permeability, which was related to cell detachment from collagen IV and the alteration of the cell cytoskeleton. Most of these changes were prevented by the antagonism of PGE2 receptors or the inhibition of COX-2, PGT or DPP-4, and further studies suggested that a COX-2/iPGE2/DPP-4 pathway mediates the pathogenic effects of the hypoxic/hyperglycemic/inflammatory conditions on PTCs. Therefore, inhibitors of PGT or DPP-4 ought to undergo testing as a novel therapeutic avenue to prevent proximal tubular damage in diabetic patients at risk of AKI.


Assuntos
Injúria Renal Aguda , Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Humanos , Ciclo-Oxigenase 2/metabolismo , Diabetes Mellitus/tratamento farmacológico , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Dipeptidil Peptidases e Tripeptidil Peptidases , Prostaglandinas , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Dipeptidil Peptidase 4
5.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474255

RESUMO

Linagliptin is a selective dipeptidyl peptidase-4 (DPP-4) inhibitor that indirectly elevates the glucagon-like peptide-1 (GLP-1) level. The aim of the present study was to check whether linagliptin has an influence on neurotransmission in rat brain. Rats were acutely and chronically exposed to linagliptin (10 and 20 mg/kg, intraperitoneally (i.p.)). Twenty-four hours later, the striatum and hippocampus were selected for further studies. In neurochemical experiments, using high-performance liquid chromatography with electrochemical detection (HPLC-ED), the concentrations of three major neurotransmitters-dopamine, serotonin and noradrenaline-and their metabolites were measured. The analysis of mRNA expression of dopamine (D1 and D2), serotonin (5-HT-1 and 5-HT-2) and noradrenaline (α1 and α2a) receptors was also investigated using real-time quantitative reverse transcription polymerase chain reaction (RQ-PCR) in the same brain areas. Linagliptin has the ability to influence the dopaminergic system. In the striatum, the elevation of dopamine and its metabolites was observed after repeated administration of that linagliptin, and in the hippocampus, a reduction in dopamine metabolism was demonstrated. Acute linagliptin exposure increases the serotonin level in both areas, while after chronic linagliptin administration a tendency for the mRNA expression of serotoninergic receptors (5-HT1A and 5-HT2A) to increase was observed. A single instance of exposure to linagliptin significantly modified the noradrenaline level in the striatum and intensified noradrenaline turnover in the hippocampus. The recognition of the interactions in the brain between DPP-4 inhibitors and neurotransmitters and/or receptors is a crucial step for finding novel discoveries in the pharmacology of DPP-4 inhibitors and raises hope for further applications of DPP-4 inhibitors in clinical practices.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Linagliptina , Ratos , Animais , Linagliptina/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Serotonina , Dopamina , Norepinefrina , Dipeptidil Peptidase 4/metabolismo , Hipocampo/metabolismo , Neurotransmissores , RNA Mensageiro
6.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474306

RESUMO

Type 2 diabetes is a chronic metabolic disorder characterized by high blood glucose levels due to either insufficient insulin production or ineffective utilization of insulin by the body. The enzyme dipeptidyl peptidase IV (DPP IV) plays a crucial role in degrading incretins that stimulate insulin secretion. Therefore, the inhibition of DPP IV is an established approach for the treatment of diabetes. Hemorphins are a class of short endogenous bioactive peptides produced by the enzymatic degradation of hemoglobin chains. Numerous in vitro and in vivo physiological effects of hemorphins, including DPP IV inhibiting activity, have been documented in different systems and tissues. However, the underlying molecular binding behavior of these peptides with DPP IV remains unknown. Here, computational approaches such as protein-peptide molecular docking and extensive molecular dynamics (MD) simulations were employed to identify the binding pose and stability of peptides in the active site of DPP IV. Findings indicate that hemorphins lacking the hydrophobic residues LVV and VV at the N terminal region strongly bind to the conserved residues in the active site of DPP IV. Furthermore, interactions with these critical residues were sustained throughout the duration of multiple 500 ns MD simulations. Notably, hemorphin 7 showed higher binding affinity and sustained interactions by binding to S1 and S2 pockets of DPP IV.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4/metabolismo , Peptídeos/química , Insulina , Simulação de Dinâmica Molecular
7.
Cell Biochem Funct ; 42(2): e3967, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480622

RESUMO

A drug interaction is a condition in which two or more drugs are taken at the same time. Type 2 diabetes mellitus is a significant contributor to polypharmacy. Proton pump inhibitors (PPIs) are often prescribed in combination with metformin or DPP-4 inhibitors (sitagliptin, saxagliptin, linagliptin, and alogliptin) or a combined dose of metformin and DPP-4 inhibitor to treat gastritis in diabetic patients. This review article mainly focused on evaluating the potential drug-drug interactions (DDIs) between PPIs (i.e. esomeprazole, lansoprazole, omeprazole, pantoprazole, and rabeprazole) with metformin and PPIs with DPP-4 inhibitors. The findings demonstrated the existence of pharmacokinetic and pharmacodynamic DDIs between the aforementioned PPIs with metformin and DPP-4 inhibitors, which could impact the biological activities (i.e., hypoglycemia) of these drugs. Moreover, this review suggested that esomeprazole could be the best drug in the PPI group to be prescribed simultaneously with metformin and DPP-4 inhibitors, as most of the antidiabetic drugs of this study did not show any interaction with esomeprazole. The findings of this study also revealed that both antidiabetic drugs and PPIs could have positive interactions as PPIs have the potential to lessen the gastrointestinal side effects of metformin and DPP-4 inhibitors. To achieve the greatest therapeutic impact with the fewest side effects, careful dose control of these drugs is required. So, more extensive research on both human and animal subjects are needed to ascertain the veracity of this hypothesis.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Metformina , Animais , Humanos , Inibidores da Bomba de Prótons/farmacocinética , Inibidores da Dipeptidil Peptidase IV/farmacologia , Esomeprazol/farmacologia , Metformina/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Interações Medicamentosas
8.
Europace ; 26(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38484180

RESUMO

AIMS: Prior studies suggest that sodium-glucose cotransporter-2 inhibitors (SGLT2is) may decrease the incidence of atrial fibrillation (AF). However, it is unknown whether SGLT2i can attenuate the disease course of AF among patients with pre-existing AF and Type II diabetes mellitus (DM). In this study, our objective was to examine the association between SGLT2i prescription and arrhythmic outcomes among patients with DM and pre-existing AF. METHODS AND RESULTS: We conducted a population-based cohort study of adults with DM and AF between 2014 and 2019. Using a prevalent new-user design, individuals prescribed SGLT2i were matched 1:1 to those prescribed dipeptidyl peptidase-4 inhibitors (DPP4is) based on time-conditional propensity scores. The primary endpoint was a composite of AF-related healthcare utilization (i.e. hospitalization, emergency department visits, electrical cardioversion, or catheter ablation). Secondary outcome measures included all-cause mortality, heart failure (HF) hospitalization, and ischaemic stroke or transient ischaemic attack (TIA). Cox proportional hazard models were used to examine the association of SGLT2i with the study endpoint. Among 2242 patients with DM and AF followed for an average of 3.0 years, the primary endpoint occurred in 8.7% (n = 97) of patients in the SGLT2i group vs. 10.0% (n = 112) of patients in the DPP4i group [adjusted hazard ratio 0.73 (95% confidence interval 0.55-0.96; P = 0.03)]. Sodium-glucose cotransporter-2 inhibitors were associated with significant reductions in all-cause mortality and HF hospitalization, but there was no difference in the risk of ischaemic stroke/TIA. CONCLUSION: Among patients with DM and pre-existing AF, SGLT2is are associated with decreased AF-related health resource utilization and improved arrhythmic outcomes compared with DPP4is.


Assuntos
Fibrilação Atrial , Isquemia Encefálica , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Insuficiência Cardíaca , Ataque Isquêmico Transitório , AVC Isquêmico , Inibidores do Transportador 2 de Sódio-Glicose , Acidente Vascular Cerebral , Adulto , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Estudos de Coortes , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/prevenção & controle , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Insuficiência Cardíaca/epidemiologia , Glucose , Sódio , Hipoglicemiantes , Estudos Retrospectivos
9.
Bioorg Chem ; 146: 107277, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493634

RESUMO

Diabetes mellitus (DM) is one of the largest public health problems worldwide and in the last decades various therapeutic targets have been investigated. For the treatment of type-2 DM (T2DM), dipeptidyl peptidase-4 (DPP-4) is one of the well reported target and has established safety in terms of cardiovascular complexicity. Preclinical and clinical studies using DPP-4 inhibitors have demonstrated its safety and effectiveness and have lesser risk of associated hypoglycaemic effect making it suitable for elderly patients. FDA has approved a number of structurally diverse DPP-4 inhibitors for clinical use. The present manuscript aims to focus on the well reported hybrid and non-hybrid analogues and their structural activity relationship (SAR) studies. It aims to provide structural insights for this class of compounds pertaining to favourable applicability of selective DPP-4 inhibitors in the treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Idoso , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores da Dipeptidil Peptidase IV/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Relação Estrutura-Atividade
10.
Biochem Biophys Res Commun ; 703: 149611, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38354463

RESUMO

Uterine fibroid is the most common non-cancerous tumor with no satisfactory options for long-term pharmacological treatment. Fibroblast activation protein-α (FAP) is one of the critical enzymes that enhances the fibrosis in uterine fibroids. Through STITCH database mining, we found that dipeptidyl peptidase-4 inhibitors (DPP4i) have the potential to inhibit the activity of FAP. Both DPP4 and FAP belong to the dipeptidyl peptidase family and share a similar catalytic domain. Hence, ligands which have a binding affinity with DPP4 could also bind with FAP. Among the DPP4i, linagliptin exhibited the highest binding affinity (Dock score = -8.562 kcal/mol) with FAP. Our study uncovered that the differences in the S2 extensive-subsite residues between DPP4 and FAP could serve as a basis for designing selective inhibitors specifically targeting FAP. Furthermore, in a dynamic environment, linagliptin was able to destabilize the dimerization interface of FAP, resulting in potential inhibition of its biological activity. True to the in-silico results, linagliptin reduced the fibrotic process in estrogen and progesterone-induced fibrosis in rat uterus. Furthermore, linagliptin reduced the gene expression of transforming growth factor-ß (TGF-ß), a critical factor in collagen secretion and fibrotic process. Masson trichrome staining confirmed that the anti-fibrotic effects of linagliptin were due to its ability to reduce collagen deposition in rat uterus. Altogether, our research proposes that linagliptin has the potential to be repurposed for the treatment of uterine fibroids.


Assuntos
Inibidores da Dipeptidil Peptidase IV , Leiomioma , Ratos , Animais , Feminino , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Fator de Crescimento Transformador beta , Dipeptidil Peptidase 4/metabolismo , Reposicionamento de Medicamentos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Fibrose , Leiomioma/tratamento farmacológico , Colágeno , Fatores de Crescimento Transformadores
11.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255913

RESUMO

Dipeptidyl peptidase 4 (DPP4) inhibitors can effectively inhibit the activity of DPP4, increasing the concentrations of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), which allows for them to effectively contribute to the reduction of blood sugar levels. Leu-Pro-Ala-Val-Thr-Ile-Arg (LPAVTIR) and Leu-Pro-Pro-Glu-His-Asp-Trp-Arg (LPPEHDWR) were the two peptides with the strongest inhibitory activity against DPP4 selected from silkworm pupa proteins. In this study, four systems were established: Apo (ligand-free DPP4), IPI (IPI-bound DPP4), LPAVTIR (LPAVTIR-bound DPP4), LPPEHDWR (LPPEHDWR-bound DPP4), and Gaussian accelerated molecular dynamic (GaMD) simulation was conducted to investigate the mechanism of action of two inhibitory peptides binding to DPP4. Our study revealed that the LPAVTIR peptide possessed a more stable structure and exhibited a tighter binding to the Ser630 active site in DPP4, thus exhibiting a favorable competitive inhibition effect. In contrast, the LPPEHDWR peptide caused the horizontal α-helix (residues 201-215) composed of Glu205 and Glu206 residues in DPP4 to disappear. The spatial arrangement of active sites Ser630 relative to Glu205 and Glu206 was disrupted, resulting in enzyme inactivation. Moreover, the size of the substrate channel and cavity volume was significantly reduced after the binding of the inhibitory peptide to the protein, which was an important factor in the inhibition of the enzyme activity. A similar effect was also found from IPI (our positive control). By stabilizing the active site of DPP4, the IPI peptide induced the disappearance of the horizontal α-helix and a notable reduction in the active cavity volume. In conclusion, our study provided a solid theoretical foundation for the inhibitory mechanisms of IPI, LPAVTIR, and LPPEHDWR on DPP4, offering valuable insights for advancing the development of drug targets for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Dipeptidil Peptidase 4 , Simulação de Dinâmica Molecular , Peptídeos/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia
12.
Int J Biol Macromol ; 259(Pt 1): 129191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184042

RESUMO

Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides were screened and identified from yak hemoglobin for the first time by in silico analysis, molecular docking, and in vitro evaluation. Results showed that yak hemoglobin had a high potential to produce DPP-IV inhibitory peptides based on the sequence alignment and bioactive potential evaluation. Furthermore, "pancreatic elastase + stem bromelain" was the optimal combined-enzymatic strategy by simulated proteolysis. Additionally, 25 novel peptides were found from its simulated hydrolysate, among which 10 peptides had high binding affinities with DPP-IV by molecular docking. Most of these peptides were also in silico characterized with favorable physicochemical properties and biological potentials, including relatively low molecular weight, high hydrophobicity, several net charges, good water solubility, nontoxicity, acceptable sensory quality, and good human intestinal absorption. Finally, six novel DPP-IV inhibitory peptides were identified via in vitro assessment, among which EEKA (IC50 = 235.26 µM), DEV (IC50 = 339.45 µM), and HCDKL (IC50 = 632.93 µM) showed the strongest capacities. The hydrogen bonds and electrostatic attractions formed with core residues within the S2 pocket of DPP-IV could be mainly responsible for their inhibition performances. This work provided a time-saving method and broadened application for yak by-products development as sources of functional foods.


Assuntos
Dipeptidil Peptidase 4 , Inibidores da Dipeptidil Peptidase IV , Animais , Bovinos , Humanos , Simulação de Acoplamento Molecular , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/química , Peptídeos/química , Hemoglobinas
13.
Drug Res (Stuttg) ; 74(2): 77-80, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286421

RESUMO

Clinical trials have revealed that sodium glucose cotransporter 2 (SGLT2) inhibitors suppress the onset of heart failure and cardiovascular death in diabetic patients. On the other hand, few reports have been published concerning such effects of dipeptidyl peptidase-4 (DPP-4) inhibitors. We undertook the present study to evaluate the effects of SGLT2 inhibitors and DPP-4 inhibitors on the advanced glycation end products (AGEs), well known as a risk factor for the development of cardiovascular disorders.Type 2 diabetes mellitus were divided into two groups and treated with either SGLT2 inhibitors or DPP-4 inhibitors for 3 months. Before and after the 3-month treatment period with each drug, the AGEs and diabetes-related parameters were measured. Methylglyoxal-derived hydroimidazolone-1 (MG-H1) was measured as one of the AGEs.In the SGLT2 inhibitor group, both the blood HbA1c and MG-H1 levels decreased significantly after the 3-month treatment period. In the DPP-4 inhibitor group, only the blood HbA1c level decreased significantly, with no significant change of the blood MG-H1 level.SGLT2 inhibitor reduced both the blood levels of HbA1c and AGEs (MG-H1). Considering that the blood levels of AGEs are associated with the risk of heart failure and cardiovascular disorders, the results of the present study suggest that the effect of SGLT2 inhibitors in suppressing cardiovascular death might be mediated by the reduction in the blood levels of AGEs induced by this class of drugs. DPP-4 inhibitors showed no significant effects on the blood levels of AGEs.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Hemoglobinas Glicadas , Hipoglicemiantes/uso terapêutico , Doenças Cardiovasculares/induzido quimicamente , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/tratamento farmacológico
14.
Exp Neurol ; 373: 114689, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38199510

RESUMO

Extensive preclinical evidence demonstrates a causative link between insulin signaling dysfunction and the pathogenesis of Alzheimer's disease (AD), and diabetic drugs may represent a promising approach to fighting AD. However, it remains to be determined which antidiabetic drugs are more effective in preventing cognitive impairment. Thus, the present study investigated the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor linagliptin on cognitive impairment in middle-aged mice by comparing it with the effect of metformin. We found that DPP-4 activity increased in the hippocampus of middle-aged mice, and DPP-4 was mainly expressed by microglia rather than astrocytes and oligodendrocytes. DPP-4 directly regulated M1/M2 microglia polarization following LPS or IL-4 stimulation, while DPP-4 inhibitor, linagliptin, suppressed M1-polarized activation and induced M2-polarized activation. Both linagliptin and metformin enhanced cognitive ability, increased hippocampal synaptic plasticity and neurogenesis, and decreased age-related oxidative stress and inflammation by regulating microglia polarization in the hippocampus of middle-aged mice. The combination of linagliptin and metformin showed a maximum protective effect compared to the individual drugs alone. Loss of macrophage inflammatory protein-1α (MIP-1α), a DPP-4 substrate, abrogated the cognitive protection and anti-inflammation effects of linagliptin. Therefore, the current investigation exhibits a potential utility for DPP-4 inhibition in attenuating microglia-mediated inflammation and preventing mild cognitive impairment (MCI) in middle-aged mice, and the effect was partly mediated by MIP-1α.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Inibidores da Dipeptidil Peptidase IV , Metformina , Camundongos , Animais , Linagliptina/farmacologia , Linagliptina/uso terapêutico , Quimiocina CCL3/farmacologia , Microglia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Disfunção Cognitiva/tratamento farmacológico , Metformina/farmacologia , Metformina/uso terapêutico , Inflamação
15.
Diabetes ; 73(5): 671-681, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295385

RESUMO

Dipeptidyl peptidase 4 (DPP-4) and neprilysin (NEP) rapidly degrade glucagon-like peptide 1 (GLP-1) in mice. Commercially available sandwich ELISA kits may not accurately detect the degradation products, leading to potentially misleading results. We aimed to stabilize GLP-1 in mice, allowing reliable measurement with sensitive commercially available ELISA kits. Nonanesthetized male C57Bl/6JRj mice were subjected to an oral glucose tolerance test (OGTT; 2 g/kg glucose), and plasma total and intact GLP-1 were measured (Mercodia and Alpco ELISA kits, respectively). No GLP-1 increases were seen in samples taken beyond 15 min after the glucose load. Samples taken at 5 and 10 min after the OGTT showed a minor increase in total, but not intact, GLP-1. We then administered saline (control), or a DPP-4 inhibitor (valine pyrrolidide or sitagliptin) with or without an NEP-inhibitor (sacubitril), 30 min before the OGTT. In the inhibitor groups only, intact GLP-1 increased significantly during the OGTT. After injecting male C57Bl/6JRj mice with a known dose of GLP-1(7-36)NH2, peak GLP-1 levels were barely detectable after saline but were 5- to 10-fold higher during sitagliptin and the combination of sitagliptin/sacubitril. The half-life of the GLP-1 plasma disappearance increased up to sevenfold during inhibitor treatment. We conclude that reliable measurement of GLP-1 secretion is not possible in mice in vivo with commercially available sandwich ELISA kits, unless degradation is prevented by inhibition of DPP-4 and perhaps NEP. The described approach allows improved estimates of GLP-1 secretion for future studies, although it is a limitation that these inhibitors additionally influence levels of insulin and glucagon.


Assuntos
Aminobutiratos , Compostos de Bifenilo , Inibidores da Dipeptidil Peptidase IV , Peptídeo 1 Semelhante ao Glucagon , Masculino , Camundongos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glicemia/metabolismo , Dipeptidil Peptidase 4/metabolismo , Glucose/farmacologia , Inibidores da Dipeptidil Peptidase IV/farmacologia , Fosfato de Sitagliptina/farmacologia
18.
Ann Hepatol ; 29(2): 101182, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38042482

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by overweight/obesity, and the presence of type 2 diabetes mellitus is the most important criterion. We propose an independent disease perspective without exclusion criteria and with less heterogeneity and greater impact because, according to the National Health and Nutrition Survey (ENSANUT), in Mexico, 25 % of adults over 60 years of age suffer from diabetes, and 96 % of those over 50 years of age have abdominal obesity. Due to the impact of insulin resistance in the pathophysiology of MASLD, which results in damage to hepatocytes, this work aims to provide an overview of the action pathways of hypoglycemic agents such as glucagon-like-1 receptor agonist and peroxisome proliferator-activated receptor-gamma agonists, whose importance lies in the fact that they are currently undergoing phase 2 studies, as well as dipeptidyl peptidase 4 inhibitors and sodium-glucose co-transporter type 2 inhibitors, which are undergoing phase 1 study trials.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Resistência à Insulina , Hepatopatias , Inibidores do Transportador 2 de Sódio-Glicose , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Obesidade
19.
Life Sci ; 336: 122292, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38030058

RESUMO

AIMS: Dipeptidyl peptidase 4 (DPP4) has been proposed as a coreceptor for SARS-CoV-2 cellular entry. Considering that type 2 diabetes mellitus (T2DM) has been identified as the most important risk factor for SARS-CoV-2, and that gliptins (DPP4 inhibitors) are a prescribed diabetic treatment, this study aims to unravel the impact of DPP4 in the intersection of T2DM/COVID-19. MATERIALS AND METHODS: We analyzed 189 serum human samples, divided into six clinical groups (controls, T2DM, T2DM + gliptins, COVID-19, COVID-19 + T2DM, and COVID-19 + T2DM + gliptins), measuring DPP4 protein concentration and activity by Western blot, ELISA, and commercial activity kits. The obtained results were verified in Huh-7 cellular models. KEY FINDINGS: Both DPP4 concentration and activity were decreased in COVID-19 patients, and as in T2DM patients, compared to controls. Despite these lower levels, the ratio of DPP4 activity/concentration in COVID-19 sera was the highest (0.782 ± 0.289 µU/ng vs. 0.547 ± 0.050 µU/ng in controls, p < 0.0001), suggesting a compensating mechanism in these patients. Supernatants of Huh-7 cells incubated with COVID-19 serum showed a consistent and significantly lower DPP4 concentration and activity. Furthermore, COVID-19 + T2DM + gliptins patients showed a higher serum DPP4 concentration and activity than T2DM + gliptin subjects (p < 0.05), indicating that sera from COVID-19 convalescents interfere with gliptins. SIGNIFICANCE: Either SARS-CoV-2 or some metabolites present in the sera of COVID-19-convalescent patients interact with soluble DPP4 or even gliptins themselves since the inhibitory effect of gliptins on DPP4 activity is being prevented. The interactions between DPP4, gliptins, and SARS-CoV-2 should be further elucidated to reveal the mechanism of action for these interesting observations.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Dipeptidil Peptidase 4/metabolismo , SARS-CoV-2/metabolismo
20.
Trends Biochem Sci ; 49(2): 99-100, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37770288

RESUMO

Wang et al. identified dipeptidyl peptidase 4 (DPP4) as a gut microbe-derived enzyme that impacts on host glucose metabolism. They further introduced a novel therapeutic, daurisoline-d4 (Dau-d4), a selective microbial DPP4 (mDPP4) inhibitor that shows promise in improving glucose tolerance, highlighting the potential of therapies that target both host enzymes and gut microbial enzymes.


Assuntos
Diabetes Mellitus , Inibidores da Dipeptidil Peptidase IV , Microbioma Gastrointestinal , Humanos , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...