Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Chem Biol Interact ; 350: 109704, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655567

RESUMO

Pyroptosis is a novel type of pro-inflammatory programmed cell death that has been strongly reported to be related to inflammation, immune, and cancer. Dihydroartemisinin (DHA) has good anti-tumor properties. However, the exact mechanism by which DHA induces pyroptosis to inhibit esophageal squamous cell carcinoma (ESCC) remains unclear. After applying DHA treatment to ESCC, we found that some dying cells exhibited the characteristic morphology of pyroptosis, such as blowing large bubbles from the cell membrane, accompanied by downregulation of pyruvate kinase isoform M2 (PKM2), activation of caspase-8/3, and production of GSDME-NT. Meanwhile, it was accompanied by an increased release of LDH and inflammatory factors (IL-18 and IL-1ß). Both knockdown of GSDME and application of caspase-8/3 specific inhibitors (z-ITED-FMK/Ac-DEVD-CHO) significantly inhibited DHA-induced pyroptosis. However, the former did not affect the activation of caspase-3. In contrast, overexpression of PKM2 inhibited caspase-8/3 activation as well as GSDME-N production. Furthermore, both si-GSDME and OE-PKM2 inhibited DHA-induced pyroptosis in vivo and in vitro. Therefore, the results suggest that DHA can induce pyroptosis of ESCC cells via the PKM2-caspase-8/3-GSDME pathway. Implication: In this study, we identified new mechanism of DHA in inhibiting ESCC development and progression, and provide a potential therapeutic agent for the treatment of ESCC.


Assuntos
Artemisininas/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Piroptose/efeitos dos fármacos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caspase 3/metabolismo , Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Modelos Biológicos , Piroptose/fisiologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Int J Mol Sci ; 22(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34502478

RESUMO

Caspase-1, as the main pro-inflammatory cysteine protease, was investigated mostly with respect to inflammation-related processes. Interestingly, caspase-1 was identified as being involved in lipid metabolism, which is extremely important for the proper differentiation of chondrocytes. Based on a screening investigation, general caspase inhibition impacts the expression of Cd36 in chondrocytes, the fatty acid translocase with a significant impact on lipid metabolism. However, the engagement of individual caspases in the effect has not yet been identified. Therefore, the hypothesis that caspase-1 might be a candidate here appears challenging. The primary aim of this study thus was to find out whether the inhibition of caspase-1 activity would affect Cd36 expression in a chondrogenic micromass model. The expression of Pparg, a regulator Cd36, was examined as well. In the caspase-1 inhibited samples, both molecules were significantly downregulated. Notably, in the treated group, the formation of the chondrogenic nodules was apparently disrupted, and the subcellular deposition of lipids and polysaccharides showed an abnormal pattern. To further investigate this observation, the samples were subjected to an osteogenic PCR array containing selected markers related to cartilage/bone cell differentiation. Among affected molecules, Bmp7 and Gdf10 showed a significantly increased expression, while Itgam, Mmp9, Vdr, and Rankl decreased. Notably, Rankl is a key marker in bone remodeling/homeostasis and thus is a target in several treatment strategies, including a variety of fatty acids, and is balanced by its decoy receptor Opg (osteoprotegerin). To evaluate the effect of Cd36 downregulation on Rankl and Opg, Cd36 silencing was performed using micromass cultures. After Cd36 silencing, the expression of Rankl was downregulated and Opg upregulated, which was an inverse effect to caspase-1 inhibition (and Cd36 upregulation). These results demonstrate new functions of caspase-1 in chondrocyte differentiation and lipid metabolism-related pathways. The effect on the Rankl/Opg ratio, critical for bone maintenance and pathology, including osteoarthritis, is particularly important here as well.


Assuntos
Antígenos de Diferenciação/biossíntese , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Diferenciação Celular/efeitos dos fármacos , Condrócitos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Animais , Condrogênese/efeitos dos fármacos , Camundongos
3.
Expert Opin Ther Pat ; 31(12): 1079-1096, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34214002

RESUMO

INTRODUCTION: MALT1 is the only human paracaspase, a protease with unique cleavage activity and substrate specificity. As a key regulator of immune responses, MALT1 has attracted attention as an immune modulatory target for the treatment of autoimmune/inflammatory diseases. Further, chronic MALT1 protease activation drives survival of lymphomas, suggesting that MALT1 is a suitable drug target for lymphoid malignancies. Recent studies have indicated that MALT1 inhibition impairs immune suppressive function of regulatory T cells in the tumor microenvironment, suggesting that MALT1 inhibitors may boost anti-tumor immunity in the treatment of solid cancers. AREAS COVERED: This review summarizes the literature on MALT1 patents and applications. We discuss the potential therapeutic uses for MALT1 inhibitors based on patents and scientific literature. EXPERT OPINION: There has been a steep increase in MALT1 inhibitor patents. Compounds with high selectivity and good bioavailability have been developed. An allosteric binding pocket is the preferred site for potent and selective MALT1 targeting. MALT1 inhibitors have moved to early clinical trials, but toxicological studies indicate that long-term MALT1 inhibition can disrupt immune homeostasis and lead to autoimmunity. Even though this poses risks, preventing immune suppression may favor the use of MALT1 inhibitors in cancer immunotherapies.


Assuntos
Inibidores de Caspase/farmacologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/antagonistas & inibidores , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Inibidores de Caspase/efeitos adversos , Desenvolvimento de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Patentes como Assunto , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia
4.
Sci Transl Med ; 13(601)2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233954

RESUMO

Staphylococcus aureus causes most skin infections in humans, and the emergence of methicillin-resistant S. aureus (MRSA) strains is a serious public health threat. There is an urgent clinical need for nonantibiotic immunotherapies to treat MRSA infections and prevent the spread of antibiotic resistance. Here, we investigated the pan-caspase inhibitor quinoline-valine-aspartic acid-difluorophenoxymethyl ketone (Q-VD-OPH) for efficacy against MRSA skin infection in mice. A single systemic dose of Q-VD-OPH decreased skin lesion sizes and reduced bacterial burden compared with vehicle-treated or untreated mice. Although Q-VD-OPH inhibited inflammasome-dependent apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC) speck formation and caspase-1-mediated interleukin-1ß (IL-1ß) production, Q-VD-OPH maintained efficacy in mice deficient in IL-1ß, ASC, caspase-1, caspase-11, or gasdermin D. Thus, Q-VD-OPH efficacy was independent of inflammasome-mediated pyroptosis. Rather, Q-VD-OPH reduced apoptosis of monocytes and neutrophils. Moreover, Q-VD-OPH enhanced necroptosis of macrophages with concomitant increases in serum TNF and TNF-producing neutrophils, monocytes/macrophages, and neutrophils in the infected skin. Consistent with this, Q-VD-OPH lacked efficacy in mice deficient in TNF (with associated reduced neutrophil influx and necroptosis), in mice deficient in TNF/IL-1R and anti-TNF antibody-treated WT mice. In vitro studies revealed that combined caspase-3, caspase-8, and caspase-9 inhibition reduced apoptosis, and combined caspase-1, caspase-8, and caspase-11 inhibition increased TNF, suggesting a mechanism for Q-VD-OPH efficacy in vivo. Last, Q-VD-OPH also had a therapeutic effect against Streptococcus pyogenes and Pseudomonas aeruginosa skin infections in mice. Collectively, pan-caspase inhibition represents a potential host-directed immunotherapy against MRSA and other bacterial skin infections.


Assuntos
Caspases , Staphylococcus aureus Resistente à Meticilina , Animais , Caspase 1 , Inibidores de Caspase/farmacologia , Imunoterapia , Inflamassomos , Interleucina-1beta , Camundongos , Inibidores do Fator de Necrose Tumoral
5.
Biomed Res Int ; 2021: 6636621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222479

RESUMO

Objective: To observe the protective effect of AC-YVAD-CMK on sepsis-induced acute kidney injury in mice and to explore its possible mechanisms primarily. Methods: Eighteen male C57BL/6 mice were randomly divided into sham-operated group (Control), cecal ligation and puncture group (CLP), and CLP model treated with AC-YVAD-CMK group (AC-YVAD-CMK) (n = 6 in each group). Mice were sacrificed at 24 h after operation, and blood and kidney tissue samples were collected for analyses. Histologic changes were determined microscopically following HE staining. The expression of Ly-6B and CD68 was investigated using immunohistochemistry. Serum concentrations of creatinine (sCR) and blood urea nitrogen (BUN) were measured. Serum levels of interleukin-1ß (IL-1ß), interleukin-18 (IL-18), TNF-α, and interleukin-6 (IL-6) were determined by ELISA. The expressions of Caspas-1, NLRP-1, IL-1ß, and IL-18 in renal tissues were investigated using Western blot. Immunofluorescence staining was used to detect the expression of GSDMD protein in renal tissues. Results: AC-YVAD-CMK treatment significantly alleviates sepsis-induced acute kidney injury, with decreased histological injury in renal tissues, suppresses the accumulation of neutrophils and macrophages in renal tissues, and decreased sCR and BUN level (P < 0.05). Attenuation of sepsis-induced acute kidney injury was due to the prohibited production of inflammatory cytokines and decrease expression of Caspas-1, NLRP-1, IL-1ß, and IL-18 in renal tissues. In addition, AC-YVAD-CMK treatment significantly reduced the expression of GSDMD in renal tissues compared to those observed in controls (P < 0.05). Conclusions: We demonstrated a marked renoprotective effect of caspase-1-inhibitor AC-YVAD-CMK in a rat model of sepsis by inhibition of pyroptosis.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Clorometilcetonas de Aminoácidos/farmacologia , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Piroptose/efeitos dos fármacos , Sepse/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação Mielomonocítica/biossíntese , Nitrogênio da Ureia Sanguínea , Creatinina , Citocinas/metabolismo , Interleucina-18/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Rim/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Sepse/metabolismo
6.
Ann Neurol ; 90(3): 377-390, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288031

RESUMO

OBJECTIVE: Unidentified mechanisms largely restrict the viability of effective therapies in pharmacoresistant epilepsy. Our previous study revealed that hyperactivity of the subiculum is crucial for the genesis of pharmacoresistance in temporal lobe epilepsy (TLE), but the underlying molecular mechanism is not clear. METHODS: Here, we examined the role of subicular caspase-1, a key neural pro-inflammatory enzyme, in pharmacoresistant TLE. RESULTS: We found that the expression of activated caspase-1 in the subiculum, but not the CA1, was upregulated in pharmacoresistant amygdaloid-kindled rats. Early overexpression of caspase-1 in the subiculum was sufficient to induce pharmacoresistant TLE in rats, whereas genetic ablation of caspase-1 interfered with the genesis of pharmacoresistant TLE in both kindled rats and kainic acid-treated mice. The pro-pharmacoresistance effect of subicular caspase-1 was mediated by its downstream inflammasome-dependent interleukin-1ß. Further electrophysiological results showed that inhibiting caspase-1 decreased the excitability of subicular pyramidal neurons through influencing the excitation/inhibition balance of presynaptic input. Importantly, a small molecular caspase-1 inhibitor CZL80 attenuated seizures in pharmacoresistant TLE models, and decreased the neuronal excitability in the brain slices obtained from patients with pharmacoresistant TLE. INTERPRETATION: These results support the subicular caspase-1-interleukin-1ß inflammatory pathway as a novel alternative mechanism hypothesis for pharmacoresistant TLE, and present caspase-1 as a potential target. ANN NEUROL 2021;90:377-390.


Assuntos
Caspase 1/biossíntese , Inibidores de Caspase/uso terapêutico , Epilepsia Resistente a Medicamentos/enzimologia , Epilepsia do Lobo Temporal/enzimologia , Hipocampo/enzimologia , Adulto , Animais , Caspase 1/genética , Inibidores de Caspase/farmacologia , Criança , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Epilepsia do Lobo Temporal/tratamento farmacológico , Feminino , Hipocampo/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
7.
Aging (Albany NY) ; 13(10): 14088-14108, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33999861

RESUMO

Caspase1 (CASP1) is a gene that encodes multiple proteins related to cell death. Nevertheless, the function of CASP1 in the pathogenesis of AML is still unclear. In the present study, a detailed analysis of cancer versus normal samples was performed to explore the relationship between CASP1 and leukemia. We used sequencing data from multiple cancer gene databases to analyze the gene expression and regulatory network of CASP1 in leukemia. We discovered that mRNA expression levels of CASP1 are increased in leukemia cell lines, especially in acute myelocytic leukemia (AML). Then, we verified the mRNA expression of CASP1 in AML clinical samples and observed significantly higher expression of CASP1 in relapsed AML patients. High CASP1 expression was associated with poor prognosis and CASP1 inhibition could impair the proliferation of AML cells. Related functional network identification suggests that CASP1 regulates apoptosis, immune and inflammatory response via pathways involving LYN, LCK, and the E2F family. These findings suggest that CASP1 probably contributes to the pathogenesis, and identify CASP1 as a factor for predicting the prognosis and as a therapeutic target of AML patients.


Assuntos
Caspase 1/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Caspase 1/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Grupos de Populações Continentais , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Prognóstico , Proteínas Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Genética/efeitos dos fármacos
8.
Vet Microbiol ; 258: 109126, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34020176

RESUMO

Mycobacterium bovis (M. bovis) infection triggers cytokine production via pattern recognition receptors. These cytokines include type I interferons (IFNs) and interleukin-1ß (IL-1ß). Excessive type I IFN levels impair host resistance to M. bovis infection. Therefore, strict control of type I IFN production is helpful to reduce pathological damage and bacterial burden. Here, we found that a deficiency in caspase-1, which is the critical component of the inflammasome responsible for IL-1ß production, resulted in increased IFN-ß production upon M. bovis infection. Subsequent experiments demonstrated that caspase-1 activation reduced cyclic GMP-AMP synthase (cGAS) expression, thereby inhibiting downstream TANK-binding kinase 1 (TBK1)- interferon regulatory factor 3 (IRF3) signaling and ultimately reducing IFN production. A deficiency in caspase-1 activation enhanced the bacterial burden during M. bovis infection in vitro and in vivo and aggravated pathological lesion formation. Thus, caspase-1 activation reduced IFN-ß production upon M. bovis infection by dampening cGAS-TBK1-IRF3 signaling, suggesting that the inflammasome protects hosts by negatively regulating harmful cytokines.


Assuntos
Caspase 1/metabolismo , Animais , Inibidores de Caspase/farmacologia , Sobrevivência Celular , Dipeptídeos/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamassomos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon beta , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis , Nucleotidiltransferases , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , para-Aminobenzoatos/farmacologia
9.
Eur J Pharmacol ; 904: 174138, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33933463

RESUMO

Neuroblastoma is the most common solid malignant tumor in infants and young children. Its origin is the incompletely committed precursor cells from the autonomic nervous system. Neuroblastoma cells are multipotent cells with a high potency of differentiation into the neural cell types. Neural differentiation leads to the treatment of neuroblastoma by halting the cell and tumor growth and consequently its expansion. Caspases are a family of proteins involved in apoptosis and differentiation. The present study aimed to investigate the potential role of caspase-9 activation on the differentiation of the human neuroblastoma SH-SY5Y cells. Here we investigated the caspase-9 and 3/7 activity during 1,25-dihydroxycholecalciferol (D3)-mediated differentiation of SH-SY5Y cells and took advantage of the inducible caspase-9 system in putting out the differentiation of the neuroblastoma cells. D3-induced differentiation of the cells could lead to activation of caspase-9 and caspase-3/7, astrocyte-like morphology, and increased expression of Glial fibrillary acidic protein (GFAP). By using the inducible caspase-9 system, we showed differentiation of SH-SY5Y cells to astrocyte-like morphology and increased level of GFAP expression. Furthered studies using a specific caspase-9 inhibitor showed inhibition of differentiation mediated by D3 or caspase-9 to astrocyte-like cells. These results show the potency of caspase-9 to direct differentiation of the human neuroblastoma SH-SY5Y cells into cells showing an astrocyte-like morphology.


Assuntos
Caspase 9/genética , Caspase 9/metabolismo , Diferenciação Celular/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Calcitriol/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Inibidores de Caspase/farmacologia , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Neuroblastoma/patologia , Compostos Orgânicos
10.
Mol Immunol ; 135: 116-126, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33892379

RESUMO

Brevilin A (BA), is a natural biologically active ingredient derived from Centipeda minima with several reports of anti-cancer, while its anti-inflammatory activity is rarely reported. Current studies have found the dysregulated activation of NLRP3 inflammasome cause a variety of inflammatory diseases. Targeting the NLRP3 inflammasome contributes to the treatment of NLRP3-induced diseases. Here, we found that BA significantly attenuates the activation of caspase-1 and the subsequent secretion of the interleukin-1ß (IL-1ß) in mouse macrophages and human THP-1 cells, showing the inhibitory effect of BA on the NLRP3 inflammasome activation. Moreover, BA specifically inhibits NLRs inflammasomes activation triggered by multi-stimuli, but it has no effect on the AIM2 inflammasome activation, indicating that BA is a specific inhibitor of the NLRs inflammasomes. Research on the mechanism found BA inhibits NLRP3 inflammasome activation by blocking the upstream of ASC oligomerization. Importantly, in vivo experiments showed that BA markedly reduces the secretion of IL-1ß to suppress NLRP3 inflammasome in the LPS-induced inflammation and MSU-challenged peritonitis model. In conclusion, our experiments show that BA is an effective NLRP3 inflammasome inhibitor and can be regarded as a drug candidate for NLRP3 inflammasome-driven diseases.


Assuntos
Inibidores de Caspase/farmacologia , Crotonatos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sesquiterpenos/farmacologia , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Interleucina-1beta/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Células THP-1
11.
Immunology ; 163(4): 493-511, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33835494

RESUMO

The impairment of the cystic fibrosis transmembrane conductance regulator (CFTR) activity induces intracellular chloride (Cl- ) accumulation. The anion Cl- , acting as a second messenger, stimulates the secretion of interleukin-1ß (IL-1ß), which starts an autocrine positive feedback loop. Here, we show that NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (CASP1) are indirectly modulated by the intracellular Cl- concentration, showing maximal expression and activity at 75 mM Cl- , in the presence of the ionophores nigericin and tributyltin. The expression of PYD and CARD domain containing (PYCARD/ASC) remained constant from 0 to 125 mM Cl- . The CASP1 inhibitor VX-765 and the NLRP3 inflammasome inhibitor MCC950 completely blocked the Cl- -stimulated IL-1ß mRNA expression and partially the IL-1ß secretion. DCF fluorescence (cellular reactive oxygen species, cROS) and MitoSOX fluorescence (mitochondrial ROS, mtROS) also showed maximal ROS levels at 75 mM Cl- , a response strongly inhibited by the ROS scavenger N-acetyl-L-cysteine (NAC) or the NADPH oxidase (NOX) inhibitor GKT137831. These inhibitors also affected CASP1 and NLRP3 mRNA and protein expression. More importantly, the serum/glucocorticoid regulated kinase 1 (SGK1) inhibitor GSK650394, or its shRNAs, completely abrogated the IL-1ß mRNA response to Cl- and the IL-1ß secretion, interrupting the autocrine IL-1ß loop. The results suggest that Cl- effects are mediated by SGK1, in which under Cl- modulation stimulates the secretion of mature IL-1ß, in turn, responsible for the upregulation of ROS, CASP1, NLRP3 and IL-1ß itself, through autocrine signalling.


Assuntos
Caspase 1/metabolismo , Cloretos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Interleucina-1beta/metabolismo , Espaço Intracelular/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Dipeptídeos/farmacologia , Retroalimentação Fisiológica , Furanos/farmacologia , Humanos , Proteínas Imediatamente Precoces/genética , Indenos/farmacologia , Interleucina-1beta/genética , Mutação/genética , Nigericina/farmacologia , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , para-Aminobenzoatos/farmacologia
12.
J Cell Biol ; 220(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914027

RESUMO

Activation of inflammation by lipopolysaccharide (LPS) is an important innate immune response. Here we investigated the contribution of caspases to the LPS-mediated inflammatory response and discovered distinctive temporal roles of RIPK1 in mediating proinflammatory cytokine production when caspases are inhibited. We propose a biphasic model that differentiates the role of RIPK1 in early versus late phase. The early production of proinflammation cytokines stimulated by LPS with caspase inhibition is mediated by the NF-κB pathway that requires the scaffold function of RIPK1 but is kinase independent. Autocrine production of TNFα in the late phase promotes the formation of a novel TNFR1-associated complex with activated RIPK1, FADD, caspase-8, and key mediators of NF-κB signaling. The production of proinflammatory cytokines in the late phase can be blocked by RIPK1 kinase inhibitor Nec-1s. Our study demonstrates a mechanism by which the activation of RIPK1 promotes its own scaffold function to regulate the NF-κB-mediated proinflammatory cytokine production that is negatively regulated by caspases to restrain inflammatory signaling.


Assuntos
Caspase 8/química , Inibidores de Caspase/farmacologia , Citocinas/metabolismo , Imunidade Inata/efeitos dos fármacos , Inflamação/patologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Caspase 8/genética , Caspase 8/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Mol Immunol ; 132: 8-20, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524772

RESUMO

The cysteine-containing aspartate specific proteinase (caspase) family plays important roles in apoptosis and the maintenance of homeostasis in lampreys. We conducted genomic and functional comparisons of six distinct lamprey caspase groups with human counterparts to determine how these expanded molecules evolved to adapt to the changing caspase-mediated signaling pathways. Our results showed that lineage-specific duplication and rearrangement were responsible for expanding lamprey caspases 3 and 7, whereas caspases 1, 6, 8, and 9 maintained a relatively stable genome and protein structure. Lamprey caspase family molecules displayed various expression patterns and were involved in the innate immune response. Caspase 1 and 7 functioned as a pattern recognition receptor with a broad-spectrum of microbial recognition and bactericidal effect. Additionally, caspases 1 and 7 may induce cell apoptosis in a time- and dose-dependent manner; however, apoptosis was inhibited by caspase inhibitors. Thus, these molecules may reflect the original state of the vertebrates caspase family. Our phylogenetic and functional data provide insights into the evolutionary history of caspases and illustrate their functional characteristics in primitive vertebrates.


Assuntos
Apoptose/genética , Caspases/genética , Imunidade Inata , Lampreias/genética , Transdução de Sinais/imunologia , Animais , Apoptose/efeitos dos fármacos , Caspase 1/química , Caspase 1/genética , Caspase 1/isolamento & purificação , Caspase 1/metabolismo , Caspase 3/química , Caspase 3/genética , Caspase 3/metabolismo , Caspase 6/química , Caspase 6/genética , Caspase 6/metabolismo , Caspase 7/química , Caspase 7/genética , Caspase 7/isolamento & purificação , Caspase 7/metabolismo , Caspase 8/química , Caspase 8/genética , Caspase 8/metabolismo , Caspase 9/química , Caspase 9/genética , Caspase 9/metabolismo , Inibidores de Caspase/farmacologia , Caspases/química , Caspases/isolamento & purificação , Caspases/metabolismo , Evolução Molecular , Duplicação Gênica , Rearranjo Gênico , Genoma , Genômica , Células HeLa , Humanos , Imunidade Inata/genética , Lampreias/crescimento & desenvolvimento , Lampreias/imunologia , Lampreias/metabolismo , Filogenia , Proteínas Recombinantes , Alinhamento de Sequência , Transdução de Sinais/genética , Staphylococcus aureus/efeitos dos fármacos , Regulação para Cima , Vibrio/efeitos dos fármacos
14.
Sci Rep ; 11(1): 3089, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542321

RESUMO

The activated hepatic stellate cells (HSCs) are the major cells that secrete the ECM proteins and drive the pathogenesis of fibrosis in chronic liver disease. Targeting of HSCs by modulating their activation and proliferation has emerged as a promising approach in the development of anti-fibrotic therapy. Sorafenib, a multi-kinase inhibitor has shown anti-fibrotic properties by inhibiting the survival and proliferation of HSCs. In present study we investigated sorafenib induced cytoplasmic vacuolation mediated decreased cell viability of HSCs in dose and time dependent manner. In this circumstance, sorafenib induces ROS and ER stress in HSCs without involvement of autophagic signals. The protein synthesis inhibitor cycloheximide treatment significantly decreased the sorafenib-induced cytoplasmic vacuolation with increasing cell viability. Antioxidant human serum albumin influences the viability of HSCs by reducing sorafenib induced vacuolation and cell death. However, neither caspase inhibitor Z-VAD-FMK nor autophagy inhibitor chloroquine could rescue the HSCs from sorafenib-induced cytoplasmic vacuolation and cell death. Using TEM and ER organelle tracker, we conclude that the cytoplasmic vacuoles are due to ER dilation. Sorafenib treatment induces calreticulin and GPR78, and activates IRE1α-XBP1s axis of UPR pathway, which eventually trigger the non-apoptotic cell death in HSCs. This study provides a notable mechanistic insight into the ER stress directed non-apoptotic cell death with future directions for the development of efficient anti-fibrotic therapeutic strategies.


Assuntos
Cirrose Hepática/tratamento farmacológico , Hepatopatias/tratamento farmacológico , Sorafenibe/farmacologia , Vacúolos/genética , Calreticulina/genética , Inibidores de Caspase/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/genética , Proteínas de Choque Térmico/genética , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/patologia , Humanos , Cirrose Hepática/genética , Cirrose Hepática/patologia , Hepatopatias/genética , Hepatopatias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/patologia , Proteína 1 de Ligação a X-Box/genética
15.
J Ethnopharmacol ; 270: 113873, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33485970

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Usnic acid (UA) is one of the well-known lichen metabolites that induces liver injury. It is mainly extracted from Usnea longissima and U. diffracta in China or from other lichens in other countries. U. longissima has been used as traditional Chinese medicine for treatment of cough, pain, indigestion, wound healing and infection. More than 20 incidences with hepatitis and liver failure have been reported by the US Food and Drug Administration since 2000. UA is an uncoupler of oxidative phosphorylation causing glutathione and ATP depletion. Previous histological studies observed extensive cell and organelle swellings accompanied with hydrotropic vacuolization of hepatocytes. AIM OF THE STUDY: This study was to investigate the mechanism of UA-induced liver toxicity in normal human L02 liver cells and ICR mice using various techniques, such as immunoblotting and siRNA transfection. MATERIALS AND METHODS: Assays were performed to evaluate the oxidative stress and levels of GSH, MDA and SOD. Double flouresencence staining was used for the detection of apoptotic cell death. The protein expressions, such as glutathione S transferase, glutathione reductase, glutathione peroxidase 4, catalase, c-Jun N-terminal protein kinase, caspases, gastamin-D and porimin were detected by Western blotting. Comparisons between transfected and non-transfected cells were applied for the elucidation of the role of porimin in UA-induced hepatotoxicity. Histopathological examination of mice liver tissue, serum total bilirubin and hepatic enzymes of alanine aminotransferase and aspatate aminotransferase were also studied. RESULTS: The protein expressions of glutathione reductase, glutathione S transferase and glutathione peroxidase-4 were increased significantly in normal human L02 liver cells. Catalase expression was diminished in dose-dependent manner. Moreover, (+)-UA did not induce the activation of caspase-3, caspase-1 or gasdermin-D. No evidence showed the occurrence of pyroptosis. However, the porimin expressions were increased significantly. In addition, (+)-UA caused no cytotoxicity in the porimin silencing L02 cells. CONCLUSIONS: In conclusion, (+)-UA induces oncotic L02 cell death via increasing protein porimin and the formation of irreversible membrane pores. This may be the potential research area for future investigation in different aspects especially bioactivity and toxicology.


Assuntos
Anti-Infecciosos/toxicidade , Benzofuranos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Inibidores de Caspase/farmacologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glutationa/farmacologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Isquemia/induzido quimicamente , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos Endogâmicos ICR , Necrose/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Ligação a Fosfato/metabolismo , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/genética
16.
J Leukoc Biol ; 110(4): 693-710, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33404106

RESUMO

The inflammatory and anti-inflammatory Mϕs have been implicated in many diseases including rheumatoid arthritis, multiple sclerosis, and leprosy. Recent studies suggest targeting Mϕ function and activation may represent a potential target to treat these diseases. Herein, we investigated the effect of second mitochondria-derived activator of caspases (SMAC) mimetics (SMs), the inhibitors of apoptosis (IAPs) proteins, on the killing of human pro- and anti-inflammatory Mϕ subsets. We have shown previously that human monocytes are highly susceptible whereas differentiated Mϕs (M0) are highly resistant to the cytocidal abilities of SMs. To determine whether human Mϕ subsets are resistant to the cytotoxic effects of SMs, we show that M1 Mϕs are highly susceptible to SM-induced cell death whereas M2a, M2b, and M2c differentiated subsets are resistant, with M2c being the most resistant. SM-induced cell death in M1 Mϕs was mediated by apoptosis as well as necroptosis, activated both extrinsic and intrinsic pathways of apoptosis, and was attributed to the IFN-γ-mediated differentiation. In contrast, M2c and M0 Mϕs experienced cell death through necroptosis following simultaneous blockage of the IAPs and the caspase pathways. Overall, the results suggest that survival of human Mϕs is critically linked to the activation of the IAPs pathways. Moreover, agents blocking the cellular IAP1/2 and/or caspases can be exploited therapeutically to address inflammation-related diseases.


Assuntos
Apoptose , Inibidores de Caspase/farmacologia , Polaridade Celular , Macrófagos/citologia , Oligopeptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Janus Quinases/metabolismo , Cinética , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Necroptose/efeitos dos fármacos , Fenótipo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos
17.
Eur J Immunol ; 51(5): 1234-1245, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33454984

RESUMO

Pyroptosis is a type of acute cell death that mainly occurs in immune cells. It is characterized with robust release of inflammatory cytokines and has emerged to play a critical role in the pathogenesis of sepsis-associated immune disorders. In this study, we screened for pyroptotic inhibitors with the ultimate goal to benefit sepsis treatments. Accidentally, we identified that nitrosonisoldipine (NTS), a photodegradation product of calcium channel inhibitor nisoldipine, inhibits noncanonical pyroptosis. Using murine immortalized BM-derived macrophage and human THP-1 cell line, we further discovered that NTS not only inhibits noncanonical pyroptosis mediated by caspase-11 or caspase-4 but also canonical pyroptosis mediated by caspase-1. Mechanistically, NTS directly inhibits the enzyme activities of these inflammatory caspases, and these inhibitory effects persist despite extensive washout of the drug. By contrast, apoptosis mediated by caspase-3/-7 was not affected by NTS. Mice pretreated with NTS intraperitoneally displayed improved survival rate and extended survival time in LPS- and polymicrobe-induced septic models, respectively. In conclusion, NTS is a selective inhibitor of inflammatory caspases that blocks both the noncanonical and canonical pyroptotic pathways. It is safe for intraperitoneal administration and might be used as a prototype to develop drugs for sepsis treatments.


Assuntos
Inibidores de Caspase/farmacologia , Piroptose/efeitos dos fármacos , Choque Séptico/tratamento farmacológico , Choque Séptico/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Inibidores de Caspase/uso terapêutico , Modelos Animais de Doenças , Humanos , Camundongos , Prognóstico , Choque Séptico/etiologia , Choque Séptico/mortalidade , Resultado do Tratamento
18.
Bioorg Chem ; 107: 104626, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33450545

RESUMO

Vincamine, a well-known plant alkaloid, has been used as a dietary supplement and as a peripheral vasodilator to combat aging in humans. In this study, for the very first time, we demonstrated that vincamine can function as an anticancer agent in a human alveolar basal epithelial cell line A549 (IC50 = 309.7 µM). The anticancer potential of vincamine in A549 cells was assessed by molecular assays to determine cell viability, generation of intracellular ROS, nuclear condensation, caspase-3 activity and inhibition, and change in mitochondrial membrane potential (ΔΨm). In silico studies predicted that the anti-proliferative potential of vincamine is enhanced by its interaction with the apoptotic protein caspase-3, and that this interaction is driven by two hydrogen bonds and has a high free energy of binding (-5.64 kcal/mol) with an estimated association constant (Ka) of 73.67 µM. We found that vincamine stimulated caspase-3-dependent apoptosis and lowered mitochondrial membrane potential, which ultimately led to cytochrome C release. Vincamine was also found to quench hydroxyl free radicals and deplete iron ions in cancer cells. As a dietary supplement, vincamine is almost non-toxic in BEAS-2B and 3T3-L1 cells. Therefore, we propose that vincamine represents a safe anticancer agent in lung cancer cells. Its role in other cancers has yet to be explored.


Assuntos
Antineoplásicos/química , Células A549 , Alcaloides/química , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Caspase 3/química , Caspase 3/metabolismo , Inibidores de Caspase/farmacologia , Domínio Catalítico , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cinética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Simulação de Acoplamento Molecular , Espécies Reativas de Oxigênio/metabolismo , Termodinâmica , Vincamina/química , Vincamina/farmacologia
19.
Mol Neurobiol ; 58(2): 761-776, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33025508

RESUMO

Nod-like receptor protein 3 (NLRP3)-associated neuroinflammation mediated by activated microglia is involved in the pathogenesis of depression. The role of the pore-forming protein gasdermin D (GSDMD), a newly identified pyroptosis executioner downstream of NLRP3 inflammasome mediating inflammatory programmed cell death, in depression has not been well defined. Here, we provide evidence that paeoniflorin (PF), a monoterpene glycoside compound derived from Paeonia lactiflora, ameliorated reserpine-induced mouse depression-like behaviors, characterized as increased mobility time in tail suspension test and forced swimming test, as well as the abnormal alteration of synaptic plasticity in the depressive hippocampus. The molecular docking simulation predicted that PF would interact with C-terminus of GSDMD. We further demonstrated that PF administration inhibited the enhanced expression of GSDMD which mainly distributed in microglia, along with the proteins involved in pyroptosis signaling transduction including caspase (CASP)-11, CASP-1, NLRP3, and interleukin (IL)-1ß in the hippocampus of mice treated with reserpine. And also, PF prevented lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-induced pyroptosis in murine N9 microglia in vitro, evidenced by inhibiting the expression of CASP-11, NLRP3, CASP-1 cleavage, as well as IL-1ß. Furthermore, VX-765, an effective and selective inhibitor for CASP-1 activation, reduced the expression of inflammasome and pyroptosis-associated proteins in over-activated N9 and also facilitated PF-mediated inhibition of pyroptosis synergistically. Collectively, the data indicated that PF exerted antidepressant effects, alleviating neuroinflammation through inhibiting CASP-11-dependent pyroptosis signaling transduction induced by over-activated microglia in the hippocampus of mice treated with reserpine. Thus, GSDMD-mediated pyroptosis in activated microglia is a previously unrecognized inflammatory mechanism of depression and represents a unique therapeutic opportunity for mitigating depression given PF administration.


Assuntos
Antidepressivos/farmacologia , Caspases Iniciadoras/metabolismo , Glucosídeos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Monoterpenos/farmacologia , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/efeitos dos fármacos , Transdução de Sinais , Trifosfato de Adenosina/farmacologia , Animais , Antidepressivos/química , Antidepressivos/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Linhagem Celular , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Depressão/tratamento farmacológico , Dipeptídeos/farmacologia , Glucosídeos/administração & dosagem , Glucosídeos/química , Glucosídeos/uso terapêutico , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Monoterpenos/administração & dosagem , Monoterpenos/química , Monoterpenos/uso terapêutico , Reserpina , Transdução de Sinais/efeitos dos fármacos , para-Aminobenzoatos/farmacologia
20.
J Periodontal Res ; 56(1): 101-107, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32935871

RESUMO

OBJECTIVE: The aim of the study was to determine whether the inhibition of apoptosis via pan-caspase inhibitors can attenuate the changes in the alveolar ridge upon tooth extraction. BACKGROUND: Cells undergoing apoptosis might play a central role in the onset of alveolar bone resorption and the ensuing bone atrophy following tooth extraction. Caspases are proteases that regulate apoptotic cell death. It is, therefore, reasonable to hypothesize that blocking apoptosis with pan-caspase inhibitors attenuates the changes in the alveolar ridge following tooth extraction. METHODS: In 16 inbred rats, the mandibular first (M1) and second (M2) molars of one side were extracted. Following random allocation, the rats received either a cell-permeable pan-caspase inhibitor or diluent. After a healing period of 10 days, changes in shape and height of the alveolar ridge were examined using geometric morphometrics and linear measurements based on micro-computed tomography. RESULTS: Geometric morphometric analysis revealed that the pan-caspase inhibitor prevented major shape changes of the alveolar ridge following M1 tooth extraction (P < .05). Furthermore, linear measurements confirmed that the pan-caspase inhibitor significantly prevented the atrophy of the alveolar ridge height following M1 tooth extraction compared to the diluent controls (-0.53 mm vs -0.24 mm; P = .012). M2 tooth extraction caused no shape changes of the alveolar ridge, and thus, the pan-caspase inhibitor group did not differ from the control group (-0.14 mm vs -0.05 mm; P = .931). CONCLUSIONS: These findings suggest that the inhibition of apoptosis may attenuate shape changes of the alveolar ridge following M1 tooth extraction in rodents.


Assuntos
Perda do Osso Alveolar , Alvéolo Dental , Perda do Osso Alveolar/diagnóstico por imagem , Perda do Osso Alveolar/prevenção & controle , Processo Alveolar/diagnóstico por imagem , Animais , Inibidores de Caspase/farmacologia , Projetos Piloto , Ratos , Extração Dentária/efeitos adversos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...