RESUMO
Cardiac inflammation is easily accompanied by hypoxia, while hypoxia-induced injury and microenvironmental variations limit the efficacy of common anti-inflammatory drugs. In order to effectively attenuate myocardial injury caused by hypoxic and inflammatory injury, we designed and synthesized a kind of anti-inflammatory compounds by coupling cyclooxygenase (COX) and carbonic anhydrase (CA) inhibitors, and evaluated the activity and their mechanism in vitro and in vivo. It was found that these compounds were structurally stable and had two enzymatic inhibition activities. By inhibiting the activity of overexpressed CA under hypoxia, the acidic microenvironment can be regulated to inhibit the hypoxic injury, in which the pH-dependent primary drug resistance can be overcome to improve the anti-inflammatory effect of the COX inhibitor. Consequently, this study provides a new strategy for the treatment of cardiac inflammation accompanied by hypoxia.
Assuntos
Anidrases Carbônicas , Humanos , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Anti-Inflamatórios , Inflamação/tratamento farmacológico , Antígenos de NeoplasiasRESUMO
Aspirin is one of the most commonly consumed cyclooxygenase (COX)-inhibitors and anti-inflammatory drugs and has been shown to block COX-produced regulators of inflammation and aging skeletal muscle size. We used propensity score matching to compare skeletal muscle characteristics of individuals from the Health ABC study that did not consume aspirin or any other COX-inhibiting drugs (non-consumers, n = 497, 74 ± 3 year, 168 ± 9 cm, 75.1 ± 13.8 kg, 33.1 ± 7.4% body fat, 37% women, 34% black) to those that consumed aspirin daily (and not any other COX-inhibiting drugs) and for at least 1 year (aspirin consumers, n = 515, 74 ± 3 year, 168 ± 9 cm, 76.2 ± 13.6 kg, 33.8 ± 7.1% body fat, 39% women, 30% black, average aspirin consumption: 6 year). Subjects were matched (p > 0.05) based on age, height, weight, % body fat, sex, and race (propensity scores: 0.33 ± 0.09 vs. 0.33 ± 0.09, p > 0.05). There was no difference between non-consumers and aspirin consumers for computed tomography-determined muscle size of the quadriceps (103.5 ± 0.9 vs. 104.9 ± 0.8 cm2 , p > 0.05) or hamstrings (54.6 ± 0.5 vs. 54.9 ± 0.5 cm2 , p > 0.05), or quadriceps muscle strength (111.1 ± 2.0 vs. 111.7 ± 2.0 Nm, p > 0.05). However, muscle attenuation (i.e., density) was higher in the aspirin consumers in the quadriceps (40.9 ± 0.3 vs. 44.4 ± 0.3 Hounsfield unit [HU], p < 0.05) and hamstrings (27.7 ± 0.4 vs. 33.2 ± 0.4 HU, p < 0.05). These cross sectional data suggest that chronic aspirin consumption does not influence age-related skeletal muscle atrophy, but does influence skeletal muscle composition in septuagenarians. Prospective longitudinal investigations remain necessary to better understand the influence of chronic COX regulation on aging skeletal muscle health.
Assuntos
Aspirina , Músculo Esquelético , Humanos , Feminino , Masculino , Aspirina/farmacologia , Estudos Transversais , Estudos Prospectivos , Músculo Esquelético/fisiologia , Envelhecimento/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologiaRESUMO
BACKGROUND: Kidney diseases have become a global health problem, affecting about 15% of adults and being often under-recognized. Immunological system activation was shown to accelerate kidney damage even in inherited disorders. The kynurenine pathway is the main route of tryptophan degradation. A metabolite of kynurenine (KYN), kynurenic acid (KYNA), produced by kynurenine aminotransferases (KATs), was reported to affect fluid and electrolyte balance as a result of natriuresis induction. The accumulation of KYNA was shown in patients with impaired kidney function and its level was related to the degree of kidney damage. Cyclooxygenase (COX) inhibitors are well-known analgesics and most of them demonstrate an anti-inflammatory effect. Their main mechanism of action is prostaglandin synthesis blockade, which is also responsible for their nephrotoxic potential. Since the KYN pathway is known to remain under immunological system control, the purpose of this study was to analyze the effect of 9 COX inhibitors on KYNA production together with KATs' activity in rat kidneys in vitro. METHODS: Experiments were carried out on kidney homogenates in the presence of L-KYN and the selected compound in 6 various concentrations. RESULTS: Among the examined COX inhibitors only acetaminophen did not change KYNA production in rat kidneys in vitro. Additionally, acetaminophen did not affect the activity of KAT I and KAT II, whereas acetylsalicylic acid and ibuprofen inhibited only KAT II. The remaining COX inhibitors decreased the activity of both KATs in rat kidneys in vitro. CONCLUSION: Our study provides novel mechanisms of COX inhibitors action in the kidney, with possible implications for the treatment of kidney diseases.
Assuntos
Ácido Cinurênico , Cinurenina , Ratos , Animais , Cinurenina/metabolismo , Ácido Cinurênico/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Acetaminofen/farmacologia , Transaminases/metabolismo , RimRESUMO
Multi-target drugs (MTDs) are emerging alternatives to combination therapies. Since both histone deacetylases (HDACs) and cyclooxygenase-2 (COX-2) are known to be overexpressed in several cancer types, we herein report the design, synthesis, and biological evaluation of a library of dual HDAC-COX inhibitors. The designed compounds were synthesized via an efficient parallel synthesis approach using preloaded solid-phase resins. Biological in vitro assays demonstrated that several of the synthesized compounds possess pronounced inhibitory activities against HDAC and COX isoforms. The membrane permeability and inhibition of cellular HDAC activity of selected compounds were confirmed by whole-cell HDAC inhibition assays and immunoblot experiments. The most promising dual inhibitors, C3 and C4, evoked antiproliferative effects in the low micromolar concentration range and caused a significant increase in apoptotic cells. In contrast to previous reports, the simultaneous inhibition of HDAC and COX activity by dual HDAC-COX inhibitors or combination treatments with vorinostat and celecoxib did not result in additive or synergistic anticancer activities.
Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Ciclo-Oxigenase 2 , Proliferação de Células , Histona Desacetilases , Inibidores de Ciclo-Oxigenase/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos AntitumoraisRESUMO
Curcumin is a natural ingredient with antioxidant effects, widely studied as a treatment for various types of cancer. However, its effects on ultraviolet radiation have not been fully explored. The effects of single or daily application of 0.1-100 µM curcumin on cell apoptosis in ultraviolet B (UVB)-induced mice were tested using an experimental double-blind posttest design with a control group and two research models: a single application of curcumin before a single UVB exposure and daily application of curcumin for 7 days before a single UVB exposure on the seventh day. Apoptotic cells were counted using a tunnel system kit. The number of apoptotic cells under a single or daily application of curcumin for 7 days was significantly lower than that of the UVB controls (p ≤ 0.05). The number of apoptotic cells decreased with the increasing concentration of curcumin, and the maximum effect was observed at 100 µM. Daily application of topical curcumin was superior in preventing apoptosis (mean apoptotic cell count of 14.86 ± 1.68) compared with a single application (17.46 ± 0.60; p = 0.011). Topical curcumin can act as a potential photoprotective agent in preventing cutaneous malignancies due to UVB radiation. Further studies are warranted, especially in humans.
Assuntos
Curcumina , Neoplasias Cutâneas , Humanos , Camundongos , Animais , Curcumina/farmacologia , Raios Ultravioleta/efeitos adversos , Apoptose , Neoplasias Cutâneas/prevenção & controle , Antioxidantes/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , PeleRESUMO
A novel series of twenty two flurbiprofen amides (1-22) were designed and synthesized in good to excellent yields by reacting flurbiprofen acid with various aromatic/aliphatic primary amines in the presence of 1,1carbonyldiimidazole (CDI) in basic medium using acetonitrile as solvent. Structures of the synthesized derivatives were elucidated with the help of HR-ESI-MS, 1H-, and 13C NMR spectroscopy and finally screened them for their in-vivo anti-inflammatory potential using carrageenan induced mice paw oedema assay. Among the series, four compounds (8, 14, 15, and 20) displayed excellent activity ranging from 59.0 to 77.7 % decrease, while eight compounds (1, 3, 7, 10, 12, 13, 17, and 18) exhibited good activity in the decrease range of 37.0-50.0 %. Additionally, four compounds (2, 6, 16, and 22) attributed less activity, while the remaining six compounds (4, 5, 9, 11, 19, and 21) were found to be inactive. Furthermore, the In-silico studies were executed on the synthesized derivatives in order to explain the binding interface of compounds with the active sites of prostaglandin endoperoxide-synthase II enzyme.
Assuntos
Flurbiprofeno , Camundongos , Animais , Flurbiprofeno/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2 , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/química , Estrutura Molecular , Edema/induzido quimicamente , Edema/tratamento farmacológico , CarrageninaRESUMO
A series of previously synthesized 5-benzyliden-2-(5-methylthiazole-2-ylimino)thiazoli- din-4-one were evaluated for their anti-inflammatory activity on the basis of PASS predictive outcomes. The predictive compounds were found to demonstrate moderate to good anti-inflammatory activity, and some of them displayed better activity than indomethacin used as the reference drug. Structure-activity relationships revealed that the activity of compounds depends not only on the nature of the substituent but also on its position in the benzene ring. The most active compounds were selected to investigate their possible mechanism of action. COX and LOX activity were determined and found that the title compounds were active only to COX-1 enzymes with an inhibitory effect superior to the reference drug naproxen. As for LOX inhibitory activity, the derivatives failed to show remarkable LOX inhibition. Therefore, COX-1 has been identified as the main molecular target for the anti-inflammatory activity of our compounds. The docking study against COX-1 active site revealed that the residue Arg 120 was found to be responsible for activity. In summary, the 5-thiazol-based thiazolidinone derivatives have been identified as a novel class of selective COX-1 inhibitors.
Assuntos
Inibidores de Ciclo-Oxigenase , Inibidores de Lipoxigenase , Inibidores de Lipoxigenase/farmacologia , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Relação Estrutura-Atividade , Estrutura Molecular , Inibidores de Ciclo-Oxigenase 2/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/químicaRESUMO
We previously identified that NO derived from neuronal cells acts on glial cells and causes vasodilation in the healthy rat retina via the release of epoxyeicosatrienoic acids (EETs) and prostaglandins (PGs) by activation of the arachidonic acid cascade. However, it is not clear which PG types are involved in these responses. The aim of the present study was to identify prostanoid receptors involved in glial cell-derived vasodilation induced by NO in rat retina. Male Wistar rats were used to examine the effects of intravitreal pretreatment with indomethacin, a cyclooxygenase inhibitor; PF-04418948, a prostanoid EP2 receptor antagonist; and CAY10441, a prostanoid IP receptor antagonist, on the changes in the retinal arteriolar diameter induced by intravitreal administration of NOR3, an NO donor. Retinal arteriolar diameters were measured using ocular fundus images captured with a high-resolution digital camera in vivo. The increase in the retinal arteriolar diameter induced by intravitreal injection of NOR3 was significantly suppressed by intravitreal pretreatment with indomethacin and PF-04418948, but not by CAY10441. The dose of PF-04418948 and CAY10441 injected intravitreally in the present study significantly reduced the increase in the retinal arteriolar diameter induced by prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2), respectively. These results suggest that activation of the arachidonic acid cascade and subsequent stimulation of prostanoid EP2 receptors are involved in rat retinal vasodilatory responses evoked by NO-induced glial cell stimulation. Therefore, glial cell-derived PGE2, similar to EETs, may play an important role in retinal vasodilatory mechanisms.
Assuntos
Prostaglandinas , Vasodilatação , Animais , Ratos , Masculino , Óxido Nítrico/farmacologia , Epoprostenol/farmacologia , Ratos Wistar , Neuroglia , Retina , Dinoprostona , Inibidores de Ciclo-Oxigenase/farmacologia , Indometacina , Eicosanoides/farmacologia , Ácidos Araquidônicos/farmacologiaRESUMO
Colorectal cancer ranks as the third most lethal cancer worldwide, resulting in over 1 million cases and 900â¯000 deaths per year. According to population-based studies, administration of long-term non-steroidal anti-inflammatory drugs (NSAIDs) was proven to reduce the risk of a subject developing colorectal cancer. In the present study, the anti-cancer activity of two different NSAIDs, sulindac- (Pc-1) or diclofenac-substituted (Pc-2) asymmetric silicon phthalocyanine derivatives, was evaluated in four different colorectal cancer cell lines bearing various carcinogenic mutations. In this context, the IC50 values of each compound after 24 and 48 h were determined on HCT116, SW480, LoVo, and HT29 cell lines, and the effects of the compounds on programmed cell death pathways apoptosis and autophagy, their impact on cell cycle progression, and the effect of NSAID moieties they bear on COX-1 and COX-2 proteins were analyzed. In addition, the photophysical and photochemical properties of a synthesized Pc derivative bearing axial diclofenac and triethylene glycol groups (Pc-2) have been investigated, and the compound has been characterized by using different analytical techniques. Our results indicated that both compounds inhibit COX protein expression levels, activate apoptosis in all cell lines, and lead to cell cycle arrest in the G2/M phase, depending on the COX expression profiles of the cell lines, indicating that NSAIDs can be coupled with Pc's to achieve increased anti-cancer activity, especially on cancer cells known to have high COX activity.
Assuntos
Neoplasias Colorretais , Inibidores de Ciclo-Oxigenase , Anti-Inflamatórios não Esteroides/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Diclofenaco/farmacologia , Células HT29 , Humanos , Indóis , Compostos de Organossilício , Silício/uso terapêuticoRESUMO
AIM: This study aimed to investigate the effects of Rosa damascena Mill. essential oil on the vascular activity of rat thoracic aorta and its underlying mechanisms. METHODS: Experiments were performed using the isolated tissue bath model and Wistar rats. 0.1, 1, 10, and 100 µg/mL concentrations of rose oil were administered in all groups. To determine the vasoactive effects of rose oil, submaximal contractions were conducted by applying 10-5 M PE and 45 mM KCl separately in both endothelium-intact and -denuded segments. Time-matched distilled water groups were formed for control. To evaluate the role of endothelium-derived vasodilative factors, endothelium-intact segments were incubated with nitric oxide synthase inhibitor L-NAME, soluble guanylate cyclase inhibitor ODQ, and a non-selective cyclooxygenase inhibitor INDO. The statistical significance level was considered as p < 0.05. RESULTS: 1, 10, and 100 µg/mL rose oil doses led to vasorelaxation in thoracic aortas precontracted with 10-5 M PE (p: 0.029, p: 0.000, p: 0.000, respectively). In precontracted thoracic aortas with 45 mM KCl, the significant effect of rose oil persisted, albeit slightly diminished. When the endothelium was removed, the relaxant effect of rose oil was partially reduced, but still significant (p: 0.035, p: 0.028, p: 0.000, respectively). Preincubations with L-NAME and ODQ significantly attenuated rose oil-induced relaxation of endothelium-intact aortas precontracted with 10-5 M PE. In contrast, preincubation INDO did not modulate rose oil-induced relaxation. CONCLUSION: In conclusion, it was shown for the first time that rose oil can significantly mediate vasorelaxation in both PE and KCl precontracted rat thoracic aortas. Rose oil induced vasodilation with or without endothelium in a concentration-dependent manner. It was also shown that rose oil-induced vasorelaxant effects were reduced by L-NAME or ODQ pretreatment, but not modulated by INDO. These results demonstrated that rose oil-induced endothelium-dependent vasodilation is mediated by the NO-cGMP-dependent pathway.
Assuntos
Óleos Voláteis , Rosa , Animais , Aorta Torácica/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Endotélio Vascular , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Ratos , Ratos Wistar , Rosa/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Guanilil Ciclase Solúvel/farmacologia , Vasodilatação , Vasodilatadores/farmacologiaRESUMO
In an endeavor to identify potent anti-inflammatory agents, new thiosemicarbazones (TSCs) incorporated into a diaryl ether framework (2a-2l) were prepared and screened for their in vitro inhibitory effects on cyclooxygenases (COXs). 4-[4-(Piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-cyanophenoxy)benzylidene]thiosemicarbazide (2c) was the most potent and selective COX-1 inhibitor in this series, with an IC50 value of 1.89 ± 0.04 µM. On the other hand, 4-[4-(piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-nitrophenoxy)benzylidene]thiosemicarbazide (2b) was identified as a nonselective COX inhibitor (COX-1 IC50 = 13.44 ± 0.65 µM, COX-2 IC50 = 12.60 ± 0.78 µM). Based on molecular docking studies, the diaryl ether and the TSC groups serve as crucial moieties for interactions with pivotal amino acid residues in the active sites of COXs. According to MTT test, compounds 2b and 2c showed low cytotoxic activity toward NIH/3T3 cells. Their in vivo anti-inflammatory and antioxidant potencies were also assessed using the lipopolysaccharide-induced sepsis model. Compounds 2b and 2c diminished high-sensitivity C-reactive protein, myeloperoxidase, nitric oxide, and malondialdehyde levels. Both compounds also caused a significant decrease in aspartate aminotransferase levels as well as alanine aminotransferase levels. In silico pharmacokinetic studies suggest that compounds 2b and 2c possess favorable drug-likeness and oral bioavailability. It can be concluded that these compounds may act as orally bioavailable anti-inflammatory and antioxidant agents.
Assuntos
Tiossemicarbazonas , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Éteres , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/farmacologiaRESUMO
Hoya parasitica (Wall.) is extensively used in traditional medicine for the treatment of various diseases including rheumatism, kidney problems, jaundice, urinary tract disorders, fever, and pain. The present study was designed to explore new lead compound(s) to alleviate pain, pyresis, and diarrhea from methanol, ethyl acetate, and n-hexane extracts of H. parasitica (Wall.) leaves (MHP, EAHP, and NHP, respectively). Analgesic activity of the extracts was assessed through acetic acid induced writhing, tail immersion, and hot plate tests while brewer's yeast-induced pyrexia test was employed for the assessment of antipyretic activity. Besides, castor oil and magnesium sulfate induced diarrheal tests were utilized for the evaluation of antidiarrheal properties. Moreover, in silico study of the isolated compounds was undertaken to seek out best-fit phytoconstituent(s) against cyclooxygenase enzymes. MHP revealed substantial antioxidant activities in different in vitro assays compared to EAHP and NHP. In the acetic acid-induced writhing test, among the extracts, MHP (400 mg/kg) revealed maximum 74.15 ± 1% inhibition of writhing comparable to that of standard (85.77 ± 1.39%). Again, in tail immersion and hot plate tests, higher doses of all the test samples exhibited a significant increase of latent period in a time-dependent manner. In brewer yeast-induced pyrexia test, at 3rd and 4th hour of treatment, significant (P < 0.05) antipyretic action was found in the test samples. In both castor oil and magnesium induced diarrheal tests, MHP at 400 mg/kg showed the highest percent inhibition of diarrhea (68.62 ± 4.74 and 64.99 ± 2.90, respectively). Moreover, molecular docking analysis corroborated the results of the present study. The findings of the present study supported the traditional uses of this plant for the alleviation of pain and fever. Furthermore, hoyasterone was found to be the most effective lead compound as cyclooxygenase enzyme inhibitor.
Assuntos
Antipiréticos , Inibidores de Ciclo-Oxigenase , Extratos Vegetais , Analgésicos/farmacologia , Animais , Antipiréticos/farmacologia , Óleo de Rícino/efeitos adversos , Inibidores de Ciclo-Oxigenase/farmacologia , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Febre , Simulação de Acoplamento Molecular , Dor/tratamento farmacológico , Extratos Vegetais/farmacologia , Prostaglandina-Endoperóxido SintasesRESUMO
Celecoxib is among the more potent and better clinically studied, nonsteroidal anti-inflammatory drugs (NSAID) for use as a chemoprevention agent for colorectal cancer. Its use is associated with a 40% to 50% response rate for reduction in adenomatous polyps. However, rare serious cardiovascular effects and even death with celecoxib and other NSAIDs make it important to understand why some patients respond and others do not. Celecoxib is a selective inhibitor of COX-2. Its anticancer mechanism has largely been attributed to the inhibition of COX-2. Celecoxib also shows activity to induce apoptosis in cancer cells not expressing COX-2. This includes activity to upregulate 15-lipoxygenase-1 (15-LOX-1) independent of COX-2 and increase the synthesis of 13-S-hydroxyoctadecadienoic acid (13-S-HODE) from linoleic acid (LA) to downregulate PPAR-δ and induce apoptosis in colorectal cancer models. In examining the effect of celecoxib on 15-LOX-1 for reducing adenomatous polyps in patients with familial adenomatous polyposis (FAP), Yang and colleagues point out the potential importance of drug bioavailability in blood, normal, and neoplastic colorectal tissue in patient response. See related article, p. 217.
Assuntos
Inibidores de Ciclo-Oxigenase , Sulfonamidas , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Colo/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêuticoRESUMO
INTRODUCTION: Ischemia-reperfusion injury (IRI) is the inexplicable aggravation of cellular dysfunction that results in blood flow restoration to previously ischemic tissues. COX mediates the oxidative conversion of AA to various prostaglandins and thromboxanes, which are involved in various physiological and pathological processes. In the pathophysiology of I/R injuries, COX has been found to play an important role. I/R injuries affect most vital organs and are characterized by inflammation, oxidative stress, cell death, and apoptosis, leading to morbidity and mortality. MATERIALS AND METHODS: A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to understand the Nature and mechanistic interventions of the Cyclooxygenase modulations in ischemic injury. Here, we have discussed the COX Physiology and downstream signalling pathways modulated by COX, e.g., Camp Pathway, Peroxisome Proliferator-Activated Receptor Activity, NF-kB Signalling, PI3K/Akt Signalling in ischemic injury. CONCLUSION: This review will discuss the various COX types, specifically COX-1 and COX-2, which are involved in developing I/R injury in organs such as the brain, spinal cord, heart, kidney, liver, and intestine.
Assuntos
Inibidores de Ciclo-Oxigenase , Traumatismo por Reperfusão , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Fosfatidilinositol 3-Quinases , Prostaglandinas , Traumatismo por Reperfusão/metabolismoRESUMO
BACKGROUND: The incidence of thyroid cancer, a most common tumor in the endocrine system, has increased in recent years. A growing number of studies have focused on the molecular mechanisms of thyroid cancer subtypes, aiming to identify effective therapeutic targets. Endocytosis is of vital significance in the malignant development of tumors, although its involvement in thyroid cancer has been rarely reported. METHODS: HIP1R expressions in thyroid cancer from the TCGA database were analyzed by UALCAN software. Thyroid epithelial and cancer cell lines were cultured in vitro. Western blotting and quantitative PCR were used to analyze protein and mRNA levels, respectively. Cell viability was measured by CCK-8 assay. Immunofluorescence staining indicated protein distribution in cell. Co-immunoprecipitation was used to study protein-protein interaction. Immunohistochemical staining was used to analyze protein expression in clinical tissues. Differences between groups were compared using the two-tailed Student's t test, and those among three or more groups were compared by one-way or two-way ANOVA. RESULTS: In the present study, HIP1R (Huntingtin Interacting Protein 1 Related) was found upregulated in thyroid cancer tissues and cell lines compared with that in the controls, while knockdown of HIP1R significantly inhibited the proliferation of thyroid cancer cells. Since HIP1R is essential for the clathrin-dependent endocytic process, we thereafter explored the effect of HIP1R on the endocytosis of thyroid cancer cells. Interestingly, knockdown of HIP1R significantly reduced the number of clathrin-coated pits (CCPs) in thyroid cancer cells. In addition, the interaction between HIP1R and PTEN (phosphatase and tensin homolog) was identified in thyroid cancer cells. Knockdown of HIP1R downregulated intracellular PTEN in thyroid cancer cells, but upregulated membrane-binding PTEN. Notably, flurbiprofen, a commonly used analgesic, significantly inhibited the proliferation of thyroid cancer cells and interfered with the interaction between HIP1R and PTEN, thereby enhancing the binding of PTEN to cell membrane. However, the proliferation inhibitory effect of flurbiprofen was attenuated when knocking down HIP1R or PTEN. CONCLUSIONS: Upregulated HIP1R in thyroid cancer cells promotes cell proliferation and mediates the endocytosis of PTEN. Flurbiprofen may exert an anti-tumor effect on thyroid cancer by blocking the interaction between HIP1R and PTEN.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Flurbiprofeno/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/genética , RNA Neoplásico/genética , Neoplasias da Glândula Tireoide/genética , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proliferação de Células , Células Cultivadas , Inibidores de Ciclo-Oxigenase/farmacologia , Endocitose/efeitos dos fármacos , Endocitose/genética , Humanos , Proteínas dos Microfilamentos/biossíntese , Transdução de Sinais , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologiaRESUMO
Our earlier studies showed that coupling nonsteroidal anti-inflammatory drugs (NSAIDs) with oleanolic acid derivatives increased their anti-inflammatory activity in human hepatoma cells. The aim of this study was to evaluate their effect on the signaling pathways involved in inflammation processes in human pancreatic cancer (PC) cells. Cultured PSN-1 cells were exposed for 24 h (30 µM) to OA oxime (OAO) derivatives substituted with benzyl or morpholide groups and their conjugates with indomethacin (IND) or diclofenac (DCL). The activation of NF-κB and Nrf2 was assessed by the evaluation of the translocation of their active forms into the nucleus and their binding to specific DNA sequences via the ELISA assay. The expression of NF-κB and Nrf2 target genes was evaluated by R-T PCR and Western blot analysis. The conjugation of IND or DCL with OAO derivatives increased cytotoxicity and their effect on the tested signaling pathways. The most effective compound was the DCL hybrid with OAO morpholide (4d). This compound significantly reduced the activation and expression of NF-κB and enhanced the activation and expression of Nrf2. Increased expression of Nrf2 target genes led to reduced ROS production. Moreover, MAPKs and the related pathways were also affected. Therefore, conjugate 4d deserves more comprehensive studies as a potential PC therapeutic agent.
Assuntos
Biomarcadores Tumorais/metabolismo , Diclofenaco/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indometacina/farmacologia , Ácido Oleanólico/química , Oximas/química , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Biomarcadores Tumorais/genética , Ciclo Celular , Proliferação de Células , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Diclofenaco/química , Humanos , Indometacina/química , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células Tumorais CultivadasRESUMO
Flavonoids are compounds with a benzopyranic structure that exhibits multiple pharmacological activities. They are known for their venotonic activity, but their mechanism of action remains unclear. It is thought that, as this mechanism is mediated by prostaglandins, these compounds may interfere with the arachidonic acid (AA) cascade. These assays are designed to measure the antiplatelet aggregation capacity of quercetin, rutin, diosmetin, diosmin, and hidrosmin, as well as to evaluate a potential structure-activity ratio. In this paper, several studies on platelet aggregation at different concentrations (from 0.33 mM to 1.5 mM) of different flavone compounds are conducted, measuring platelet aggregation by impedance aggregometry, and the cyclooxygenase (COX) activity by metabolites generated, including the activity of the pure recombinant enzyme in the presence of these polyphenols. The results obtained showed that quercetin and diosmetin aglycones have a greater antiplatelet effect and inhibit the COX enzyme activity to a greater extent than their heterosides; however, the fact that greater inhibition of the pure recombinant enzyme was achieved by heterosides suggests that these compounds may have difficulty in crossing biological membranes. In any case, in view of the results obtained, it can be concluded that flavonoids could be useful as coadjuvants in the treatment of cardiovascular pathologies.
Assuntos
Inibidores de Ciclo-Oxigenase/farmacologia , Flavonoides/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Adulto , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/química , Feminino , Flavonoides/química , Humanos , Masculino , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/química , Adulto JovemRESUMO
Establishing structure-activity relationships (SAR) for privileged pharmacophores, such as the indole scaffold, is a key step in the early stages of drug discovery. Herein, we report the synthesis and preliminary SAR studies on substituted 6-hydroxyindole-7-carboxylates as a tunable framework for COX inhibition and anti-cancer activity. To facilitate the SAR discovery, a modular synthetic methodology was employed which enabled the synthesis of the substituted indoles. From the synthesized compounds, five displayed COX-1 inhibition activity in a colorimetric assay with their intracellular activity further confirmed by a cell-based target validation assay. Following molecular docking analyses, key interactions between the active compounds and the COX enzymes were elucidated. In addition to the identified COX inhibitors, two compounds showed selective cytotoxicity against Hep-G2, MCF-7, and LnCaP. The mechanism of cell death was investigated and found to include induction of Caspase-3 activation and cleavage, down-regulation of anti-apoptotic proteins Bcl-xL and Bcl-2, and upregulation of Bax. Finally, two representative compounds were confirmed to induce cell cycle arrest at the G1/G0 stage. In summary, the 6-hydroxyindole-7-carboxylate framework shows promising versatility as a template for the discovery of anti-inflammation or anti-cancer agents, given the evidence of its COX inhibitory and anti-cancer activities herein presented.
Assuntos
Antineoplásicos/farmacologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
In this study, 5 sterols were isolated and purified from Laminaria japonica, commonly known as edible brown seaweed, and their structures were identified based on detailed chemical methods and spectroscopic analyses. Spectroscopic analyses characterized 5 sterols as 29-Hydroperoxy-stigmasta-5,24(28)-dien-3ß-ol, saringosterol (24-vinyl-cholest-5-ene-3ß,24-diol), 24-methylenecholesterol, fucosterol (stigmasta-5,24-diene-3ß-ol), and 24-Hydroperoxy-24-vinyl-cholesterol. The bioactivities of these sterols were tested using lipid peroxidation (LPO) and cyclooxygenase (COX-1 and -2) enzyme inhibitory assays. Fucosterol exhibited the highest COX-1 and -2 enzyme inhibitory activities at 59 and 47%, respectively. Saringosterol, 24-methylenecholesterol and fucosterol showed higher LPO inhibitory activity at >50% than the other compounds. In addition, the results of molecular docking revealed that the 5 sterols were located in different pocket of COX-1 and -2 and fucosterol with tetracyclic skeletons and olefin methine achieved the highest binding energy (-7.85 and -9.02 kcal/mol) through hydrophobic interactions and hydrogen bond. Our results confirm the presence of 5 sterols in L. japonica and its significant anti-inflammatory and antioxidant activity.
Assuntos
Colesterol/análogos & derivados , Inibidores de Ciclo-Oxigenase/farmacologia , Laminaria/química , Peroxidação de Lipídeos/efeitos dos fármacos , Esteróis/farmacologia , Colesterol/química , Colesterol/farmacologia , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Conformação Proteica , Esteróis/química , Estigmasterol/análogos & derivados , Estigmasterol/química , Estigmasterol/farmacologiaRESUMO
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.