Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 935
Filtrar
2.
Commun Biol ; 4(1): 93, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33473151

RESUMO

Emerging outbreak of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is a major threat to public health. The morbidity is increasing due to lack of SARS-CoV-2 specific drugs. Herein, we have identified potential drugs that target the 3-chymotrypsin like protease (3CLpro), the main protease that is pivotal for the replication of SARS-CoV-2. Computational molecular modeling was used to screen 3987 FDA approved drugs, and 47 drugs were selected to study their inhibitory effects on SARS-CoV-2 specific 3CLpro enzyme in vitro. Our results indicate that boceprevir, ombitasvir, paritaprevir, tipranavir, ivermectin, and micafungin exhibited inhibitory effect towards 3CLpro enzymatic activity. The 100 ns molecular dynamics simulation studies showed that ivermectin may require homodimeric form of 3CLpro enzyme for its inhibitory activity. In summary, these molecules could be useful to develop highly specific therapeutically viable drugs to inhibit the SARS-CoV-2 replication either alone or in combination with drugs specific for other SARS-CoV-2 viral targets.


Assuntos
Antivirais/farmacologia , /antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Replicação Viral/efeitos dos fármacos , Antivirais/química , /química , Inibidores de Cisteína Proteinase/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
3.
Molecules ; 25(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316996

RESUMO

SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new strain of Coronaviridae. In the closing 2019 to early 2020 months, the virus caused a global pandemic of COVID-19 disease. We performed a virtual screening study in order to identify potential inhibitors of the SARS-CoV-2 main viral protease (3CLpro or Mpro). For this purpose, we developed a novel approach using ensemble docking high-throughput virtual screening directly coupled with subsequent Linear Interaction Energy (LIE) calculations to maximize the conformational space sampling and to assess the binding affinity of identified inhibitors. A large database of small commercial compounds was prepared, and top-scoring hits were identified with two compounds singled out, namely 1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-ethanone and [({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)formaldehyde. Moreover, we obtained a favorable binding free energy of the identified compounds, and using contact analysis we confirmed their stable binding modes in the 3CLpro active site. These compounds will facilitate further 3CLpro inhibitor design.


Assuntos
Inibidores de Cisteína Proteinase/química , Simulação de Acoplamento Molecular , /enzimologia , Sítios de Ligação , /química
4.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321862

RESUMO

Several derivatives of benzoic acid and semisynthetic alkyl gallates were investigated by an in silico approach to evaluate their potential antiviral activity against SARS-CoV-2 main protease. Molecular docking studies were used to predict their binding affinity and interactions with amino acids residues from the active binding site of SARS-CoV-2 main protease, compared to boceprevir. Deep structural insights and quantum chemical reactivity analysis according to Koopmans' theorem, as a result of density functional theory (DFT) computations, are reported. Additionally, drug-likeness assessment in terms of Lipinski's and Weber's rules for pharmaceutical candidates, is provided. The outcomes of docking and key molecular descriptors and properties were forward analyzed by the statistical approach of principal component analysis (PCA) to identify the degree of their correlation. The obtained results suggest two promising candidates for future drug development to fight against the coronavirus infection.


Assuntos
Benzoatos/química , Inibidores de Cisteína Proteinase/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , /enzimologia , /antagonistas & inibidores , /química
5.
BMC Res Notes ; 13(1): 527, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176880

RESUMO

OBJECTIVES: The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions. RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Cloroquina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/química , Amidas/farmacologia , Antivirais/química , Benzaldeídos/química , Cloroquina/química , Simulação por Computador , Cisteína Endopeptidases , Inibidores de Cisteína Proteinase/química , Humanos , Hidroxicloroquina/química , Hidroxicloroquina/farmacologia , Lauratos/química , Lauratos/farmacologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Monoglicerídeos/química , Monoglicerídeos/farmacologia , Pirazinas/química , Pirazinas/farmacologia , Relação Estrutura-Atividade , Tetrodotoxina/química , Tetrodotoxina/farmacologia
6.
Antiviral Res ; 182: 104924, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32896566

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay. Compared with a traditional FRET readout, the label-free SAMDI-MS assay offers greater sensitivity and eliminates false positive inhibition from compound interference with the optical signal. The SAMDI-MS assay was optimized and validated with known inhibitors of coronavirus 3CLpro such as GC376 (IC50 = 0.060 µM), calpain inhibitors II and XII (IC50 ~20-25 µM). The FDA-approved drugs shikonin, disulfiram, and ebselen did not inhibit SARS-CoV-2 3CLpro activity in the SAMDI-MS assay under physiologically relevant reducing conditions. The three drugs did not directly inhibit human ß-coronavirus OC-43 or SARS-CoV-2 in vitro, but instead induced cell death. In conclusion, the SAMDI-MS 3CLpro assay, combined with antiviral and cytotoxic assessment, provides a robust platform to evaluate antiviral agents directed against SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Proteínas não Estruturais Virais/antagonistas & inibidores , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Glicoproteínas/farmacologia , Células HeLa , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
7.
J Phys Chem Lett ; 11(15): 6262-6265, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32658489

RESUMO

The question of whether COVID protease (SARS-CoV-2 Mpro) can be blocked by inhibitors has been examined, with a particularly successful performance exhibited by α-ketoamide derivative substrates like 13b of Hilgenfeld and co-workers (Zhang, L., et al. Science 2020, 368, 409-412). After the biological characterization, here density functional theory calculations explain not only how inhibitor 13b produces a thermodynamically favorable interaction but also how to reach it kinetically. The controversial and unprovable concept of aromaticity here enjoys being the agent that rationalizes the seemingly innocent role of histidine (His41 of Mpro). It has a hydrogen bond with the hydroxyl group and is the proton carrier of the thiol of Cys145 at almost zero energy cost that favors the interaction with the inhibitor that acts as a Michael acceptor.


Assuntos
Antivirais/metabolismo , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Inibidores de Cisteína Proteinase/metabolismo , Histidina/química , Pneumonia Viral/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Betacoronavirus/enzimologia , Sítios de Ligação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Teoria da Densidade Funcional , Ligação de Hidrogênio , Cetonas/química , Cetonas/metabolismo , Modelos Químicos , Pandemias , Ligação Proteica , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
8.
ACS Infect Dis ; 6(7): 1548-1552, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32388976

RESUMO

Novel beta-coronavirus SARS-CoV-2 is the pathogenic agent responsible for coronavirus disease-2019 (COVID-19), a globally pandemic infectious disease. Due to its high virulence and the absence of immunity among the general population, SARS-CoV-2 has quickly spread to all countries. This pandemic highlights the urgent unmet need to expand and focus our research tools on what are considered "neglected infectious diseases" and to prepare for future inevitable pandemics. This global emergency has generated unprecedented momentum and scientific efforts around the globe unifying scientists from academia, government and the pharmaceutical industry to accelerate the discovery of vaccines and treatments. Herein, we shed light on the virus structure and life cycle and the potential therapeutic targets in SARS-CoV-2 and briefly refer to both active and passive immunization modalities, drug repurposing focused on speed to market, and novel agents against specific viral targets as therapeutic interventions for COVID-19.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Doenças Negligenciadas/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Animais , Betacoronavirus/química , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Camundongos , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , RNA Viral/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação , Vacinas Virais/imunologia , Vacinas Virais/uso terapêutico , Replicação Viral/efeitos dos fármacos
9.
Eur J Med Chem ; 193: 112218, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32208223

RESUMO

Cathepsin X is a cysteine carboxypeptidase that is involved in various physiological and pathological processes. In particular, highly elevated expression and activity of cathepsin X has been observed in cancers and neurodegenerative diseases. Previously, we identified compound Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) as a potent and specific reversible cathepsin X inhibitor. Here, we have explored the effects of chemical variations to Z9 of either benzodioxine or triazol moieties, and the importance of the central ketomethylenethio linker. The ketomethylenethio linker was crucial for cathepsin X inhibition, whereas changes of the triazole heterocycle did not alter the inhibitory potencies to a greater extent. Replacement of benzodioxine moiety with substituted benzenes reduced cathepsin X inhibition. Overall, several synthesized compounds showed similar or improved inhibitory potencies against cathepsin X compared to Z9, with IC50 values of 7.1 µM-13.6 µM. Additionally, 25 inhibited prostate cancer cell migration by 21%, which is under the control of cathepsin X.


Assuntos
Antineoplásicos/farmacologia , Carboxipeptidases/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Dioxanos/farmacologia , Triazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Carboxipeptidases/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Dioxanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Células PC-3 , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Triazóis/química , Células Tumorais Cultivadas
10.
Molecules ; 25(4)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32069913

RESUMO

This work presents the synthesis of the novel covalent inhibitor of cysteine proteases where epoxide has been replaced by the iodoacetyl functional group. The molecule, similar in action to E-64 and DCG-04, the commonly applied inhibitors, is additionally biotinylated and contains tyrosyl iodination sites. The Fmoc solid phase synthesis has been applied. Conjugation of iodoacetic acid with the peptide was optimized by testing different conjugation agents. The purity of the final product was verified by mass spectrometry and its bioactivity was tested by incubation with a model cysteine protease-staphopain C. Finally, it was shown that the synthesized inhibitor binds to the protein at the ratio of 1:1. More detailed analysis by means of tandem mass spectrometry proved that the inhibitor binds to the cysteine present in the active site of the enzyme.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/síntese química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/síntese química , Ácido Iodoacético/química , Biotinilação , Leucina/análogos & derivados , Leucina/química , Estrutura Molecular , Técnicas de Síntese em Fase Sólida/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
11.
Sci China Life Sci ; 63(7): 1016-1025, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32048162

RESUMO

The Plasmodium falciparum cysteine protease falcipain-2 (FP-2) is an attractive antimalarial target. Here, we discovered that the natural compound NP1024 is a nonpeptidic inhibitor of FP-2 with an IC50 value of 0.44 µmol L-1. The most exciting finding is that both in vitro and in vivo, NP1024 directly targets FP-2 in malaria parasite-infected erythrocytes as a natural fluorescent probe, thereby paving the way for an integration of malaria diagnosis and treatment.


Assuntos
Antimaláricos/química , Produtos Biológicos/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Corantes Fluorescentes/química , Malária/diagnóstico por imagem , Malária/tratamento farmacológico , Sequência de Aminoácidos , Animais , Antimaláricos/metabolismo , Sítios de Ligação , Produtos Biológicos/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Modelos Animais de Doenças , Eritrócitos/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Masculino , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Imagem Óptica , Plasmodium falciparum/metabolismo , Ligação Proteica , Conformação Proteica
12.
PLoS One ; 15(1): e0227341, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923258

RESUMO

Clan CA cysteine proteases, also known as papain-like proteases, play important roles throughout the malaria parasite life cycle and are therefore potential drug targets to treat this disease and prevent its transmission. In order to study the biological function of these proteases and to chemically validate some of them as viable drug targets, highly specific inhibitors need to be developed. This is especially challenging given the large number of clan CA proteases present in Plasmodium species (ten in Plasmodium falciparum), and the difficulty of designing selective inhibitors that do not cross-react with other members of the same family. Additionally, any efforts to develop antimalarial drugs targeting these proteases will also have to take into account potential off-target effects against the 11 human cysteine cathepsins. Activity-based protein profiling has been a very useful tool to determine the specificity of inhibitors against all members of an enzyme family. However, current clan CA proteases broad-spectrum activity-based probes either target endopeptidases or dipeptidyl aminopeptidases, but not both subfamilies efficiently. In this study, we present a new series of dipeptydic vinyl sulfone probes containing a free N-terminal tryptophan and a fluorophore at the P1 position that are able to label both subfamilies efficiently, both in Plasmodium falciparum and in mammalian cells, thus making them better broad-spectrum activity-based probes. We also show that some of these probes are cell permeable and can therefore be used to determine the specificity of inhibitors in living cells. Interestingly, we show that the choice of fluorophore greatly influences the specificity of the probes as well as their cell permeability.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/química , Malária/enzimologia , Animais , Antimaláricos/química , Permeabilidade da Membrana Celular , Humanos , Malária/diagnóstico por imagem , Malária/tratamento farmacológico , Sondas Moleculares/química , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Sulfonas , Triptofano
13.
Biochem Pharmacol ; 174: 113808, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930961

RESUMO

Separase, a sister chromatid cohesion-resolving enzyme, is an oncogene and overexpressed in many human cancers. Sepin-1 (2,2-dimethyl-5-nitro-2H-benzimidazole-1,3-dioxide) is a potent separase inhibitor that impedes cancer cell growth, cell migration, and wound healing, suggesting that Sepin-1 possesses a great potential to target separase-overexpressing tumors. As a part of the IND-enabling studies to bring Sepin-1 to clinic, herein we report the results from a 28-day repeat-dose pharmacokinetic study of Sepin-1 in rats. Sepin-1 was intravenously administered to Sprague-Dawley rats once daily for 28 days at three different (5, 10, and 20 mg/kg) doses. Blood samples were collected after administration of doses on days 1 and 28. Sepin-1 is unstable and isomerizes in basic solutions, but it is stable in acidic buffer such as citrate-buffered saline (pH 4.0). UHPLC-MS analysis indicated Sepin-1 was rapidly metabolized in vivo. One of the major metabolites was an amine adduct of 2,2-dimethyl-5-nitro-2H-benzimidazole (named Sepin-1.55). The concentration of Sepin-1.55 in blood samples was Sepin-1 dose-dependent and used for pharmacokinetic analysis of Sepin-1. Tmax was approximately 5-15 min. The data suggest that no Sepin-1 accumulation occurred from daily repeat dosing and similar exposures on the first and final day of dosing. Data also suggest a gender difference, namely that female rats have more exposure and slower clearance than male rats. The data support that Sepin-1 is a potential drug candidate that can be further developed to treat Separase-overexpressing human tumors.


Assuntos
Benzimidazóis , Inibidores de Cisteína Proteinase , Separase/antagonistas & inibidores , Animais , Benzimidazóis/química , Benzimidazóis/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacocinética , Estabilidade de Medicamentos , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Separase/sangue
14.
Curr Issues Mol Biol ; 35: 17-34, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31422931

RESUMO

SUMOylation and DeSUMOylation are reversible protein post-translational modification (PTM) processes involving small ubiquitin-like modifier (SUMO) proteins. These processes have indispensable roles in various cellular processes, such as subcellular localization, gene transcription, and DNA replication and repair. Over the past decade, increasing attention has been given to SUMO-related pathways as potential therapeutic targets. The Sentrin/SUMO-specific protease (SENP), which is responsible for deSUMOylation, has been proposed as a potential therapeutic target in the treatment of cancers and cardiac disorders. Unfortunately, no SENP inhibitor has yet reached clinical trials. In this review, we focus on advances in the development of SENP inhibitors in the past decade.


Assuntos
Doenças Cardiovasculares/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Neoplasias/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Animais , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/genética , Pontos de Checagem do Ciclo Celular/genética , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Domínios Proteicos/genética , Processamento de Proteína Pós-Traducional/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/química , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
15.
Chemistry ; 26(9): 2002-2012, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31692123

RESUMO

In this work a computational study of the mechanism of inhibition of cruzain, rhodesain, and cathepsin L cysteine proteases by the dipeptidyl nitroalkene Cbz-Phe-Ala-CH=CH-NO2 has been carried out by means of molecular dynamics simulations with hybrid QM/MM potentials. The free-energy surfaces confirmed that the inhibition takes place by the formation of a covalent bond between the protein and the ß-carbon atom of the inhibitor. According to the results, the tested inhibitor should be a much more efficient inhibitor of cruzain than of rhodesain, and little activity would be expected against cathepsin L, in total correspondence with the available experimental data. The origin of these differences may lie in the different stabilizing electrostatic interactions established between the inhibitor and the residues of the active site and S2 pocket of these enzymes. These results may be useful for the rational design of new dipeptidyl nitroalkenes with higher and more selective inhibitory activity against cysteine proteases.


Assuntos
Alcenos/química , Catepsina L/metabolismo , Inibidores de Cisteína Proteinase/química , Simulação de Dinâmica Molecular , Teoria Quântica , Alcenos/metabolismo , Sítios de Ligação , Domínio Catalítico , Catepsina L/antagonistas & inibidores , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Dipeptídeos/química , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Termodinâmica
16.
ACS Chem Biol ; 14(12): 2833-2840, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31750642

RESUMO

Acquired resistance to apoptotic agents is a long-standing challenge in cancer treatment. Cathepsin B (CTSB) is an enzyme which, among many essential functions, promotes apoptosis during cellular stress through regulation of intracellular proteolytic networks on the minute time scale. Recent data indicate that CTSB inhibition may be a promising method to steer cells away from apoptotic death toward necrosis, a mechanism of cell death that can overcome resistance to apoptotic agents, stimulate an immune response and promote antitumor immunity. Unfortunately, rapid and selective intracellular inactivation of CTSB has not been possible. However, here we report on the synthesis and characterization of photochemical and biological properties of BODIPY-caged inhibitors of CTSB that are cell permeable, highly selective and activated rapidly upon exposure to visible light. Intriguingly, these compounds display tunable photophysical and biological properties based on substituents bound directly to boron. Me2BODIPY-caged compound 8 displays the dual-action capability of light-accelerated CTSB inhibition and singlet oxygen production from a singular molecular entity. The dual-action capacity of 8 leads to a rapid necrotic response in MDA-MB-231 triple negative breast cancer cells with high phototherapeutic indexes (>30) and selectivity vs noncancerous cells that neither CTSB inhibition nor photosensitization gives alone. Our work confirms that singlet oxygen production and CTSB inactivation is highly synergistic and a promising method for killing cancer cells. Furthermore, this ability to trigger intracellular inactivation of CTSB with light provides researchers with a powerful photochemical tool for probing biochemical processes on short time scales.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Boro/química , Catepsina B/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Luz , Neoplasias/patologia , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/química , Humanos , Estresse Oxidativo
17.
Comb Chem High Throughput Screen ; 22(7): 432-444, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560284

RESUMO

The pathophysiological roles of caspases have made them attractive targets in the treatment and amelioration of neurologic diseases. In normal conditions, the expression of caspases is regulated in the brain, while at the onset of neurodegeneration, such as in Alzheimer's disease, they are typically overexpressed. Till date, several therapeutic efforts that include the use of small endogenous binders have been put forward to curtail dysfunctionalities that drive aberrant death in neuronal cells. Caspases are highly homologous, both in structure and in sequence, which leaves us with the question: is it possible to specifically and individually target caspases, while multiple therapeutic attempts to achieve selective targeting have failed! Based on antecedent events, the use of Computer-Aided Drug Design (CADD) methods has significantly contributed to the design of small molecule inhibitors, especially with selective target ability and reduced off-target therapeutic effects. Interestingly, we found out that there still exists an enormous room for the integration of structure/ligand-based drug design techniques towards the development of highly specific reversible and irreversible caspase inhibitors. Therefore, in this review, we highlight drug discovery approaches that have been directed towards caspase inhibition in addition to an insightful focus on applicable CADD techniques for achieving selective targeting in caspase research.


Assuntos
Caspases/metabolismo , Desenho Assistido por Computador , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Inibidores de Cisteína Proteinase/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares
18.
J Med Chem ; 62(20): 9026-9044, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31539239

RESUMO

Gallinamide A, originally isolated with a modest antimalarial activity, was subsequently reisolated and characterized as a potent, selective, and irreversible inhibitor of the human cysteine protease cathepsin L. Molecular docking identified potential modifications to improve binding, which were synthesized as a suite of analogs. Resultingly, this current study produced the most potent gallinamide analog yet tested against cathepsin L (10, Ki = 0.0937 ± 0.01 nM and kinact/Ki = 8 730 000). From a protein structure and substrate preference perspective, cruzain, an essential Trypanosoma cruzi cysteine protease, is highly homologous. Our investigations revealed that gallinamide and its analogs potently inhibit cruzain and are exquisitely toxic toward T. cruzi in the intracellular amastigote stage. The most active compound, 5, had an IC50 = 5.1 ± 1.4 nM, but was relatively inactive to both the epimastigote (insect stage) and the host cell, and thus represents a new candidate for the treatment of Chagas disease.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catepsina L/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Desenho de Fármacos , Proteínas de Protozoários/antagonistas & inibidores , Trypanosoma cruzi/enzimologia , Cisteína Endopeptidases , Humanos , Cinética , Simulação de Acoplamento Molecular
19.
Carbohydr Polym ; 224: 115146, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472868

RESUMO

Fucosylated glycosaminoglycan (FG), a glycosaminoglycan derivative containing distinct sulfated fucose (FucS) branches, displays potent anticoagulant activity by inhibiting the intrinsic tenase complex (iXase). Herein, AmFG, SvFG and HaFG from three species of sea cucumbers were isolated and depolymerized by ß-eliminative cleavage. Three series of fragments, A1-A4, S1-S4 and H1-H4, were purified from the depolymerized FGs. Based on structural analysis of these fragments, three FGs were deduced as -{→4)-[L-FucS-α(1→3)]-D-GlcA-ß(1→3)-D-GalNAc4S6S-ß(1}n-. The structures differed in sulfation types of FucS, namely, most of FucS in AmFG was Fuc3S4S, but the FucS in SvFG was Fuc2S4S, while the FucS in HaFG was Fuc3S4S, Fuc2S4S and Fuc4S. However, all FucS branches attached to C-3 of GlcA as monosaccharides. Anticoagulant and anti-iXase assays showed the octasaccharide is the minimum fragment for potent anticoagulant activity via anti-iXase irrespective of FucS types. Among FG fragments with same degree of polymerization, oligosaccharides containing Fuc2S4S had more potent anti-iXase activity.


Assuntos
Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Fucose/química , Glicosaminoglicanos/química , Glicosaminoglicanos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Anticoagulantes/química , Anticoagulantes/farmacologia , Sequência de Carboidratos , Cisteína Endopeptidases
20.
Drug Dev Res ; 80(8): 1136-1145, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31486108

RESUMO

Three natural naphthoquinones were screened to find new anti-virulence agents as inhibitors against sortase A from Staphylococcus aureus (SaSrtA) by quantifying the increase in fluorescence intensity upon substrate cleavage at various concentrations. The 5-hydroxy-1,4-naphthalenedione derivatives, juglone and plumbagin, demonstrated a potent inhibitory effect, with IC50 values of 1.78 µM, respectively, 16.71 µM. The related 2-hydroxy-1,4-naphthalenedione derivative, lawsone, demonstrated the selectivity of the chemical scaffold having no significant effect on SaSrtA. The experimental assay was reinforced by molecular docking experiments, antimicrobial, and toxicological studies. Molecular docking studies and the electrophilic character analysis suggest bonding to the enzyme active cysteine residue by a Michael addition reaction. None of the compounds had a significant effect on the concentration of total thiol proteins in the Daphnia magna toxicological assay after 24 hr exposure. Juglone and plumbagin moderately inhibited biofilm formation with no significant effect on bacterial growth of S. aureus, Enterococcus faecalis, and Staphylococcus epidermidis, indicating a selective anti-virulence profile.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores de Cisteína Proteinase/farmacologia , Naftoquinonas/farmacologia , Staphylococcus aureus/crescimento & desenvolvimento , Aminoaciltransferases/química , Antibacterianos/química , Proteínas de Bactérias/química , Biofilmes/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Concentração Inibidora 50 , Modelos Moleculares , Simulação de Acoplamento Molecular , Naftoquinonas/química , Ligação Proteica , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/enzimologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA