RESUMO
Proteasomes degrade most intracellular proteins. Several different forms of proteasomes are known. Little is known about the role of specific proteasome forms in the central nervous system (CNS). Inhibitors targeting different proteasome forms are used in clinical practice and were shown to modulate long-term potentiation (LTP) in hippocampal slices of untreated animals. Here, to address the role of non-constitutive proteasomes in hippocampal synaptic plasticity and reveal the consequences of their continuous inhibition, we studied the effect of chronic administration of the non-constitutive proteasome inhibitor ONX-0914 on the LTP induced by two different protocols: tetanic stimulation and theta-burst stimulation (TBS). Both the tetanus- and TBS-evoked potentiation contribute to the different forms of hippocampal-dependent memory and learning. Field-excitatory postsynaptic potentials (fEPSPs) in hippocampal slices from control animals and animals treated with DMSO or ONX-0914 were compared. LTP induced by the TBS was not affected by ONX-0914 administration; however, chronic injections of ONX-0914 led to a decrease in fEPSP slopes after tetanic stimulation. The observed effects correlated with differential expression of genes involved in synaptic plasticity, glutaminergic synapse, and synaptic signaling. Obtained results indicate that non-constitutive proteasomes are likely involved in the tetanus-evoked LTP, but not the LTP occurring after TBS, supporting the relevance and complexity of the role of specific proteasomes in synaptic plasticity, memory, and learning.
Assuntos
Potenciação de Longa Duração , Tétano , Ratos , Camundongos , Animais , Inibidores de Proteassoma/farmacologia , Ratos Sprague-Dawley , Complexo de Endopeptidases do Proteassoma/metabolismo , Tétano/metabolismo , Hipocampo/metabolismo , Expressão Gênica , Glutamatos/metabolismo , Estimulação ElétricaRESUMO
Introduction: Medullary thyroid cancer (MTC) is a rare thyroid tumour whose management in advanced stages is challenging, despite effective therapeutic options having expanded in recent years. Proteasome inhibitors (PrIn) have shown the ability to improve patient outcomes, including survival and quality of life, in several malignancies, due to their ability to impair cell proliferation and cause apoptosis through the inhibition of the proteasome activity. Consequently, these drugs could represent a useful tool, alone or in combination with other treatments, in MTC patients. Aim of the study: This review aims to summarize the available in vitro and in vivo data about the role of PrIn in MTC. Materials and methods: We performed an extensive search for relevant data sources, including full-published articles in international online databases (PubMed, Web of Science, Scopus), preliminary reports in selected international meeting abstract repositories, and short articles published as supplements of international meetings, by using the following terms: medullary thyroid carcinoma, proteasome inhibitors, bortezomib, carfilzomib, ixazomib, delanzomib, marizomib, oprozomib, and MG132. Additionally, we conducted with the same keywords, an in-depth search in registered clinical trials repositories. Results: Our search revealed in vitro studies in human and murine MTC cell lines, based on the use of PrIns, both alone and in combination with other anticancer drugs, and two pertinent clinical trials. Conclusion: We found a strong discrepancy between the evidence of PrIns effects in preclinical studies, and the scarcity or early interruption of clinical trials. We might speculate that difficulties in enrolling patients, as happens in other rare diseases, may have discouraged trials' implementation in favor of drugs already approved for MTC. However, given the concrete improvement in the comprehension of the molecular basis of PrIn effects in MTC, new clinical trials with accurate inclusion criteria of enrollment might be warranted, in order to ascertain whether this treatment, alone or in combination with other drugs, could indeed represent an option to enhance the therapeutic response, and to ultimately improve patients' outcome and survival.
Assuntos
Antineoplásicos , Neoplasias da Glândula Tireoide , Humanos , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Qualidade de Vida , Antineoplásicos/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/patologiaRESUMO
Among promising targets for new antimalarials is the Plasmodium falciparum proteasome. Multiple inhibitors have demonstrated potent antimalarial activity and synergy with artemisinins. Potent irreversible peptide vinyl sulfones offer synergy, minimal resistance selection, and lack of cross-resistance. These and other proteasome inhibitors have promise as components of new combination antimalarial regimens.
Assuntos
Antimaláricos , Artemisininas , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Inibidores de Proteassoma/farmacologia , Artemisininas/farmacologia , Plasmodium falciparum , Complexo de Endopeptidases do ProteassomaRESUMO
In this issue of Cell Chemical Biology, Zhan et al. report dual-pharmacophore molecules ("artezomibs"), combining an artemisinin and proteasome inhibitor that exhibit potent activity against both wild-type and drug-resistant malarial parasites.1 This study indicates that artezomibs offer a promising approach to combat drug resistance encountered by current antimalarial therapies.
Assuntos
Antimaláricos , Antimaláricos/química , Complexo de Endopeptidases do Proteassoma , Resistência a Medicamentos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/químicaRESUMO
Unbalanced protein homeostasis (proteostasis) networks are frequently linked to tumorigenesis, making cancer cells more susceptible to treatments that target proteostasis regulators. Proteasome inhibition is the first licensed proteostasis-targeting therapeutic strategy, and has been proven effective in hematological malignancy patients. However, drug resistance almost inevitably develops, pressing for a better understanding of the mechanisms that preserve proteostasis in tumor cells. Here we report that CD317, a tumor-targeting antigen with a unique topology, was upregulated in hematological malignancies and preserved proteostasis and cell viability in response to proteasome inhibitors (PIs). Knocking down CD317 lowered Ca2+ levels in the endoplasmic reticulum (ER), promoting PIs-induced proteostasis failure and cell death. Mechanistically, CD317 interacted with calnexin (CNX), an ER chaperone protein that limits calcium refilling via the Ca2+ pump SERCA, thereby subjecting CNX to RACK1-mediated autophagic degradation. As a result, CD317 decreased the level of CNX protein, coordinating Ca2+ uptake and thus favoring protein folding and quality control in the ER lumen. Our findings reveal a previously unrecognized role of CD317 in proteostasis control and imply that CD317 could be a promising target for resolving PIs resistance in the clinic.
Assuntos
Antígeno 2 do Estroma da Médula Óssea , Inibidores de Proteassoma , Proteostase , Humanos , Calnexina/metabolismo , Sobrevivência Celular , Chaperonas Moleculares/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inibidores de Proteassoma/farmacologia , Receptores de Quinase C Ativada/genética , Receptores de Quinase C Ativada/metabolismo , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/metabolismoRESUMO
The proteasome regulates intracellular processes, maintains biological homeostasis, and has shown great significance in the study of various diseases, such as neurodegenerative diseases, immune-related diseases, and cancer, especially in hematologic malignancies such as multiple myeloma (MM) and mantle cell lymphoma (MCL). All clinically used proteasome inhibitors bind to the active site of the proteasome and thus exhibit a competitive mechanism. The development of resistance and intolerance during treatment drives the search for inhibitors with different mechanisms of action. In this review, we provide an overview of noncompetitive proteasome inhibitors, including their mechanisms of action, function, possible applications, and their advantages and disadvantages compared with competitive inhibitors.
Assuntos
Antineoplásicos , Linfoma de Célula do Manto , Humanos , Adulto , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfoma de Célula do Manto/tratamento farmacológicoRESUMO
Multiple myeloma (MM) is a highly heterogeneous hematologic tumor. Ubiquitin proteasome pathways (UPP) play a vital role in its initiation and development. We used cox regression analysis and least absolute shrinkage and selector operation (LASSO) to select ubiquitin proteasome pathway associated genes (UPPGs) correlated with the overall survival (OS) of MM patients in a Gene Expression Omnibus (GEO) dataset, and we formed this into ubiquitin proteasome pathway risk score (UPPRS). The association between clinical outcomes and responses triggered by proteasome inhibitors (PIs) and UPPRS were evaluated. MMRF CoMMpass was used for validation. We applied machine learning algorithms to MM clinical and UPPRS in the whole cohort to make a prognostic nomogram. Single-cell data and vitro experiments were performed to unravel the mechanism and functions of UPPRS. UPPRS consisting of 9 genes showed a strong ability to predict OS in MM patients. Additionally, UPPRS can be used to sort out the patients who would gain more benefits from PIs. A machine learning model incorporating UPPRS and International Staging System (ISS) improved survival prediction in both datasets compared to the revisions of ISS. At the single-cell level, high-risk UPPRS myeloma cells exhibited increased cell adhesion. Targeted UPPGs effectively inhibited myeloma cells in vitro. The UPP genes risk score is a helpful tool for risk stratification in MM patients, particularly those treated with PIs.
Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Aprendizado de Máquina , UbiquitinasRESUMO
Bortezomib is an inhibitor of proteasomes and an anti-cancer drug. Although bortezomib is considered a safe drug, as confirmed by cytotoxicity assays, recent reports highlighted the possibility of interaction between bortezomib and cellular components, with detrimental long-term effects. The evaluation of the interaction between bortezomib and dsDNA was investigated in bulk solution and using a dsDNA electrochemical biosensor. The binding of bortezomib to dsDNA involved its electroactive centers and led to small morphological modifications in the dsDNA double helix, which were electrochemically identified through changes in the guanine and adenine residue oxidation peaks and confirmed by electrophoretic and spectrophotometric measurements. The redox product of bortezomib amino group oxidation was electrochemically generated in situ on the surface of the dsDNA electrochemical biosensor. The redox product of bortezomib was shown to interact primarily with guanine residues, preventing their oxidation and leading to the formation of bortezomib-guanine adducts, which was confirmed by control experiments with polyhomonucleotides electrochemical biosensors and mass spectrometry. An interaction mechanism between dsDNA and bortezomib is proposed, and the formation of the bortezomib redox product-guanine adduct explained.
Assuntos
Antineoplásicos , Técnicas Biossensoriais , Inibidores de Proteassoma/farmacologia , Bortezomib/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Oxirredução , DNA/química , Técnicas Biossensoriais/métodos , Guanina , Técnicas Eletroquímicas/métodos , EletrodosRESUMO
In malignant cancer, excessive amounts of mutant p53 often lead to its aggregation, a feature that was recently identified as druggable. Here, we describe that induction of a heat shock-related stress response mediated by Foldlin, a small-molecule tool compound, reduces the protein levels of misfolded/aggregated mutant p53, while contact mutants or wild-type p53 remain largely unaffected. Foldlin also prevented the formation of stress-induced p53 nuclear inclusion bodies. Despite our inability to identify a specific molecular target, Foldlin also reduced protein levels of aggregating SOD1 variants. Finally, by screening a library of 778 FDA-approved compounds for their ability to reduce misfolded mutant p53, we identified the proteasome inhibitor Bortezomib with similar cellular effects as Foldlin. Overall, the induction of a cellular heat shock response seems to be an effective strategy to deal with pathological protein aggregation. It remains to be seen however, how this strategy can be translated to a clinical setting.
Assuntos
Dobramento de Proteína , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Proteassoma/farmacologia , Resposta ao Choque Térmico , Bortezomib/farmacologiaRESUMO
We have previously shown that proteasome inhibitor bortezomib stabilizes p53 in stem and progenitor cells within gastrointestinal tissues. Here, we characterize the effect of bortezomib treatment on primary and secondary lymphoid tissues in mice. We find that bortezomib stabilizes p53 in significant fractions of hematopoietic stem and progenitor cells in the bone marrow, including common lymphoid and myeloid progenitors, granulocyte-monocyte progenitors, and dendritic cell progenitors. The stabilization of p53 is also observed in multipotent progenitors and hematopoietic stem cells, albeit at lower frequencies. In the thymus, bortezomib stabilizes p53 in CD4-CD8- T cells. Although there is less p53 stabilization in secondary lymphoid organs, cells in the germinal center of the spleen and Peyer's patch accumulate p53 in response to bortezomib. Bortezomib induces the upregulation of p53 target genes and p53 dependent/independent apoptosis in the bone marrow and thymus, suggesting that cells in these organs are robustly affected by proteasome inhibition. Comparative analysis of cell percentages in the bone marrow indicates expanded stem and multipotent progenitor pools in p53R172H mutant mice compared with p53 wild-type mice, suggesting a critical role for p53 in regulating the development and maturation of hematopoietic cells in the bone marrow. We propose that progenitors along the hematopoietic differentiation pathway express relatively high levels of p53 protein, which under steady-state conditions is constantly degraded by Mdm2 E3 ligase; however, these cells rapidly respond to stress to regulate stem cell renewal and consequently maintain the genomic integrity of hematopoietic stem/progenitor cell populations.
Assuntos
Inibidores de Proteassoma , Proteína Supressora de Tumor p53 , Camundongos , Animais , Bortezomib/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células Progenitoras Mieloides/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Acquired chemoresistance to proteasome inhibitors is a major obstacle in managing multiple myeloma but key regulators and underlying mechanisms still remain to be explored. We find that high level of HP1γ is associated with low acetylation modification in the bortezomib-resistant myeloma cells using SILAC-based acetyl-proteomics assay, and higher HP1γ level is positively correlated with poorer outcomes in the clinic. Mechanistically, elevated HDAC1 in the bortezomib-resistant myeloma cells deacetylates HP1γ at lysine 5 and consequently alleviates the ubiquitin-mediated protein degradation, as well as the aberrant DNA repair capacity. HP1γ interacts with the MDC1 to induce DNA repair, and simultaneously the deacetylation modification and the interaction with MDC1 enhance the nuclear condensation of HP1γ protein and the chromatin accessibility of its target genes governing sensitivity to proteasome inhibitors, such as CD40, FOS and JUN. Thus, targeting HP1γ stability by using HDAC1 inhibitor re-sensitizes bortezomib-resistant myeloma cells to proteasome inhibitors treatment in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in inducing drug resistance to proteasome inhibitors of myeloma cells and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in refractory or relapsed multiple myeloma patients.
Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Inibidores de Proteassoma/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fatores de Transcrição/farmacologia , Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismoRESUMO
Chemotherapy resistance is still a major problem in the treatment of patients with non-small-cell-lung carcinoma (NSCLC), and novel concepts for the induction of cytotoxicity in NSCLC are highly warranted. Proteotoxicity, the induction of cytotoxicity by targeting the ubiquitin proteasome system, represents an appealing innovative strategy. The combination of the proteasome inhibitor bortezomib (BTZ) and the proteotoxic stress-inducing HIV drug nelfinavir (NFV) synergistically induces proteotoxicity and shows encouraging preclinical efficacy in NSCLC. The second-generation proteasome inhibitor carfilzomib (CFZ) is superior to BTZ and overcomes BTZ resistance in multiple myeloma patients. Here, we show that CFZ together with NFV is superior to the BTZ + NFV combination in inducing endoplasmic reticulum stress and proteotoxicity through the accumulation of excess proteasomal substrate protein in NSCLC in vitro and ex vivo. Interestingly, NFV increases the intracellular availability of CFZ through inhibition of CFZ export from NSCLC cells that express multidrug resistance (MDR) protein. Combining CFZ with NFV may therefore represent a future treatment option for NSCLC, which warrants further investigation.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , Inibidores de Proteassoma/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma , Neoplasias Pulmonares/tratamento farmacológico , ApoptoseRESUMO
Proteasome inhibitors are the cornerstone of multiple myeloma treatment, but challenges still remain despite the increased survival rates. We conducted a review on the role of curcumin, a natural product, as an adjunct to bortezomib and carfilzomib in preclinical multiple myeloma models. Four studies reviewed showed enhanced anticancer effects when curcumin was combined with bortezomib compared to either treatment alone. Two additional studies showed similar results with carfilzomib. Synergistic mechanisms include inhibition of NF-kB, IL-6-induced signaling pathways, JNK pathway modulation, and increased cell cycle arrest.
Assuntos
Produtos Biológicos , Curcumina , Mieloma Múltiplo , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêuticoRESUMO
The proteasome is an essential multi-catalytic enzyme in cells that is responsible for degrading proteins with a ubiquitin-dependent or -independent mechanism. Many activity-based probes, inhibitors, and stimulators have been developed to study or modulate the activity of the proteasome. The development of these proteasome probes or inhibitors have been based on their interaction with the amino acids of the ß5 substrate channel proceeding the catalytically active threonine residue. There is potential for positive interactions with a substrate to increase selectivity or cleavage rate with the ß5 substrate channel after the catalytic threonine as evidenced by the proteasome inhibitor belactosin. To study what moieties the proteasome could accept in its primed substrate channel, we developed a liquid chromatography- mass spectrometry (LC-MS) method to quantitate the cleavage of substrates by purified human proteasome. This method allowed us to rapidly evaluate proteasome substrates that contain a moiety that could interact with the S1' site of the ß5 proteasome channel. We were able to determine a preference for a polar moiety at the S1' substrate position. We believe this information can be used in the design of future inhibitors or activity-based probes for the proteasome.
Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Hidrólise , Inibidores de Proteassoma/farmacologia , Treonina , Especificidade por SubstratoRESUMO
Multiple myeloma (MM) is an incurable bone marrow cancer characterized by the development of osteolytic lesions due to the myeloma-induced increase in osteoclastogenesis and decrease in osteoblastic activity. The standard treatment of MM often involves proteasome inhibitors (PIs), which can also have a beneficial off-target bone anabolic effect. However, long-term treatment with PIs is unadvised due to their high side-effect burden and inconvenient route of administration. Ixazomib is a new-generation, oral PI that is generally well tolerated; however, its bone effect remains unknown. Here, we describe the 3-month results of a single-center phase II clinical trial investigating the effect of ixazomib treatment on bone formation and bone microstructure. Thirty patients with MM in stable disease not receiving antimyeloma treatment for ≥3 months and presenting ≥2 osteolytic lesions received monthly ixazomib treatment cycles. Serum and plasma samples were collected at baseline and monthly thereafter. Sodium 18 F-Fluoride positron emission tomography (NaF-PET) whole-body scans and trephine iliac crest bone biopsies were collected before and after three treatment cycles. The serum levels of bone remodeling biomarkers suggested an early ixazomib-induced decrease in bone resorption. NaF-PET scans indicated unchanged bone formation ratios; however, histological analyses of bone biopsies revealed a significant increase in bone volume per total volume after treatment. Further analyses of bone biopsies showed unchanged osteoclast number and COLL1A1High -expressing osteoblasts on bone surfaces. Next, we analyzed the superficial bone structural units (BSUs), which represent each recent microscopic bone remodeling event. Osteopontin staining revealed that following treatment, significantly more BSUs were enlarged (>200,000 µm2 ), and the distribution frequency of their shape was significantly different from baseline. Overall, our data suggest that ixazomib induces overflow remodeling-based bone formation by decreasing the level of bone resorption and promoting longer bone formation events, making it a potentially valuable candidate for future maintenance treatment. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Assuntos
Reabsorção Óssea , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Compostos de Boro/efeitos adversos , Reabsorção Óssea/tratamento farmacológicoRESUMO
Introduction: Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods: In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results: Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion: Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Assuntos
Interferon Tipo I , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular Imunogênica , Bortezomib/farmacologiaRESUMO
The Plasmodium falciparum proteasome constitutes a promising antimalarial target, with multiple chemotypes potently and selectively inhibiting parasite proliferation and synergizing with the first-line artemisinin drugs, including against artemisinin-resistant parasites. We compared resistance profiles of vinyl sulfone, epoxyketone, macrocyclic peptide, and asparagine ethylenediamine inhibitors and report that the vinyl sulfones were potent even against mutant parasites resistant to other proteasome inhibitors and did not readily select for resistance, particularly WLL that displays covalent and irreversible binding to the catalytic ß2 and ß5 proteasome subunits. We also observed instances of collateral hypersensitivity, whereby resistance to one inhibitor could sensitize parasites to distinct chemotypes. Proteasome selectivity was confirmed using CRISPR/Cas9-edited mutant and conditional knockdown parasites. Molecular modeling of proteasome mutations suggested spatial contraction of the ß5 P1 binding pocket, compromising compound binding. Dual targeting of P. falciparum proteasome subunits using covalent inhibitors provides a potential strategy for restoring artemisinin activity and combating the spread of drug-resistant malaria.
Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Plasmodium , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Plasmodium/metabolismo , Artemisininas/química , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/químicaRESUMO
The reduction of disulfide bonds and their subsequent alkylation are commonplace in typical proteomics workflows. Here, we highlight a sulfhydryl-reactive alkylating reagent with a phosphonic acid group (iodoacetamido-LC-phosphonic acid, 6C-CysPAT) that facilitates the enrichment of cysteine-containing peptides for isobaric tag-based proteome abundance profiling. Specifically, we profile the proteome of the SH-SY5Y human cell line following 24 h treatments with two proteasome inhibitors (bortezomib and MG-132) in a tandem mass tag (TMT)pro9-plex experiment. We acquire three datasetsâ(1) Cys-peptide enriched, (2) the unbound complement, and (3) the non-depleted controlâand compare the peptides and proteins quantified in each dataset, with emphasis on Cys-containing peptides. The data show that enrichment using 6C-Cys phosphonate adaptable tag (6C-CysPAT) can quantify over 38,000 Cys-containing peptides in 5 h with >90% specificity. In addition, our combined dataset provides the research community with a resource of over 9900 protein abundance profiles exhibiting the effects of two different proteasome inhibitors. Overall, the seamless incorporation of alkylation by 6C-CysPAT into a current TMT-based workflow permits the enrichment of a Cys-containing peptide subproteome. The acquisition of this "mini-Cys" dataset can be used to preview and assess the quality of a deep, fractionated dataset.
Assuntos
Cisteína , Neuroblastoma , Humanos , Cisteína/química , Proteoma/análise , Inibidores de Proteassoma/farmacologia , Peptídeos/análise , Cromatografia de AfinidadeRESUMO
Renal fibrosis is scarring and tissue hardening caused by the excess deposition of extracellular matrix proteins in response to chronic inflammation. Renal fibrosis is the primary cause of a progressive loss of renal function, and is an important therapeutic target because it ultimately leads to end-stage renal failure, which can be treated only by either dialysis or kidney transplantation. There is no effective treatment that specifically targets renal fibrosis. Myofibroblasts are known to evade apoptosis by activating molecular mechanisms in response to pro-survival biomechanical and growth factor signals from the fibrotic microenvironment. In this study, we screened and selected compounds that selectively cause cell death in myofibroblasts in vitro and studied their possible potency against renal fibrosis in a mouse model. Several proteasome inhibitors induced selective cell death in myofibroblasts differentiated from the human fibroblast cell line (MRC5). The in vivo antifibrotic effect of Delanzomib (Dz), one of the proteasome inhibitors most sensitive to myofibroblasts in vitro, was investigated in a Unilateral Ureteric Obstruction (UUO) mouse model. Treatment with Dz decreased the expression levels of the actin-alpha-2 (ACTA2) and collagen-type-1-alpha-1 (COL1A1) genes in the kidney, which are common fibrosis markers. These results suggest that Dz might be a compound that suppresses renal fibrosis by inducing selective cell death of myofibroblasts, although further investigation is required.
Assuntos
Nefropatias , Inibidores de Proteassoma , Camundongos , Animais , Humanos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Diálise Renal , Nefropatias/tratamento farmacológico , Rim , Antivirais/farmacologia , Fibrose , Camundongos Endogâmicos C57BLRESUMO
Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype, which has poor prognosis due to the lack of effective targeted drugs. KPT-330, an inhibitor of the nuclear export protein CRM-1, has been widely used in clinical medicine. Y219, a novel proteasome inhibitor designed by our group, shows superior efficacy, reduced toxicity, and reduced off-target effects as compared to the proteasome inhibitor bortezomib. In this study, we investigated the synergistic effect of KPT-330 and Y219 against TNBC cells, as well as the underlying mechanisms. We report that combination treatment with KPT-330 and Y219 synergistically inhibited the viability of TNBC cells in vitro and in vivo. Further analysis revealed that the combined use of KPT-330 and Y219 induced G2-M phase arrest and apoptosis in TNBC cells, and attenuated nuclear factor kappa B (NF-κB) signaling by facilitating nuclear localization of IκB-α. Collectively, these results suggest that the combined use of KPT-330 and Y219 may be an effective therapeutic strategy for the treatment of TNBC.