Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.277
Filtrar
1.
Pest Manag Sci ; 77(1): 313-324, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33411414

RESUMO

BACKGROUND: The investigation of molecular mechanisms and evolution of resistance to insecticides is an ongoing challenge, as researchers must provide guidance to manage the resistance to achieve sustainable production in agriculture. Predicting, monitoring, and managing insecticide resistance requires information on the origins, selection, and spread of resistance genes. The resistance of Plutella xylostella (L.) against diamide insecticides is becoming an increasingly severe problem in east and southeast Asia. In this study, the evolution of resistance was investigated using a resistance allele [ryanodine receptor (RyR); G4946E mutation] and its flanking regions, as well as mitochondrial cytochrome c oxidase subunit I (mtCOI). RESULTS: The sequences of the flanking region of the G4946E and mtCOI suggested that the G4946E mutation has a key role in resistance. Furthermore, the G4946E mutation has multiple origins, and congenic resistant mutations have spread across east and southeast Asia, despite substantial geographical barriers. In addition, the susceptibility of field populations partially recovered during winter, based on the observed decrease in the G4946E (resistant allele) frequency. Finally, the resistance level indexed by the frequency of the E4946 allele was significantly lower in non-overwintering regions than in overwintering regions. CONCLUSION: The information of the present study is useful to monitor resistance using molecular markers and to develop strategies to delay the evolution of diamide resistance.


Assuntos
Inseticidas , Mariposas , Alelos , Animais , Ásia Sudeste , Diamida , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mariposas/genética
2.
Ecotoxicol Environ Saf ; 208: 111622, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396142

RESUMO

The continuous growth in global population since the beginning of the 20th century result in the necessity of food and energy provision favoring the intensive use of agricultural products such as pesticides. Although pesticides are important to prevent losses in the conventional chemically based agriculture, they frequently present side effects, which goes against agricultural production. The use of pesticides cause direct and indirect effects to soil organisms unbalancing essential soil processes (e.g. primary production, organic matter decomposition, nutrient cycling). Under tropical conditions, very little is known regarding the effects of pesticides to terrestrial organisms. Hence, the aim of the present study was to assess the ecotoxicological effects of the herbicide DMA® 806 BR (active ingredient: 2,4-D) and the insecticide Regent® 800 WG (active ingredient: fipronil), on terrestrial plant species (the dicot Raphanus sativus var. acanthioformis and the monocot Allium cepa), and soil invertebrates (the collembolan Folsomia candida and the enchytraeid Enchytraeus crypticus), using natural (NS) and artificial soils (TAS). For both pesticides, negative effects on non-target species were observed at concentrations lower than the doses recommended to prevent pests in sugarcane fields. For both soils, the dicot species was the most affected by the herbicide (R. sativus > A. cepa > F. candida > E. crypticus) and the collembolan species was the most affected by the insecticide (F. candida > E. crypticus = R. sativus = A. cepa). Although the order of the organisms' sensitivity for both pesticides was the same in both soils, results showed that the extent of the effects was soil dependent. Considering the ecologically relevant concentrations tested, and their severe effects to non-target organisms, it may be concluded that the use of fipronil and 2,4-D under recommended conditions may pose a risk to the terrestrial environment.


Assuntos
Ácido 2,4-Diclorofenoxiacético/toxicidade , Praguicidas/toxicidade , Pirazóis/toxicidade , Saccharum/fisiologia , Poluentes do Solo/análise , Agricultura , Animais , Artrópodes/efeitos dos fármacos , Artrópodes/fisiologia , Ecotoxicologia , Inseticidas/toxicidade , Oligoquetos/efeitos dos fármacos , Oligoquetos/fisiologia , Solo/química
3.
Ecotoxicol Environ Saf ; 208: 111597, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396118

RESUMO

Tribolium castaneum (Herbst) is an important pest of stored grain, and benzoquinones secreted by this pest are harmful to humans. T. castaneum has developed strong resistance to fumigants, and an ecofriendly alternative for managing T. castaneum is urgently needed. 1-Octen-3-ol is a major volatile compound present in many mushrooms and fungi. In the current study, the direct toxicity and sublethal and transgenerational effects of 1-octen-3-ol on T. castaneum were investigated. Our results showed that 1-octen-3-ol had strong insecticidal activity against all developmental stages of T. castaneum and repelled T. castaneum adults. 1-Octen-3-ol showed negative effects on the development and reproduction of parental T. castaneum and the subsequent generation: LC30 and LC50 treatments significantly decreased the pupa and adult weights, pupation and emergence rates and fecundity of the parental generation. In addition, LC50 treatment shortened the larval and pupal periods. In the unexposed progeny (F1) of 1-octen-3-ol-exposed parents, decreased survival and pupation rates as well as reduced pupa and adult weights were observed under LC30 and LC50 treatments. In addition, a model food-system experiment showed that 1-octen-3-ol at 98 µL/L exhibited an efficacy of 100% after 7 days of fumigation and completely eliminated T. castaneum offspring. Although a higher concentration of 1-octen-3-ol was needed to achieve an efficacy equal to that of the positive control, dichlorvos (DDVP), 1-octen-3-ol promoted the seedling growth of wheat seeds, suggesting that the concentration used was not only acceptable but also beneficial for wheat seeds. Overall, 1-octen-3-ol seems to be a promising candidate for use as a fumigant and repellent against T. castaneum as well as a seed protectant.


Assuntos
Besouros/fisiologia , Repelentes de Insetos/toxicidade , Inseticidas/toxicidade , Octanóis/toxicidade , Tribolium/efeitos dos fármacos , Animais , Besouros/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Fungos/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Pupa/efeitos dos fármacos , Triticum/efeitos dos fármacos
4.
Chemosphere ; 263: 128323, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297255

RESUMO

Aedes aegypti is the main arbovirus vector transmitting chikungunya, Zika and dengue. The current vector control strategies are limited due to multiple insecticide resistance, deleterious impacts on the environment, and toxicity to non-target organisms. Bilobol, an alkylresorcinol isolated from the plant species Schinus terebinthifolia, demonstrated larvicidal activity against Aedes aegypti (LC50 7.67 mg/L in less than 24 h). To ensure that bilobol presents a viable alternative as an eco-friendly larvicide, this study aimed to explore the degradation process and acute toxicity of this alkylresorcinol in zebrafish, a non-target organism. A quantification method with validated parameters was developed and used to evaluate bilobol degradation in water over time. The Fish Embryo Toxicity (FET) test was applied to evaluate the acute toxicity of bilobol together with its degradation derivates. Results demonstrated that bilobol gradually degrades over time and almost completely disappears after 96 h, turning into small aliphatic chains which are less toxic than bilobol in its fundamental form. Therefore, it was possible to conclude that bilobol does not present significant toxicity to zebrafish embryos nor does it show signs of persistence in the environment. Additionally, bilobol can be found in high quantities not only in S. terebinthifolia, but also in cashew nut industry waste. Thus, bilobol constitutes an alternative environmentally friendly insecticide because it is not persistent, has indications of low toxicity to non-target organisms and presents a way to exploit massive quantities of material discarded by the food industry.


Assuntos
Aedes , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Inseticidas/toxicidade , Larva , Mosquitos Vetores , Extratos Vegetais , Resorcinóis
5.
Chemosphere ; 263: 128375, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33297283

RESUMO

Application of pyrethroid pesticides and semiochemicals are two treatments used worldwide to control conifer bark beetles (Dendroctonus spp.); their residues can reach water reservoirs and water currents through run off and affect non-target organisms such as freshwater invertebrates. Therefore, we assessed the 48-h lethal toxicity, chronic toxicity (reproduction inhibition), and bioaccumulation of three pyrethroid pesticides (bifenthrin, cypermethrin, and deltamethrin) and two semiochemicals (verbenone and 3-methyl-2-cyclohexen-1-one) in two freshwater invertebrates: the cladoceran Alona guttata and the rotifer Lecane papuana. Bifenthrin was the most toxic of the five chemical compounds tested followed by deltamethrin and then cypermethrin, which was the least toxic pyrethroid for both species. Semiochemicals were far less toxic than pyrethroids and verbenone was most toxic than 3-methyl-2-cyclohexen-1-one for both species. For the rotifer Lecane papuana, the pyrethroid with the highest Bioconcentration Factor was bifenthrin, and for the semiochemicals it was 3-methyl-2-cyclohexen-1-one. For the cladoceran Alona guttata, the pyrethroid with the highest bioconcentration factor was cypermethrin and for the semiochemicals it was verbenone. The pyrethroid with highest body burdens both lethal and chronic was cypermethrin. Semiochemicals showed lethal and chronic body burdens 12-fold higher than pyrethroids and were therefore less toxic than pyrethroids. These results showed that the semiochemicals verbenone and 3-methyl-2-cyclohexen-1-one are a safe tool for the freshwater invertebrates tested when compared with pyrethroid pesticides. Cypermethrin was the least toxic of the pyrethroids tested and therefore could be considered as a good candidate to control outbreaks of the conifer bark beetle.


Assuntos
Besouros , Inseticidas , Praguicidas , Piretrinas , Traqueófitas , Poluentes Químicos da Água , Animais , Surtos de Doenças , Inseticidas/análise , Praguicidas/toxicidade , Feromônios , Casca de Planta/química , Piretrinas/toxicidade , Poluentes Químicos da Água/análise
6.
Sci Total Environ ; 755(Pt 1): 143560, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33199013

RESUMO

Little is known about the environmental fate or impact of pesticides used to control companion animal parasites. Using data from the Environment Agency, we examined the occurrence of fipronil, fipronil metabolites and imidacloprid in 20 English rivers from 2016 to 2018, as indicators of the potential contamination of waterways from their use as ectoparasiticides on pets. Water samples were collected by the Environment Agency as part of their chemical surveillance programme and analysed using Liquid Chromatography Mass Spectrometry / Quadrupole-Time-of-Flight Mass spectrometry (LC/Q-TOF-MS) methods. A total of 3861 chemical analyses were examined, and the significance and potential sources of this contamination were assessed. Fipronil, fipronil sulfone, fipronil sulfide (collectively known as fiproles) and imidacloprid were detected in 98.6%, 96.5%, 68.7% and 65.9% of samples, respectively. Across the river sites sampled, the mean concentrations of fipronil (17 ng/l, range <0.3-980 ng/l), and fipronil sulfone (6.5 ng/l, range <0.2-39 ng/l) were 5.3 and 38.1 times their chronic toxicity limits of 3.2 and 0.17 ng/l, respectively. Imidacloprid had a mean concentration of 31.7 ng/l (range <1-360 ng/l), which was below its chronic toxicity limit of 35 ng/l, however seven out of 20 sites exceeded that limit. Chronic risk quotients indicate a high environmental risk to aquatic ecosystems from fiproles, and a moderate risk from imidacloprid. Sites immediately downstream of wastewater treatment works had the highest levels of fipronil and imidacloprid, supporting the hypothesis that potentially significant quantities of pesticides from veterinary flea products may be entering waterways via household drains. These findings suggest the need for a reevaluation of the environmental risks associated with the use of companion animal parasiticide products, and the risk assessments that these products undergo prior to regulatory approval.


Assuntos
Inseticidas , Praguicidas , Sifonápteros , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Inseticidas/análise , Praguicidas/análise , Poluentes Químicos da Água/análise
7.
Pest Manag Sci ; 77(1): 325-334, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32729190

RESUMO

BACKGROUND: The expansion of Aedes aegypti (Diptera: Culicidae) population has increased the number of cases of arboviruses, in part due to the inefficiency and toxicity of the chemical control methods available to control this vector. We synthesized 19 chalcone derivatives and examined their activity against Ae. aegypti larvae in order to select larvicidal compounds that are non-toxic to other organisms. RESULTS: Seven chalcone derivatives (3a, 3e, 3f, 6a, 6c, 6d, and 6f) had lethal concentrations of substituted chalcones capable of killing 50% (LC50 ) values lower than 100 mg mL-1 at 24 h post-treatment, which is the dose that the World Health Organization recommends for the selection of promising larvicides. The type of substituent added to (E)-1,3-diphenylprop-2-en-1-one (3a) markedly affected the larvicidal activity. Addition of chlorine, bromine and methoxy groups to the aromatic rings reduced the larvicidal activity, while replacement of the B-ring (phenyl) by a furan ring significantly increased the larvicidal activity. The furan-chalcone (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) killed Ae. aegypti larvae (LC50 = 6.66 mg mL-1 ; LC90 = 9.97 mg mL-1 ) more effectively than the non-substituted chalcone (3a) (LC50 = 14.43 mg mL-1 ; LC90 = 20.96 mg mL-1 ), and was not toxic to the insect Galleria mellonella, to the protozoan Tetrahymena pyriformis, and to the algae Chorella vulgaris. CONCLUSIONS: The substitution pattern of chalcones influenced their larvicidal activity. In the set of compounds tested, (E)-3-(4-bromophenyl)-1-(furan-2-yl)prop-2-en-1-one (6c) was the most effective larvicide against Ae. aegypti, with no clear signs of toxicity to other animal models. Its mechanism of action and effectiveness under field conditions remain to be determined.


Assuntos
Aedes , Chalcona , Chalconas , Inseticidas , Animais , Chalconas/farmacologia , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Extratos Vegetais
8.
Pest Manag Sci ; 77(1): 417-424, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32761689

RESUMO

BACKGROUND: The use of insecticidal solutions containing sodium chloride (NaCl) has been proposed as a more environmentally friendly alternative to managing stink bug infestations of Neotropical soybean fields. The potential sublethal and undesirable effects of this practice have, however, been overlooked, especially with novel insecticides. Here, we have evaluated experimentally whether the addition of NaCl (0.5% w/v) to imidacloprid-containing solutions could alter insecticide toxicity and modify the reproductive responses of the Neotropical brown stink bug Euschistus heros. RESULTS: Adding NaCl to imidacloprid solutions significantly increased imidacloprid toxicity against E. heros. The exposure to E. heros to sublethal concentrations of imidacloprid affected the insect's mating abilities in a concentration-dependent manner. The addition of NaCl to solutions containing imidacloprid at concentrations as low as 0.126 µg a.i. cm-2 (i.e. the equivalent to 3% of field rate recommendation) also impacted the sexual behavior of E. heros, reducing mating duration. NaCl-exposed stink bugs, however, exhibited higher fecundity and fertility rates than those insects that were unexposed to NaCl or those that were exposed to sublethal levels of imidacloprid only. CONCLUSIONS: The addition of low amounts of NaCl resulted in a higher toxicity of imidacloprid. This practice, however, can also lead to undesirable effects as increasing reproductive output of E. heros that can potentially compromise the management of these insect pests.


Assuntos
Heterópteros , Inseticidas , Animais , Neonicotinoides/toxicidade , Nitrocompostos , Cloreto de Sódio
9.
Pest Manag Sci ; 77(1): 464-473, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32770656

RESUMO

BACKGROUND: We investigated rotation using insecticides with multiple modes of action as a resistance management strategy for Asian citrus psyllid, Diaphorina citri, Kuwayama (Hemiptera: Liviidae), in Florida. The stability of thiamethoxam resistance was investigated in the laboratory by establishing populations of field-collected, resistant D. citri and rearing them under no insecticide exposure. Furthermore, recovery of susceptibility was investigated in the field by initiating rotation to insecticides in plots that previously were treated with consecutive thiamethoxam applications. RESULTS: The resistance ratio (RR) for thiamethoxam reached between 1266.29- and 1395.00-fold after three and four consecutive applications of thiamethoxam, respectively. However, the RR for thiamethoxam remained low (1.71-5.28-fold) under both rotations at both Lake Alfred and Wauchula. Thiamethoxam was cross-resistant with imidacloprid (RR site 1 = 1059.65-fold, RR site 2 = 1595.43-fold) and clothianidin (RR site 1 = 1798.78-fold, RR site 2 = 1270.57-fold) in the nonrotated treatment at both sites. There was very low cross-resistance to other insecticides with different modes of action. Both laboratory and field investigations indicated that susceptibility to thiamethoxam fully recovered after five D. citri generations. Expression of CYP4C67 was significantly increased in resistant populations. CONCLUSION: Our results revealed that D. citri populations develop a high level of resistance following only three or four consecutive neonicotinoid sprays; this was associated with subsequent product failure. Our data suggest that metabolic detoxification by cytochrome P450s contributes to thiamethoxam resistance in D. citri. Overall, the investigation demonstrated that resistance to thiamethoxam can be managed readily in populations of D. citri by rotating modes of action.


Assuntos
Citrus , Hemípteros , Inseticidas , Animais , Florida , Inseticidas/farmacologia , Tiametoxam
10.
Pest Manag Sci ; 77(1): 455-463, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32776383

RESUMO

BACKGROUND: The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a global insect pest of crops, leading to a reduction of agricultural products in productivity and quality. Plant saponins are rich sources for the discovery of candidates to control insect pests. This study focused on discovery of triterpenoid saponins from Clematis aethusifolia Turcz and evaluation of their antifeedant, insecticidal and insect growth inhibitory activities against the 3rd instar larvae of P. xylostella. RESULTS: Seven triterpenoid saponins (1-7) were isolated for the first time from the n-BuOH extract of C. aethusifolia. Monodesmosides 1, 2, and 5 with a free 28-COOH group showed much higher antifeedant activity (DC50 were 733.67-844.77 µg mL-1 at 24 h, and 737.19-748.28 µg mL-1 at 48 h) than bidesmosides 3-4 and 6-7 (DC50 were 1284.35-2053.98 µg mL-1 at 24 h, and 1183.72-1990.96 µg mL-1 at 48 h). Similarly, monodesmosides 1, 2, and 5 (LC50 were 1462.78-1785.96 µg mL-1 ) showed stronger insecticidal activity than bidesmosides 3-4 and 6-7 (LC50 were 2219.22-3050.51 µg mL-1 ) against P. xylostella at 72 h. These results suggest the 28-COOH group is an important functional group for their antifeedant and insecticidal activity. Besides, monodesmosides 1, 2, and 5 showed insect growth inhibitory activity against P. xylostella through reduction of larval growth and percentage of pupation, associated with prolongation of larval and pupal stages. CONCLUSION: The present results provide evidence that triterpenoid saponins from C. aethusifolia, particularly those monodesmosidic saponins with a free 28-COOH group, have the potential to be developed as pesticides to control P. xylostella.


Assuntos
Clematis , Inseticidas , Mariposas , Saponinas , Triterpenos , Animais , Insetos , Inseticidas/farmacologia , Larva , Saponinas/farmacologia
11.
Pest Manag Sci ; 77(1): 482-491, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32812675

RESUMO

BACKGROUND: The peach potato aphid, Myzus persicae, has developed resistance to many insecticides. In Belgium, M. persicae is one of the most common aphids in potato fields and one of the most effective virus vectors. We monitored resistance mutations to pyrethroids, carbamates and neonicotinoids and related these results to microsatellite genotyping to provide information to support the choice of management tactics. RESULTS: Most of the 254 aphids tested (97.6%) displayed at least one mutation conferring resistance to pyrethroids (L1014F, M918L and M918T) and 36.2% additionally carried the modified acetylcholinesterase (MACE) carbamates resistance making them resistant to two insecticide action modes. Ten mutation combinations were detected, two of which were frequent and a strong linkage was found between MACE and M918L mutations. The R81T mutation conferring resistance to neonicotinoids was not detected. Microsatellites highlighted a moderate genetic diversity [69 multilocus genotypes (MLG) detected], severe deviations from Hardy-Weinberg expectations, a highly significant excess of heterozygotes and linkage disequilibrium between all pairs of loci. A structuration of MLGs in association with the mutation combinations was observed. Genetic differentiation was mainly not significant between sampling locations and most MLGs were geographically widespread. These results suggest the likely coexistence of parthenogenesis (obligatory or facultative) and sexual reproduction, and the existence of 'old' parthenogenetic overwintering asexual lineages. CONCLUSION: The results of this monitoring at a regional scale provide useful information on insecticide resistance, genetic diversity and reproductive modes, and highlight the need to reduce the insecticide selection pressure and to implement mitigating techniques.


Assuntos
Afídeos , Inseticidas , Solanum tuberosum , Animais , Afídeos/genética , Bélgica , Genótipo , Resistência a Inseticidas/genética , Inseticidas/farmacologia
12.
Pest Manag Sci ; 77(1): 492-501, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32815275

RESUMO

BACKGROUND: This study investigated three in vitro models to assist in elucidating possible mode-of-action, which could be adopted to evaluate insecticidal activity of complex, unknown, or multi-constituent formulations. We used a combination of absorbance spectrometry, confocal scanning laser microscopy and microelectrode ion flux estimation (MIFE) to provide insight into potential target sites for insecticides. This study used two insect cell lines and evaluated three pyrethroid insecticides. RESULTS: We observed that the two cell lines produced distinctly different responses. Drosophila melanogaster D.mel-S2 cell line was a useful model to monitor ion flux changes, resulting from insecticides with neural toxicity; however, it was less useful to determine some metabolic pathway indicators of toxic stress. Conversely, the Spodoptera frugiperda Sf9 cell line produced acute reactive oxygen species (ROS) in response to insecticide treatments, but was not highly responsive in electrophysiological experiments. We also showed that the natural, multi-constituent botanical extract of pyrethrum elicited different Na+ , Cl- and Ca2+ ion fluxes than its synthetic, single constituent analogues, α-cypermethrin and esfenvalerate. These two methods used in combination with absorbance spectrometry measuring cell growth inhibition plus cell mortality assays shed some light on cytotoxic responses in differing model cell lines. CONCLUSION: This research highlights the importance of using multiple cell types and interdisciplinary methods to provide a better insight into mode of insecticidal action. This is especially pertinent to novel biopesticide discovery, as the underlying mechanisms for toxicity in initial screening processes are likely to be unknown.


Assuntos
Inseticidas , Animais , Linhagem Celular , Drosophila melanogaster , Insetos , Spodoptera
13.
Pest Manag Sci ; 77(1): 527-537, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32816397

RESUMO

BACKGROUND: Unmanned Aerial Vehicles (UAVs), a new method of application to deliver pesticides, is rapidly being adopted for commercial use in crop protection in East Asia with increasing worldwide interest. Pest control in mature almond orchards with dense foliar canopies presents greater coverage challenges than field crops and smaller orchard or vineyard crops. We investigated the use of an electric hexacopter to provide acceptable spray deposition and canopy penetration to be considered credible for use in an almond pest control program. RESULTS: The performance of the aerial and ground methods at different spray volumes were compared by analyzing spray deposition on water sensitive papers, insecticide residues on filter papers and residues on whole unhulled almonds at three canopy elevations. Overall residue levels of chlorantraniliprole insecticide on whole unhulled almonds across all pooled canopy strata were similar between UAV applied at 46.8 L/ha and 93.5 L/ha and the comparative air blast sprayer treatments applied at 935 L/ha. However, significant interactions between canopy elevation and spray method showed distinct residue patterns between the two application methods. Penetration and spray deposition at the lower canopy were observed and validated for the UAV application. Pest efficacy was evaluated by measuring nut damage at harvest. CONCLUSION: This study presents promising data that support the potential innovative integration of UAV's into crop protection programs for large canopy crops such as almonds and may guide future research for developing relevant label recommendations.


Assuntos
Proteção de Cultivos , Inseticidas , Praguicidas , Prunus dulcis , Extremo Oriente , Praguicidas/análise
14.
Sci Total Environ ; 755(Pt 1): 142509, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33032135

RESUMO

Bats provide a variety of ecological services that are essential to the integrity of ecosystems. Indiscriminate use of pesticides has been a threat to biodiversity, and the exposure of bats to these xenobiotics is a threat to their populations. This study presents a review of articles regarding the exposure of bats to pesticides published in the period from January 1951 to July 2020, addressing the temporal and geographical distribution of research, the studied species, and the most studied classes of pesticides. The research was concentrated in the 1970s and 1980s, mostly in the Northern Hemisphere, mainly in the USA. Of the total species in the world, only 5% of them have been studied, evaluating predominantly insectivorous species of the Family Vespertilionidae. Insecticides, mainly organochlorines, were the most studied pesticides. Most research was observational, with little information available on the effects of pesticides on natural bat populations. Despite the advances in analytical techniques for detecting contaminants, the number of studies is still insufficient compared to the number of active ingredients used. The effects of pesticides on other guilds and tropical species remain poorly studied. Future research should investigate the effects of pesticides, especially in sublethal doses causing chronic exposure. It is crucial to assess the impact of these substances on other food guilds and investigate how natural populations respond to the exposure to mixtures of pesticides found in the environment.


Assuntos
Quirópteros , Hidrocarbonetos Clorados , Inseticidas , Praguicidas , Animais , Ecossistema , Praguicidas/análise , Praguicidas/toxicidade
15.
Sci Total Environ ; 755(Pt 1): 142505, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33038839

RESUMO

Chlorpyrifos is an important organophosphorus insecticide. It is highly toxic to mammals and can pollute the environment. Cupriavidus nantongensis X1T can efficiently degrade chlorpyrifos. Immobilization technology can also improve the viability, stability and catalytic ability of bacteria. In this study, strain X1T was, therefore, captured on various composite immobilized carriers, sodium alginate (SA), diatomite (KLG), chitosan (CTS) and polyvinyl alcohol (PVA). The four types of immobilized beads (SA, SA + KLG, SA + CTS and SA + PVA) could form a slice and honeycomb structure to capture strain X1T. The results showed that SA + CTS (SC) was an optimal material combination for the immobilization of strain X1T to degrade chlorpyrifos. Compared with SA-X1T, after adding CTS, the specific surface area and adsorption capacity for chlorpyrifos were increased 3.4 and 1.7 fold, respectively. SC-X1T could degrade 96.6% of chlorpyrifos at 20 mg/L within 24 h and the degradation rate constant was 4.8 fold greater than immobilized strain LLBD2, a well-studied chlorpyrifos-degrading strain. The immobilized beads SC-X1T also showed a more stable and greater degradation ability than X1T free cells for chlorpyrifos in industrial wastewater. The synergy of adsorption and degradation of immobilized strain X1T is suitable for in-situ remediation of chlorpyrifos contaminated environment.


Assuntos
Clorpirifos , Cupriavidus , Inseticidas , Biodegradação Ambiental , Águas Residuárias
16.
Pest Manag Sci ; 77(1): 168-176, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32652756

RESUMO

BACKGROUND: The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is one of the most devastating pests in citrus orchards, and has caused huge economic losses worldwide. Chemical control is the most effective way for psyllid control. Herein, the toxicity of nine insecticides to ACP adults and the joint action of thiamethoxam + spirotetramat were determined by a topical application method in the laboratory; field plot experiments were conducted to evaluate the control efficacy of one self-made thiamethoxam + spirotetramat 40% suspension concentrate (SC) comparing with thiamethoxam 21% SC, spirotetramat 22.4% SC, tolfenpyrad 15% SC and bifenthrin 100 g/L emulsifiable concentrate against ACP using foliar sprays in 2018-2019. RESULTS: The highest toxicity to ACP adults was achieved by beta-cyfulthrin, bifenthrin, thiamethoxam and acetamiprid, with median lethal doses of 0.247 to 1.382 ng/adult at 24 h after treatment. High toxicity was observed by chlorpyrifos, spirotetramat and tolfenpyrad, but moderate toxicity by pyriproxyfen and buprofezin. For mixutres of thiamethoxam and spirotetramat, a 25:15 mass ratio showed the highest synergistic effect, with a co-toxicity coefficient (CTC) of 246.52; while a 10:30 mass ratio exhibited an additive effect, with a CTC of 109.84. Thiamethoxam + spirotetramat 40% SC at 60-80 mg/kg can effectively control ACP with a control efficacy of 72.92 to 99.29% during 3-30 days. Moreover, foliar sprays of all tested insecticides at the tested rates had no phytotoxic effects on citrus trees. CONCLUSION: A one-time foliar spray of thiamethoxam + spirotetramat 40% SC at 80 mg/kg could be recommended to control ACP during its infestation period in citrus groves.


Assuntos
Compostos Aza , Citrus , Hemípteros , Inseticidas , Animais , Compostos Aza/toxicidade , Compostos de Espiro , Tiametoxam
17.
Environ Pollut ; 268(Pt A): 115586, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33038631

RESUMO

Water treatment and reuse initiatives are essential to combat declining water supplies in a changing climate, especially in arid and semi-arid regions. Pollution of water resources intensifies the search for strategies to provide water for potable and non-potable reuse that mitigates detrimental ecological and human health effects. Fipronil and synthetic pyrethroids are common urban-use insecticides that exert aquatic toxicity at trace levels and have been often found in urban surface streams. In this study, samples were collected from the 182 ha Prado Wetlands in Southern California for seven months to assess the occurrence of fipronil and its degradation products as well as pyrethroids (bifenthrin and cyfluthrin) in water, sediment, and plants in a 4.45 ha vegetated surface flow constructed wetland (CW). Concentration-based removal values and changes in mass flux were calculated to determine the efficacy of CW treatment. Observed water concentrations were further used to calculate toxic units for the invertebrates Hyalella azteca and Chironomus dilutus. Pesticide concentrations in water, sediment, and plant samples consistently decreased during passage through the CW at all time points. Removal values for fipronil desulfinyl, fipronil sulfide, fipronil, fipronil sulfone, bifenthrin, and cyfluthrin were 100%, 99.7-100%, 57.8-88.1%, 75.6-100%, 74.7-100%, and 36.6-82.2%, respectively, and there was a general net deposition of pesticides into CW compartments. Toxic unit values decreased in every instance for both aquatic invertebrates. Settling of contaminated particles, adsorption to sediment, plant uptake or adsorption, and subsequent degradation contributed to the effective removal of these urban-use insecticides, which highlights the potential of CWs for protecting urban water quality.


Assuntos
Anfípodes , Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Sedimentos Geológicos , Humanos , Inseticidas/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
18.
Environ Sci Pollut Res Int ; 28(1): 890-897, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32822009

RESUMO

Chlorpyrifos (CPF) is an organophosphate pesticide that is frequently and widely used to control both agricultural and domestic pests worldwide. In this study, the protective effect of Fennel (Foeniculum vulgare) essential oil (FEO) was investigated in carp (Cyprinus carpio) exposed to CPF. The fish were divided into six groups that one control group (no treatment) and five experimental groups (FEO (3ml/100g diet) group, CPF1 (0.023 mg/l) group CPF2 (0.046 mg/l) group, CPF1 (0.023 mg/l) plus FEO (3ml/100g diet) group, CPF2 (0.046 mg/l) plus FEO (3ml/100g diet) group). Blood and tissue (liver, kidney, gill, and brain) samples were taken from the fish at the end of 14 days of application. Hemoglobin (Hb) level, nitoblue tetrazolium (NBT) activity, and total immunoglobulin (TI) level were measured in blood samples of fish. Acetylcholinesterase (AChE) activity was determined in brain tissue while malondialdehyde (MDA) level, reduced glutathione (GSH) level, catalase (CAT), and glutathione peroxidase (GPx) activity were determined in liver, kidney, and gill tissues. The results showed that there was a significant decrease in Hb level, NBT activity, and TI levels in CPF-treated fish compared to the control group. In addition, increased in MDA levels and significant decreases in GSH level, AChE, CAT, and GPx activities were observed in CPF-treated groups. However, FEO-treated was showed a significant improvement in all parameters except AChE activity compared to CPF groups. These study findings showed that FEO could improve CPF-induced toxicity in C. carpio, except inhibition of AChE activity.


Assuntos
Carpas , Clorpirifos , Foeniculum , Inseticidas , Óleos Voláteis , Animais , Antioxidantes , Clorpirifos/toxicidade , Inseticidas/toxicidade , Estresse Oxidativo
19.
Environ Sci Pollut Res Int ; 28(2): 2260-2268, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32875452

RESUMO

Fruit processing waste, such as kernels (endocarp + seed) of avocado [Persea americana Mill. (Lauraceae)], could be used as raw material in the preparation of botanical insecticides. In light of this potential, this study assessed the insecticidal action of extracts and fractions from kernels of two avocado cultivars (Breda and Margarida) on Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) biotype B, an important pest species in tropical conditions. Ethanolic and aqueous extracts prepared from kernels of P. americana, regardless of the plant cultivar used, caused promising insecticidal activity to whitefly nymphs. Based on yield in crude extracts [10.32 and 9.85% (w/w), respectively, for cultivars Breda and Margarida], on the bioassay results with crude extracts and on the chemical profiles, the ethanolic extract of kernels of P. americana cv. Breda was chose for the continuation of the study. Thus, the ethanolic extract of kernels of cv. Breda (LC50 = 197.84 ppm and LC90 = 567.19 ppm) was selected and subjected to fractionation by the liquid-liquid partition technique. The hexane and dichloromethane fractions of this extract caused significant mortality of nymphs. The analysis using the ultraviolet (UV) and hydrogen nuclear magnetic resonance (1H NMR) showed the presence of long-chain aliphatic compounds (alkanols or acetogenins of Lauraceae), alkylfurans (or avocadofurans), and unsaturated fatty acids in these fractions, which are possibly related to bioactivity observed in B. tabaci, besides saccharides. The results show that kernels of P. americana are promising sources of compounds with insecticidal action for the control of B. tabaci biotype B, a great opportunity to transform environmental problems into eco-friendly solutions to agriculture.


Assuntos
Hemípteros , Inseticidas , Persea , Animais , Dose Letal Mediana , Ninfa
20.
Ecotoxicol Environ Saf ; 208: 111394, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33031985

RESUMO

The development of oil and gas production together with the fruit production in nearby areas of North Patagonia, Argentina, suggests aquatic pollution scenarios which include permanent oil pollution combined with short events of pesticides application. It has been reported that oil hydrocarbons activate the aryl hydrocarbon receptor (AhR) pathway in the rainbow trout, Oncorhynchus mykiss, and that the insecticide Chlorpyrifos (CPF) interacts with these effects. Thus, it is interesting to investigate whether hydrocarbons and insecticides, applied by separate or combined, can affect fish health and reproductive signaling by acting on different nuclear receptors' regulatory pathways. To study this kind of interactions, we exposed juvenile rainbow trout to water accommodated fraction (WAF) of crude oil (62 µg L-1 TPH) for 48 h and subsequently exposed the livers ex vivo to the insecticide Chlorpyrifos (CPF) (20 µg L-1) for 1 h. We analyzed the mRNA expression of nuclear receptors and proteins involved in detoxifying, antioxidant, immune and apoptosis responses by qRT-PCR. We also performed histopathological analysis. WAF induced the expression of the androgen (AR) and the Liver X receptor (LXR) by 8- and 3-fold, respectively. AR induction was reversed by subsequent exposure to CPF. The progesterone receptor (PR) and glucocorticoid receptor (GR) were increased 2-fold and 3-fold by WAF respectively, while estrogen and mineralocorticoid receptors were not affected. GR was also induced by CPF with an additive effect in the WAF-CPF treatment. The antioxidant genes, gamma glutamyl transferase (GGT), superoxide dismutase (SOD1) were induced by WAF (2-3-fold). WAF upregulated the ATP Binding Cassette Subfamily C Member 2 (ABCC2, MRP2) (4-fold) and downregulated alkaline phosphatase. WAF also induced the inflammatory interleukins (IL) IL-8, and IL-6 and the anti-inflammatory IL-10, while CPF induced the inflammatory tumor necrosis factor (-α) and IL-6, and activated the intrinsic apoptotic pathway through the induction of caspases 3 and 9. Both, WAF and CPF downregulated the expression of the extrinsic apoptosis initiator caspase 8 and the inflammatory caspase 1. In conclusion, WAF hydrocarbons alter O. mykiss endocrine regulation by inducing AR, PR and GR. The subsequent exposure to CPF reverses AR, suggesting a complex interaction of different pollutants in contaminated environments, WAF hydrocarbons alter liver metabolism by inducing the expression of LXR, GR, antioxidant and detoxifying enzymes, and both inflammatory and anti-inflammatory cytokines, and causing mild hepatic steatosis. CPF activates inflammatory and stress responses associated with the induction of inflammatory cytokines together with apoptosis initiator and executioner caspases.


Assuntos
Clorpirifos/toxicidade , Hidrocarbonetos/toxicidade , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Argentina , Clorpirifos/metabolismo , Hidrocarbonetos/metabolismo , Imunidade , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Petróleo/metabolismo , Poluição por Petróleo , Receptores Citoplasmáticos e Nucleares/metabolismo , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA