RESUMO
Abstract The assessment of the comparative effect of biosal (phytopesticide), deltamethrin, and lambda-cyhalothrin (pyrethroids) were made against two fodder pests, Hermolaus modestus and Hermolaus ocimumi by filter paper impregnation method. The activity of total protein contents, GPT (glutamic-pyruvic transaminase) and GOT (glutamic oxaloacetate transaminase) were affected in Hermolaus modestus and Hermolaus ocimumi against biosal, deltamethrin, and lambda cyhalothrin. The activity of total protein contents in H. modestus was 31.053%, 4.607%, and 24.575%, against biosal, deltamethrin, and lambda-cyhalothrin, respectively. The activity of total protein contents was observed as 24.202%, 15.25%, and 56.036% against deltamethrin, lambda-cyhalothrin, and biosal, respectively in H. ocimumi. The activity of GOT was observed as 98.675% for biosal 33.95% for deltamethrin and 83.619% for lambda-cyhalothrin in H. modestus. The GOT activity was estimated in H. ocimumi as 78.831%, 47.645%, and 71.287% against biosal, deltamethrin, and lambda-cyhalothrin, respectively. The efficacy of GPT enzyme against biosal, deltamethrin, and lambda-cyhalothrin was calculated as 89.26%, 73.07%, and 47.58%, respectively in H. modestus. The H. ocimumi showed GPT activity as 77.58% for biosal, 68.84% for deltamethrin, and 52.67% for lambda-cyhalothrin, respectively.
Resumo A avaliação do efeito comparativo do biosal (fitopesticida), deltametrina e lambda-cialotrina (piretróides) foi feita contra duas pragas forrageiras, Hermolaus modestus e Hermolaus ocimumi, pelo método de impregnação com papel de filtro. A atividade do conteúdo de proteína total, GPT (transaminase glutâmico-pirúvica) e GOT (oxaloacetato transaminase glutâmico) foram afetados em Hermolaus modestus e Hermolaus ocimumi contra biosal, deltametrina e lambda cialotrina. A atividade do conteúdo de proteína total em H. modestus foi 31.053%, 4.607% e 24.575%, contra biosal, deltametrina e lambda-cialotrina, respectivamente. A atividade do conteúdo de proteína total foi observada como 24.202%, 15.25% e 56,036% contra deltametrina, lambda-cialotrina e biosal, respectivamente em H. ocimumi. A atividade do GOT foi observada em 98.675% para o biosal, 33,95% para a deltametrina e 83.619% para a lambda-cialotrina em H. modestus. A atividade do GOT foi estimada em H. ocimumi como 78.831%, 47.645% e 71.287% contra biosal, deltametrina e lambda-cialotrina, respectivamente. A eficácia da enzima GPT contra biosal, deltametrina e lambda-cialotrina foi calculada como 89.26%, 73.07% e 47.58%, respectivamente em H. modestus. A H. ocimumi apresentou atividade GPT de 77.58% para biosal, 68.84% para deltametrina e 52.67% para lambda-cialotrina, respectivamente.
Assuntos
Animais , Piretrinas , Inseticidas , Heterópteros , Alanina Transaminase , Ração Animal , NitrilasRESUMO
Abstract Earias vittellaFabricius, 1794 (Noctuidae: Lepidoptera) is deliberated to be one of the most destructive pests of cotton and okra vegetation in the world including Asia. The pest has established resistance to various synthetic insecticides. The use of bio-pesticide is one of the unconventional approaches to develop a vigorous ecosystem without harming non- target pests and beneficial natural insect fauna. In the present study, the toxicity levels of Citrullus colocynthis seed extract have been evaluated against the populations of E. vittellaunder standardized laboratory conditions. The toxic effects of C. colocynthis on development periods, protein contents and esterase activity of the life stages of E. vittella were also evaluated. The toxicity levels of methanol, ethanol, hexane, water and profenofos were evaluated on the 1st instar larvae of E. vittella. LC30 and LC80 concentrations exhibited the effectiveness of methanol-based C. colocynthis seed extract against 1st instar larvae of E. vitella. The enhanced larval and pupal periods were revealed in treated samples during the comparison with untreated samples. The intrinsic rate of increase, net reproductive rate in the LC30 and LC80 concentrations exposed larvae remained less than the control treatment. Fecundity, the esterase activity and protein contents were declined in LC30 and LC80 treated samples as compared to the control. The present findings suggest that C. colosynthis extracts based botanical insecticides are beneficial, ecosystem sustainable and can be integrated with insect management programs from environment safety perspective.
Resumo Earias vittella Fabricius, 1794 (Noctuidae: Lepidoptera) é considerada uma das pragas mais destrutivas de algodão e quiabo no mundo, incluindo a Ásia. Essa praga estabeleceu resistência a vários inseticidas sintéticos. O uso de biopesticidas é uma das abordagens não convencionais para desenvolver um ecossistema saudável sem prejudicar as pragas não alvo e a fauna natural benéfica de insetos. No presente estudo, os níveis de toxicidade do extrato de semente de Citrullus colocynthis foram avaliados nas populações de E. vittella em condições de laboratório padronizadas. Os efeitos tóxicos de C. colocynthis nos períodos de desenvolvimento, conteúdo de proteína e atividade esterase das fases de vida de E. vittella também foram avaliados. Os níveis de toxicidade de metanol, etanol, hexano, água e profenofós foram avaliados em larvas de 1º instar de E. vittella. As concentrações de LC30 e LC80 apresentaram eficácia do extrato de sementes de C. colocynthis à base de metanol contra larvas de 1º instar de E. vittella. Os períodos larval e pupal aumentados foram revelados nas amostras tratadas durante a comparação com as amostras não tratadas. A taxa intrínseca de aumento e a taxa reprodutiva líquida nas concentrações de larvas expostas LC30 e LC80 permaneceram menores do que o tratamento controle. A fecundidade, a atividade da esterase e o conteúdo de proteína diminuíram nas amostras tratadas com LC30 e LC80 em comparação com o controle. As presentes descobertas sugerem que os extratos de C. colocynthis à base de inseticidas botânicos são benéficos, sustentáveis para o ecossistema e podem ser integrados com programas de manejo de insetos do ponto de vista da segurança ambiental.
Assuntos
Animais , Citrullus colocynthis , Inseticidas , Mariposas , Extratos Vegetais/farmacologia , Ecossistema , LarvaRESUMO
BACKGROUND: Indoor residual spraying (IRS) has been the main tool used to control malaria. Reducing the life span and the density of the vector mosquitoes are direct effects of IRS towards restricting malaria transmission. Residents must not wash or re-plaster walls after the spray application for at least 6 months to fight against malaria with IRS. This study sought to assess the alteration of the sprayed wall after the IRS operation and associated factors among households in the Boricha district. METHODS: Community-based cross-sectional study was conducted among 608 households selected using multi-stage sampling. A structured interviewer-administered questionnaire was used to collect data. Data were analysed by SPSS version 25. Both bivariable and multivariable logistic regression analysis was done. Finally, the strength of the association was measured based on AOR with 95% CI and statistical significance was declared at a p-value less than 0.05. RESULT: From the total of 608 sprayed houses included in the study, 37.3% (95% CI: 33.41% - 41.15%) were found to have altered sprayed walls. The highest class of wealth index category (AOR = 2.50; 95% CI: 1.19, 5.16), low level of comprehensive knowledge about IRS (AOR = 6.08; 95% CI: 3.37, 10.94), did not get information within 2 weeks before spray (AOR = 2.09; 95% CI: 1.43, 3.05), absence of supervision after the spray operation (AOR = 1.77; 95% CI: 1.27, 2.73) and walking distance to nearest health facility (AOR = 2.39; 95% CI: 1.63, 3.35) remained significant factors of altering of the sprayed wall after IRS. CONCLUSION: The prevalence of alteration was relatively high. The highest socio-economic status, poor knowledge about indoor residual spraying, lack of information about IRS within two weeks before spray, absence of supervision after IRS, and walking distance of more than 30 min to reach the nearest health post were the factors affecting the alteration status of the sprayed wall. Future efforts to focus on successive awareness creation activities should be done before and after IRS operation to the community by concerned bodies.
Assuntos
Inseticidas , Malária , Animais , Humanos , Inseticidas/farmacologia , Etiópia , Controle de Mosquitos , Estudos Transversais , Mosquitos Vetores , Malária/prevenção & controleRESUMO
Imidacloprid, a neonicotinoid pesticide, is employed to increase crop productivity. Meanwhile, its indiscriminate application severely affects the non-target organisms and the environment. As an eco-friendly and economically workable option, the microbial intervention has garnered much attention. This review concisely outlines the toxicity, long-term environmental repercussions, degradation kinetics, biochemical pathways, and interplay of genes implicated in imidacloprid remediation. The studies have highlighted imidacloprid residue persistence in the environment for up to 3000 days. In view of high persistence, effective intervention is highly required. Bacteria-mediated degradation has been established as a viable approach with Bacillus spp. being among the most efficient at 30 â and pH 7. Further, a comparative metagenomic investigation reveals dominant neonicotinoid degradation genes in agriculture compared to forest soils with distinctive microbial communities. Functional metabolism of carbohydrates, amino acids, fatty acids, and lipids demonstrated a significantly superior relative abundance in forest soil, implying its quality and fertility. The CPM, CYP4C71v2, CYP4C72, and CYP6AY3v2 genes that synthesize cyt p450 monooxygenase enzyme play a leading role in imidacloprid degradation. In the future, a systems biology approach incorporating integrated kinetics should be utilized to come up with innovative strategies for moderating the adverse effects of imidacloprid on the environment.
Assuntos
Inseticidas , Inseticidas/metabolismo , Neonicotinoides/metabolismo , Nitrocompostos/metabolismo , Agricultura , Solo/químicaRESUMO
With the continuous evolution of insect resistance, it is a tremendous challenge to control the fall armyworm (Spodoptera frugiperda) with traditional insecticides. To solve this pending issue, a series of novel isoxazoline derivatives containing diaryl ether structures were designed and synthesized, and most of the target compounds exhibited excellent insecticidal activity. Based on the three-dimensional quantitative structure-activity relationship (3D-QSAR) model analysis, we further optimized the molecular structure with compound L35 obtained and tested for its activity. Compound L35 (LC50 = 1.69 mg/L) exhibited excellent insecticidal activity against S. frugiperda, which was better than those of commercial fipronil (LC50 = 70.78 mg/L) and indoxacarb (LC50 = 5.37 mg/L). The enzyme-linked immunosorbent assay showed that L35 could upregulate the levels of GABA in insects. In addition, molecular docking and transcriptomic results also indicated that compound L35 may affect the nervous system of S. frugiperda by acting on GABA receptors. Notably, through high-performance liquid chromatography (HPLC), we were able to obtain the two enantiomers of compound L35, and the insecticidal activity test revealed that S-(+)-L35 was 44 times more active than R-(-)-L35 against S. frugiperda. This study established the chemistry basis and mechanistic foundations for the future development of pesticide candidates against fall armyworms.
Assuntos
Éter , Inseticidas , Animais , Spodoptera , Simulação de Acoplamento Molecular , Inseticidas/farmacologia , Inseticidas/química , Etil-Éteres , Éteres , LarvaRESUMO
Insecticides are an integral part of most of the cropping systems worldwide; however, these usually exert negative impact on the environment and non-target insects as well. Non-target insects are prone to develop resistance to insecticides due to prolonged and repeated lethal and sublethal exposures. Musca domestica is a common non-target, pollinator and nectar feeder species in cotton ecosystem, besides its status as a public health pest in human habitations. In the present work, resistance to methomyl, one of the major insecticides used for cotton pest management, was assessed in 20 M. domestica strains from the major cotton producing areas of the Punjab and Sindh provinces of Pakistan. The results revealed that toxicity values of methomyl for Punjabi and Sindhi strains ranged from 28.07 to 136.16 µg fly-1 and 29.32 to 136.87 µg fly-1, respectively. Among Punjabi strains, D.G. Khan, Lodhran, Bahawalpur, Toba Tek Singh, Bahawalnagar, Rajanpur and Jhang strains exhibited very high levels of resistance (RR > 100) to methomyl; Bhakkar, Kasur, Vehari, Layyah, Muzaffargarh and R.Y. Khan showed high resistance (RR = 51-100 fold), while the Mianwali strain showed a moderate level of resistance to methomyl (RR = 36.45 fold). In case of Sindhi strains, very high levels of resistance (> 100 fold) were reported for Sukkar and Sanghar strains, high levels of resistance (RR 51-100 fold) for Khairpur, Jamshoro and Ghotki, and moderate resistance to methomyl (38.08 fold) in the Dadu strain. There was a significant synergism of methomyl toxicity in all field strains when methomyl bioassayed along with piperonyl butoxide (PBO) and S,S,S-tributylphosphorotrithioate (DEF) providing clues of metabolic-based mechanisms of resistance to methomyl. In conclusion, insecticides used in crop farming can cause resistance development in non-target M. domestica. It is necessary to adopt the pest management activities that are safe for the environment and non-target insect species.
Assuntos
Moscas Domésticas , Inseticidas , Animais , Humanos , Inseticidas/farmacologia , Metomil , Paquistão , Ecossistema , Resistência a InseticidasRESUMO
Spraying a tertiary blend of the insecticides (hexythiazox, imidacloprid, and thiamethoxam), on tomato fruits, is a routine in agriculture-attentive countries. A simple green sample preparation technique was developed and applied to the field samples. Specific HP-TLC and RP-HPLC methodologies are established to estimate the residual insecticides and applied to the prepared field specimens. In the planner chromatographic methodology, methanol:chloroform:glacial acetic acid:triethyl amine (8.5:1.5:0.2:0.1, v/v) is recommended as a mobile system. The other one is columnar chromatography; acetonitrile: water (20:80, v/v), pH 2.8, is recommended as a mobile system. The validation parameters were examined following the ICH rules. The means percentages and standard deviations of the accuracy of the HP-TLC method for the determined compounds were 99.66 ± 0.974, 99.41 ± 0.950, and 99.89 ± 0.983, correspondingly. The values were 99.24 ± 0.921, 99.69 ± 0.681, and 99.20 ± 0.692, correspondingly, when they were determined by the RP-HPLC method. The relative standard deviation percentages of the methods' repeatability and intermediate precision ranged from 0.389 to 0.920. Both methods were highly specific having resolution factors of ≥ 1.78 and selectivity factors of ≥ 1.71. They were applied to the field samples perfectly.
Assuntos
Inseticidas , Resíduos de Praguicidas , Solanum lycopersicum , Inseticidas/análise , Projetos de Pesquisa , Resíduos de Praguicidas/análise , Cromatografia Líquida de Alta Pressão/métodosRESUMO
BACKGROUND: In Alibori and Donga, two departments of high malaria incidence of Northern Benin, pirimiphos-methyl, mixture deltamethrin + clothianidin, as well as clothianidin were used at large scale for IRS. The present study aimed to assess the residual efficacy of these products. METHODS: Immatures of Anopheles gambiae sensu lato (s.l.) collected in the communes of Kandi and Gogounou (Department of Alibori), Djougou and Copargo (Department of Donga) were reared until adulthood. Females aged 2-5 days were used for susceptibility tube tests following the WHO protocol. The tests were conducted with deltamethrin (0.05%), bendiocarb (0.1%), pirimiphos-methyl (0.25%) and clothianidin (2% weight per volume). For cone tests performed on cement and mud walls, the An. gambiae Kisumu susceptible strain was used. After the quality control of the IRS performed 1-week post-campaign, the evaluation of the residual activity of the different tested insecticides/mixture of insecticides was conducted on a monthly basis. RESULTS: Over the three study years, deltamethrin resistance was observed in all the communes. With bendiocarb, resistance or possible resistance was observed. In 2019 and 2020, full susceptibility to pirimiphos-methyl was observed, while possible resistance to the same product was detected in 2021 in Djougou, Gogounou and Kandi. With clothianidin, full susceptibility was observed 4-6 days post-exposure. The residual activity lasted 4-5 months for pirimiphos-methyl, and 8-10 months for clothianidin and the mixture deltamethrin + clothianidin. A slightly better efficacy of the different tested products was observed on cement walls compared to the mud walls. CONCLUSION: Overall, An. gambiae s.l. was fully susceptible to clothianidin, while resistance/possible resistance was observed the other tested insecticides. In addition, clothianidin-based insecticides showed a better residual activity compared to pirimiphos-methyl, showing thus their ability to provide an improved and prolonged control of pyrethroid resistant vectors.
Assuntos
Inseticidas , Feminino , Animais , Benin , Inseticidas/farmacologia , Mosquitos Vetores , África OcidentalRESUMO
Acetamiprid is a broad-spectrum insecticide, belonging to the neonicotinoid compounds group, which has been extensively applied throughout the globe. Recently, indiscriminate use of these compounds was reported to cause fatal impacts on non-targeted soil organisms. Hence, the present study aimed to examine the impact of acetamiprid on Indian indigenous earthworm, Perionyx excavatus. Acute toxicity revealed an LC50 concentration of 0.25 µg/cm2 for filter paper test/72 h and 400 µg/kg for artificial soil test/14 days. Oxidative stress (ROS) and various biomarkers including superoxide dismutase, catalase, glutathione S-transferase, malondialdehyde content and DNA damage were measured. The results of the biomarker responses confirmed the acetamiprid exposure can cause toxicity to P. excavatus. In addition, cell density (20 × 102 cell mL/mg) and cell viability (40%) were significantly (p < 0.05) reduced. Further, the ecotoxicological assessment made through this study can be utilized as good evidence to toxicity of neonicotinoids to non-targeted indigenous organisms.
Assuntos
Inseticidas , Oligoquetos , Animais , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Sobrevivência Celular , SoloRESUMO
Bacillus thuringiensis (Bt) produces different insecticidal proteins effective for pest control. Among them, Cry insecticidal proteins have been used in transgenic plants for the control of insect pests. However, evolution of resistance by insects endangers this technology. Previous work showed that the lepidopteran insect Plutella xylostella PxHsp90 chaperone enhanced the toxicity of Bt Cry1A protoxins by protecting them from degradation by the larval gut proteases and by enhancing binding of the protoxin to its receptors present in larval midgut cells. In this work, we show that PxHsp70 chaperone also protects Cry1Ab protoxin from gut proteases degradation, enhancing Cry1Ab toxicity. We also show that both PxHsp70 and PxHsp90 chaperones act cooperatively, increasing toxicity and the binding of Cry1Ab439D mutant, affected in binding to midgut receptors, to cadherin receptor. Also, insect chaperones recovered toxicity of Cry1Ac protein to a Cry1Ac-highly resistant P. xylostella population, NO-QAGE, that has a disruptive mutation in an ABCC2 transporter linked to Cry1Ac resistance. These data show that Bt hijacked an important cellular function for enhancing its infection capability, making use of insect cellular chaperones for enhancing Cry toxicity and for lowering the evolution of insect resistance to these toxins.
Assuntos
Bacillus thuringiensis , Inseticidas , Animais , Bacillus thuringiensis/genética , Insetos , Larva/genética , Chaperonas Moleculares , Proteínas de Choque Térmico HSP90/genética , Peptídeo Hidrolases , Proteínas de Choque Térmico HSP70/genética , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidadeRESUMO
In 2021, a total of 151 pregnant women were selected from the suburb of Shanghai. A questionnaire survey was conducted to obtain data about maternal age, gestational week, total annual household income, education level and passive smoking among pregnant women and one spot urine was collected. The concentrations of eight neonicotinoid pesticides and four metabolites in urine were measured by ultra-high performance liquid chromatography-tandem quadrupole time-of-flight mass spectrometry. The differences in detection frequencies and concentrations of neonicotinoid pesticides and their metabolites among pregnant women with different characteristics were compared, and the influencing factors of the detection of neonicotinoid pesticides in urine were analyzed. The results showed that at least one neonicotinoid pesticide was detected in 93.4% (141 samples) of urine samples. The detection frequencies of N-desmethyl-acetamiprid, clothianidin, thiamethoxam, and N-desmethyl-clothianidin were high, about 78.1% (118 samples), 75.5% (114 samples), 68.9% (104 samples), and 44.4% (67 samples), respectively. The median concentration of the sum of all neonicotinoid pesticides was 2.66 µg/g. N-desmethyl-acetamiprid had the highest detection concentration with a median concentration of 1.04 µg/g. A lower urinary detection frequency of imidacloprid and its metabolites was seen in pregnant women aged 30-44 years [OR (95%CI): 0.23 (0.07-0.77)]. A higher detection frequency of clothianidin and its metabolites was seen in pregnant women with per capita annual household income≥100 000 yuan [OR (95%CI): 6.15 (1.56-24.28)]. There was widespread exposure to neonicotinoid pesticides and their metabolites in pregnant women from the suburb of Shanghai, which might pose potential health risks to pregnant women, and maternal age and household income were potential influencing factors of the exposure to neonicotinoid pesticides.
Assuntos
Inseticidas , Praguicidas , Humanos , Feminino , Gravidez , Praguicidas/análise , Gestantes , China , Neonicotinoides/análiseRESUMO
Endophytic biostimulant with pesticide bioremediation activities may reduce agrochemicals application in rice cultivation. The present study evaluates diazinon-degrading endophytic bacteria, isolated from rice plants grown in the fields with pesticide amalgamation, leading to increased productivity in high-yielding rice plants. These endophytes showed capabilities of decomposing diazinon, confirmed by FT-IR spectra analysis. Growth promoting activities of these endophytes can be attributed to their abilities to produce an increased level of IAA content and to demonstrate high level ACC-deaminase activities. Furthermore, these endophytes demonstrated enhanced level of extracellular cellulase, xylanase, amylase, protease and lignin degrading activities. Five genera including Enterobacter, Pantoea, Shigella, Acinetobacter, and Serratia, are represented only by the leaves, while four genera such as Enterobacter, Escherichia, Kosakonia, and Pseudomonas are represented only by the shoots. Five genera including, Klebsiella, Enterobacter, Pseudomonas, Burkholderia, and Bacillus are represented only by the roots of rice plants. All these strains demonstrated cell wall hydrolytic enzyme activities, except pectinase. All treatments, either individual strains or consortia of strains, enhanced rice plant growth at germination, seedling, vegetative and reproductive stages. Among four (I-IV) consortia, consortium-III generated the maximum rice yield under 70% lower doses of urea compared to that of control (treated with only fertilizer). The decoded genome of Klebsiella sp. HSTU-F2D4R revealed nif-cluster, chemotaxis, phosphates, biofilm formation, and organophosphorus insecticide-degrading genes. Sufficient insecticide-degrading proteins belonging to strain HSTU-F2D4R had interacted with diazinon, confirmed in molecular docking and formed potential catalytic triads, suggesting the strains have bioremediation potential with biofertilizer applications in rice cultivation.
Assuntos
Inseticidas , Oryza , Diazinon/metabolismo , Inseticidas/metabolismo , Klebsiella/genética , Ureia/metabolismo , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos Organofosforados , Enterobacter/genética , Genes Reguladores , Endófitos , Raízes de Plantas/microbiologiaRESUMO
Plot size is of practical importance in any integrated pest management (IPM) study that has a field component. Such studies need to be conducted at a scale relevant to species dynamics because their abundance and distribution in plots might vary according to plot size. An adequate plot size is especially important for researchers, technology providers and regulatory agencies in understanding effects of various insect control technologies on non-target arthropods. Plots that are too small might fail to detect potential harmful effects of these technologies due to arthropod movement and redistribution among plots, or from untreated areas and outside sources. The Arizona cotton system is heavily dependent on technologies for arthropod control, thus we conducted a 2-year replicated field experiment to estimate the optimal plot size for non-target arthropod studies in our system. Experimental treatments consisted of three square plot sizes and three insecticides in a full factorial. We established three plot sizes that measured 144 m2, 324 m2 and 576 m2. For insecticide treatments, we established an untreated check, a positive control insecticide with known negative effects on the arthropod community and a selective insecticide. We investigated how plot size impacts the estimation of treatment effects relative to community structure (27 taxa), community diversity, individual abundance, effect sizes, biological control function of arthropod taxa with a wide range of mobility, including Collops spp., Orius tristicolor, Geocoris spp., Misumenops celer, Drapetis nr. divergens and Chrysoperla carnea s.l.. Square 144 m2 plots supported similar results for all parameters compared with larger plots, and are thus sufficiently large to measure insecticidal effects on non-target arthropods in cotton. Our results are applicable to cotton systems with related pests, predators or other fauna with similar dispersal characteristics. Moreover, these results also might be generalizable to other crop systems with similar fauna.
Assuntos
Artrópodes , Besouros , Heterópteros , Inseticidas , Animais , Inseticidas/toxicidade , Controle de Insetos/métodos , GossypiumRESUMO
Neonicotinoids, a class of insecticides, are widely used because of their novel modes of action, high insecticidal activity, and strong root uptake. Imidacloprid, the most widely used insecticide worldwide, is a representative first-generation neonicotinoid and is used in pest control for crops, vegetables, and fruit trees. With such a broad application of imidacloprid, its residue in crops has attracted increasing scrutiny. In the present study, 15 wheat seedlings were placed in a culture medium containing 0.5 mg/L or 5 mg/L imidacloprid for hydroculture. The content of imidacloprid in the wheat roots and leaves was determined after 1 day, 2 days, and 3 days of hydroculture to explore the migration and distribution of imidacloprid in wheat. The results showed that imidacloprid was detected both in the roots and leaves of the wheat plant, and the content of imidacloprid in the roots was higher than that in the leaves. Furthermore, the imidacloprid concentration in the wheat increased with increasing exposure time. After 3 days of exposure, the roots and leaves of the wheat in the 0.5 mg/L treatment group contained 4.55 mg/kg ± 1.45 mg/kg and 1.30 mg/kg ± 0.08 mg/kg imidacloprid, respectively, while the roots and leaves of the 5 mg/L treatment group contained 42.5 mg/kg ± 0.62 mg/kg and 8.71 mg/kg ± 0.14 mg/kg imidacloprid, respectively. The results from the present study allow for a better understanding of pesticide residues in crops and provide a data reference for the environmental risk assessment of pesticides.
Assuntos
Inseticidas , Triticum , Neonicotinoides , Nitrocompostos , Inseticidas/farmacologia , Produtos AgrícolasRESUMO
The excessive and unreasonable use of pesticides has adversely affected the environment and human health. The soil, one of the most critical natural resources supporting human survival and development, accumulates large amounts of pesticide residues. Compared to traditional spectrophotometry analytical methods, nanoparticle-based sensors stand out for their simplicity of operation as well as their high sensitivity and low detection limits. In this review, we focus primarily on the functions that various nanoparticles have and how they can be used to detect various pesticide residues in soil. A detailed discussion was conducted on the properties of nanoparticles, including their color changeability, Raman enhancement, fluorescence enhancement and quenching, and catalysis. We have also systematically reviewed the methodology for detecting insecticides, herbicides, and fungicides in soil by using nanoparticles.
Assuntos
Inseticidas , Nanopartículas , Resíduos de Praguicidas , Praguicidas , Humanos , Resíduos de Praguicidas/análise , Solo/química , Praguicidas/análise , Inseticidas/análiseRESUMO
In our previous study, a series of novel pyrazoloquinazolines were synthesized. Pyrazoloquinazoline 5a showed high insecticidal activity against the diamondback moth (Plutella xylostella) and no cross-resistance to fipronil. Patch clamp electrophysiology performed on P. xylostella pupae brains and two-electrode voltage clamp electrophysiology performed on Xenopus Laevis oocytes indicated that 5a might act on the ionotropic γ-aminobutyric acid (GABA) receptor (GABAR) and glutamate-gated chloride channel (GluCl). Moreover, 5a's potency on PxGluCl was about 15-fold higher than on fipronil, which may explain why there was no cross-resistance between 5a and fipronil. Downregulation of the PxGluCl transcription level significantly enhanced the insecticidal activity of 5a on P. xylostella. These findings shed light on the mode of action of 5a and provide important insights into the development of new insecticides for agricultural applications.
Assuntos
Inseticidas , Canais Iônicos de Abertura Ativada por Ligante , Mariposas , Animais , Mariposas/genética , Cloretos , Ligantes , Inseticidas/farmacologia , Canais de Cloreto/genética , Receptores de GABA , Resistência a InseticidasRESUMO
The sweet potato whitefly, Bemisia tabaci, (Gennadius) (Hemiptera:Aleyrodidae) is a global pest of crops. Neonicotinoids are efficient insecticides used for control of this pest. Insecticidal targets of neonicotinoids are insect nicotinic acetylcholine receptors (nAChRs). Here, we characterized and cloned the full length of the nAChR ß1 subunit (BTß1) in B. tabaci and confirmed the consistency of BTß1 in B. tabaci MEAM1 and MED. Expression levels of BTß1 in different developmental stages and body parts of adults were investigated and compared in B. tabaci MED. dsRNA was prepared to knock down BTß1 in adult B. tabaci and significantly decreases the susceptibility to five neonicotinoid insecticides, including imidacloprid, clothianidin, thiacloprid, nitenpyram, and dinotefuran. This study indicated BTß1 as a notable site influencing the susceptibility of B. tabaci to neonicotinoids.
Assuntos
Hemípteros , Inseticidas , Receptores Nicotínicos , Animais , Inseticidas/toxicidade , Inseticidas/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Resistência a Inseticidas/genética , Neonicotinoides/metabolismo , Nitrocompostos/farmacologia , Nitrocompostos/metabolismoRESUMO
BACKGROUND: Most cases of malaria in Brazil are concentrated in the Amazon region. One of the vector control alternatives recommended by the WHO is the long-lasting insecticidal net (LLIN). This tool is used in the nine federal states of the Brazilian Legal Amazon, where LLINs are essential for reducing vector density and disease transmission as they prevent contact between the mosquito and the individual. The objective of this study was to evaluate the residuality and use of LLIN insecticides in different health regions in a city located in the Brazilian Amazon. METHODS: A total of 17,027 LLINs were installed in the third, fifth and ninth health regions of the municipality of Porto Velho, Rondonia State, Brazil. The LLINs were of two types: Olyset (permethrin), for around the bed, and Interceptor (alphacypermethrin), for around hammocks. The residuality of 172 LLINs was evaluated using cone bioassays to verify the mortality rate of the mosquito Nyssorhynchus darlingi, over a period of 2 years. Structured questionnaires on the acceptance and use of LLINs were distributed to the participating population (n = 391), covering a total sample of 1147 mosquito nets. The mortality rate was evaluated both in terms of days after LLIN installation and the type of insecticide used. Statistical analyses were based on analysis of variance (ANOVA) and Chi-square and were performed using the SPSS statistical program. RESULTS: For the Ny. darlingi mosquito, Interceptor-type LLINs showed residual efficacy, with mortality rates ≥ 80% during the 2-year study period, as determined by the WHO. In contrast, Olyset-type LLINs were associated with a reduction in mortality rates, with 76% and 45% mortality rates in the last two assessments, which occurred during the last 6 months of the study period. Based on the structured questionnaires, the acceptance rate, i.e. percentage of individuals accepting the permanence of the 1147 LLINs sampled, in the three health regions of Porto Velho was 93.8% (of 1076 LLINs). CONCLUSION: The alphacypermethrin-impregnated LLIN was more effective than the LLIN impregnated with permethrin. The results indicate that the correct use of mosquito nets-and consequently the protection of the population-needs to be supported by health promotion actions. These initiatives are considered to be essential for the success of this vector control strategy. New studies that consider the monitoring of the placement of mosquito nets are necessary to provide effective support in the correct use of this methodology.
Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Humanos , Inseticidas/farmacologia , Permetrina , Brasil/epidemiologia , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/epidemiologia , Malária/prevenção & controleRESUMO
Ecdysone receptor (EcR) and chitinase play a critical role in the molting stage of insect pests. Each of them is considered a promising target for the development of novel insect growth regulators (IGRs). In the present paper, a total of 24 (23 novel) hexacyclic pyrazolamide derivatives were designed and synthesized by reducing the heptacycle and inserting small flexible linkers on the basis of the previously discovered dual-target compound D-27 acting simultaneously on EcR and Ostrinia furnacalis chitinase (OfChtI). Their insecticidal activities against Plutella xylostella, Spodoptera frugiperda, and Ostrinia furnacalis larvae were evaluated. The results revealed that the insecticidal activity was not significantly enhanced when the heptacycle on the pyrazole ring was reduced to a hexacycle. However, the insertion of an additional methylene spacer between the substituted phenyl ring and the amide bond can improve the insecticidal activity. Among the derivatives, the most potent compound, 6j, exhibited promising insecticidal activities against P. xylostella and S. frugiperda. Further protein binding assays and molecular docking indicated that 6j could target both EcR and OfChtI, and is a potential lead compound for IGRs. The present work provides valuable clues for the development of new dual-target IGRs.