Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.285
Filtrar
1.
Braz J Biol ; 83: e246230, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495158

RESUMO

Dengue fever vectored by the mosquito Aedes aegypti is one of the most rapidly spreading insect-borne diseases. Current reliance of dengue vector control is mostly on chemical insecticides. Growing insecticide resistance in the primary mosquito vector, Aedes aegypti, limits the effectiveness of vector control through chemical insecticides. These chemical insecticides also have negative environmental impacts on animals, plants and human health. Myco-biocontrol agents are naturally occurring organisms and are found to be less damaging to the environment as compared to chemical insecticides. In the present study, entomopathogenic potential of local strains of fungi isolated from soil was assessed for the control of dengue vector. Local fungal isolates presents better alternative to introducing a foreign biocontrol strain, as they may be better adapted to environmental conditions of the area to survive and may have more entomopathogenic efficacy against target organism. Larvicidal efficacy of Fusarium equiseti and Fusarium proliferatum was evaluated against Aedes aegypti. Local strains of F. equiseti (MK371718) and F. proliferatum (MK371715) were isolated from the soil of Changa Manga Forest, Pakistan by using insect bait method. Larvicidal activity of two Fusarium spp. was tested against forth instar larvae of A. aegypti in the laboratory, using concentrations 105, 106, 107 and 108 conidia /ml. LC50 values for F. equiseti after 24h, 48h, 72h and 96h of exposure were recorded as 3.8x 108, 2.9x107, 2.0x107, and 7.1x106 conidia /ml respectively while LC50 values for F. proliferatum were recorded as 1.21x108, 9.6x107, 4.2x107, 2.6x107 conidia /ml respectively after 24h, 48h, 72h and 96h of exposure. The results indicate that among two fungal strains F. equiseti was found to be more effective in terms of its larvicidal activity than F. proliferatum against larvae of A. aegypti.


Assuntos
Aedes , Fusarium , Inseticidas , Animais , Florestas , Humanos , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Paquistão , Extratos Vegetais , Solo
2.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445622

RESUMO

Vector-borne diseases have appeared or re-emerged in many Southern Europe countries making the transmission of infectious diseases by mosquitoes (vectors) one of the greatest worldwide health threats. Larvicides have been used extensively for the control of Aedes (Stegomyia) albopictus (Skuse, 1895) (Diptera: Culicidae) and Culex pipiens Linnaeus, 1758 (Diptera: Culicidae) mosquitoes in urban and semi-urban environments, causing the increasing resistance of mosquitoes to commercial insecticides. In this study, 27 curcuminoids and monocarbonyl curcumin derivatives were synthesised and evaluated as potential larvicidal agents against Cx. pipiens and Ae. albopictus. Most of the compounds were more effective against larvae of both mosquito species. Four of the tested compounds, curcumin, demethoxycurcumin, curcumin-BF2 complex and a monocarbonyl tetramethoxy curcumin derivative exhibited high activity against both species. In Cx. pipiens the recorded LC50 values were 6.0, 9.4, 5.0 and 32.5 ppm, respectively, whereas in Ae. albopictus they exhibited LC50 values of 9.2, 36.0, 5.5 and 23.6 ppm, respectively. No conclusive structure activity relationship was evident from the results and the variety of descriptors values generated in silico provided some insight to this end.


Assuntos
Aedes/efeitos dos fármacos , Culex/efeitos dos fármacos , Curcumina/química , Curcumina/farmacologia , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Feminino , Inseticidas/química
3.
Pestic Biochem Physiol ; 178: 104946, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446184

RESUMO

Spodoptera litura (Fabricius) is a widely distributed, highly polyphagous pest that can cause severe damage to a variety of economically important crops. Various populations have developed resistance to different classes of insecticides. In this study, we report on two indoxacarb-resistant S. litura populations, namely Ind-R (resistance ratio = 18.37-fold) derived from an indoxacarb-susceptible (Ind-S) population and a population caught from a field (resistance ratio = 46.72-fold). A synergist experiment showed that piperonyl butoxide (PBO) combined with indoxacarb produced higher synergistic effects (synergist ratio = 5.29) in the Ind-R population as compared to Ind-S (synergist ratio = 3.08). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for Ind-R (2.15-fold) and the Field-caught population (4.03-fold) as compared to Ind-S, while only minor differences were noticed in the activities of esterases and glutathione S-transferases. Furthermore, expression levels of P450 genes of S. litura were determined by quantitative reverse transcription PCR to explore differences among the three populations. The results showed that the mRNA levels of CYP6AE68, a novel P450 gene belonging to the CYP6 family, were constitutively overexpressed in Ind-R (32.79-fold) and in the Field-caught population (68.11-fold). CYP6AE68 expression in S. litura was further analyzed for different developmental stages and in different tissues. Finally, we report that RNA interference-mediated silencing of CYP6AE68 increased the mortality of fourth-instar larvae exposed to indoxacarb at the LC50 dose level (increase by 33.89%, 29.44% and 22.78% for Ind-S, Ind-R and the Field-caught population, respectively). In conclusion, the findings of this study indicate that expression levels of CYP6AE68 in S. litura larvae are associated with indoxacarb resistance and that CYP6AE68 may play a significant role in detoxification of indoxacarb.


Assuntos
Inseticidas , Mariposas , Animais , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética , Oxazinas/farmacologia , Spodoptera/genética
4.
Pestic Biochem Physiol ; 178: 104911, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446187

RESUMO

Commercial insecticide aerosol sprays are widely used in households for controlling Aedes aegypti and Culex quinquefasciatus, the primary vectors of dengue virus and filarial worm, respectively. In Thailand, however, both mosquitoes are resistant to pyrethroids conferred by knockdown resistance (kdr) mutations, V1016G and F1534C in Ae. aegypti and L1014F in Cx. quinquefasciatus. This study evaluated the efficacy of five sprays (coded as AS1-AS5) with different formulations of pyrethroids against wild mosquitoes by using a cage bioassay in a furnished bedroom of a house. Five cages containing wild mosquitoes and five cages containing a pyrethroid susceptible strain of Ae. aegypti (25 females each), as a bio-indicator, were allocated in the room and spraying was operated for 15 s. Survivors and dead mosquitoes were genotyped individually for the kdr mutations using allele-specific PCR methods. Both mosquito species showed a high resistance to permethrin and deltamethrin with 12.5-58.0% mortality rates. For controlling Ae. aegypti, the spray AS4 showed the highest efficacy (mortality rates 76.0-100.0%, mean 95.2%), followed by AS2 (73.0-100.0%, mean 93.8%). For controlling Cx. quinquefasciatus, the best result was obtained from AS4 (66.0-98.0% mortality, mean 89.8%), followed by AS2 (73.0-97.0%, mean 84.5%). The sprays (AS4 and AS2) containing both type I and type II pyrethroids were more effective than those containing only type I pyrethroids or pyrethrum with the synergist piperonyl butoxide. The mutant G1016 and F1014 allele frequencies were significantly higher in the survivor groups than the dead groups of Ae. aegypti and Cx. quinquefasciatus, respectively, (P < 0.05). The efficacy of the sprays varied depending on the mosquito species, formulations, nozzles and locations of caged mosquitoes. The V1016G and L1014F mutations are associated with the reduced efficacy of sprays used in households for controlling resistant Ae. aegypti and Cx. quinquefasciatus mosquitoes, respectively.


Assuntos
Aedes , Culex , Inseticidas , Piretrinas , Aedes/genética , Aerossóis , Animais , Culex/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Tailândia
5.
Pestic Biochem Physiol ; 178: 104925, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446201

RESUMO

The codling moth, Cydia pomonella (Lepidoptera: Tortricidae) is a major pest of pome fruit and walnuts worldwide. Although environmentally compatible integrated control strategies, such as mating disruption, attract-kill strategy, and sterile insect technique have been conducted for management of this notorious pest, effects to control of codling moth have mainly relied on insecticides. In consequence, different levels of insecticide resistance towards organophosphates, neonicotinoids, hydrazines, benzoylureas, pyrethroids, diamides, spinosyns, avermectins, JH mimics, carbamates, oxadiazines and C. pomonella granulovirus (CpGVs) have developed in codling moth in different countries and areas. Both metabolic and target-site mechanisms conferring resistance have been revealed in the codling moth. In this review, we summarize the current global status of insecticide resistance, the biochemical and molecular mechanisms involved, and the implications for resistance management.


Assuntos
Inseticidas , Mariposas , Piretrinas , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Neonicotinoides
6.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361721

RESUMO

To improve the proinsecticidal activity and phloem mobility of amino acid-tralopyril conjugates further, nine conjugates were designed and synthesized by introducing glutamic acid to tralopyril, and the length of the linker between glutamic acid and tralopyril ranged from 2 atoms to 10 atoms. The results of insecticidal activity against the third-instar larvae of P. xylostella showed that conjugates 42, 43, 44,and 45 (straight-chain containing 2-5 atoms) exhibited good insecticidal activity, and their LC50 values were 0.2397 ± 0.0366, 0.4413 ± 0.0647, 0.4400 ± 0.0624, and 0.4602 ± 0.0655 mM, respectively. The concentrations of conjugates 43-45 were higher than that of conjugate 42 in the phloem sap at 2 h, and conjugate 43 showed the highest concentration. The introduction of glutamic acid can improve phloem mobility. The in vivo metabolism of conjugates 42 and 43 was investigated in P. xylostella, and the parent compound tralopyril was detected at concentrations of 0.5950 and 0.3172 nmol/kg, respectively. According to the above results, conjugates 42 and 43 were potential phloem mobile pro-insecticide candidates.


Assuntos
Ácido Glutâmico/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Pró-Fármacos/farmacologia , Pirróis/farmacologia , Animais , Transporte Biológico , Biotransformação , Concentração Inibidora 50 , Inseticidas/síntese química , Inseticidas/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Longevidade/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/metabolismo , Floema/metabolismo , Floema/parasitologia , Plantas/metabolismo , Plantas/parasitologia , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Piretrinas/metabolismo , Piretrinas/farmacologia , Pirróis/síntese química , Pirróis/metabolismo , Relação Estrutura-Atividade
7.
J Agric Food Chem ; 69(33): 9684-9692, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387470

RESUMO

The use of N-aryl amide derivatives as spatially acting insecticides remains relatively unexplored. To expand this knowledge, we synthesized eighty-nine N-aryl amide analogues and screened them for mortality against an insecticide-susceptible strain of Aedes aegypti mosquitoes, Orlando (OR), using a vapor exposure glass tube assay. Of the screened compounds, twenty-two produced >92% mortality at 24 h and warranted further investigation to determine LC50 values. Fifteen of these analogues had LC50 values within 2 orders of magnitude of transfluthrin, and of significant interest, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,3,3,3-pentafluoropropanamide (compound 70) was nearly as potent as transfluthrin and exhibited greater toxicity than metofluthrin when screened against OR A. aegypti. Compounds exhibiting potent toxicity against OR A. aegypti or whose structure-activity relationship potentially offered beneficial insights into structure optimization were screened against the insecticide-resistant, Puerto Rico (PR), strain of A. Aegypti, and it was discovered that not only did these N-arylamides typically show little resistance, some such as N-(2,6-dichloropyridin-4-yl)-2,2,3,3,4,4,4-heptafluorobutanamide (compound 36) and 2,2,3,3,4,4,4-heptafluoro-N-(3,4,5-trifluorophenyl)butanamide (compound 40) were actually more potent against the PR mosquitoes. Due to this promising insecticidal activity, five compounds were administered orally to mice to determine acute oral rodent toxicity. All five compounds were found to have mouse oral toxicity LD50 values well above the minimum safe level as set by the Innovative Vector Control Consortium (50 mg/kg). In addition to the promising biological activity documented here, we report the structure-activity relationship analysis used to guide the derivatization approach taken and to further inform future efforts in the development of N-arylamides as potential resistance-breaking, spatially acting insecticides.


Assuntos
Aedes , Inseticidas , Animais , Bioensaio , Inseticidas/farmacologia , Camundongos , Mosquitos Vetores , Relação Estrutura-Atividade
8.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445782

RESUMO

Spodoptera exigua is a worldwide pest afflicting edible vegetables and has developed varying levels of resistance to insecticides. Methoxyfenozide (MET), an ecdysteroid agonist, is effective against lepidopteran pests such as S. exigua. However, the mechanism of MET to S. exigua remains unclear. In this study, we analyzed the expression patterns of genes related to the ecdysone signaling pathway in transcriptome data treated with sublethal doses of MET and analyzed how expression levels of key genes affect the toxicity of MET on S. exigua. Our results demonstrated that 2639 genes were up-regulated and 2512 genes were down-regulated in S. exigua treated with LC30 of MET. Of these, 15 genes were involved in the ecdysone signaling pathway. qPCR results demonstrated that ecdysone receptor A (EcRA) expression levels significantly increased in S. exigua when treated with different doses of MET, and that the RNAi-mediated silencing of EcRA significantly increased mortality to 55.43% at 72 h when L3 S. exigua larvae were exposed to MET at the LC30 dose. Additionally, knocking down EcRA suppressed the most genes expressed in the ecdysone signaling pathway. The combination of MET and dsEcRA affected the expression of E74 and enhanced the expression of TREA. These results demonstrate that the adverse effects of sublethal MET disturb the ecdysone signaling pathway in S. exigua, and EcRA is closely related to MET toxic effect. This study increases our collective understanding of the mechanisms of MET in insect pests.


Assuntos
Ecdisona/genética , Hidrazinas/farmacologia , Hormônios Juvenis/farmacologia , Interferência de RNA/fisiologia , Transdução de Sinais/efeitos dos fármacos , Spodoptera/efeitos dos fármacos , Transcriptoma/genética , Animais , Perfilação da Expressão Gênica/métodos , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Larva/genética , Receptores de Esteroides/genética , Spodoptera/genética
9.
Molecules ; 26(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443421

RESUMO

Pests and diseases are responsible for most of the losses related to agricultural crops, either in the field or in storage. Moreover, due to indiscriminate use of synthetic pesticides over the years, several issues have come along, such as pest resistance and contamination of important planet sources, such as water, air and soil. Therefore, in order to improve efficiency of crop production and reduce food crisis in a sustainable manner, while preserving consumer's health, plant-derived pesticides may be a green alternative to synthetic ones. They are cheap, biodegradable, ecofriendly and act by several mechanisms of action in a more specific way, suggesting that they are less of a hazard to humans and the environment. Natural plant products with bioactivity toward insects include several classes of molecules, for example: terpenes, flavonoids, alkaloids, polyphenols, cyanogenic glucosides, quinones, amides, aldehydes, thiophenes, amino acids, saccharides and polyketides (which is not an exhaustive list of insecticidal substances). In general, those compounds have important ecological activities in nature, such as: antifeedant, attractant, nematicide, fungicide, repellent, insecticide, insect growth regulator and allelopathic agents, acting as a promising source for novel pest control agents or biopesticides. However, several factors appear to limit their commercialization. In this critical review, a compilation of plant-derived metabolites, along with their corresponding toxicology and mechanisms of action, will be approached, as well as the different strategies developed in order to meet the required commercial standards through more efficient methods.


Assuntos
Agricultura , Controle Biológico de Vetores , Praguicidas/farmacologia , Plantas/química , Inseticidas/farmacologia , Toxinas Biológicas/toxicidade
10.
Front Cell Infect Microbiol ; 11: 702081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268140

RESUMO

Aedes albopictus is the only vector that can transmit the dengue virus in Zhejiang Province, central China, and it can develop insecticide resistance due to long-term exposure to pyrethroids. The presence of knockdown resistance (kdr) mutations is one of the mechanisms responsible for pyrethroid resistance, and has been reported in some Ae. albopictus populations in southern China. However, little is known about the DNA diversity of the voltage-gated sodium channel (VGSC) gene in Ae. albopictus populations in central China. Four Ae. albopictus field populations were collected, in Yiwu (YW), Quzhou (QZ), Wenzhou (WZ), and Jiaxing (JX) from Zhejiang Province, central China. The susceptibility of Ae. albopictus adults to three pyrethroids (beta-cypermethrin, deltamethrin, and permethrin) was tested using the WHO tube assay, and Kdr mutations were identified via PCR and sequencing. The relationship between kdr mutations and pyrethroid phenotypes was also analyzed. Of the four populations, none was sensitive to any pyrethroid tested, and the YW population showed the strongest pyrethroid resistance. Non-synonymous kdr mutations were detected in codons 1532 and 1534, domain III. At codon 1534, one mutant allele, TCC(S), was detected in the four populations with a frequency of 42.08%, while at codon 1532, one mutant allele, ACC(T), was detected in the JX and QZ populations, with frequencies of 4.22 and 3.03%, respectively. The F1534S mutant allele was positively correlated with both beta-cypermethrin and deltamethrin resistance phenotypes (OR > 1, P < 0.05), whereas the I1532T mutant allele was possibly negatively correlated with beta-cypermethrin, deltamethrin, and permethrin resistance phenotypes (OR < 1, P > 0.05). In conclusion, resistance and resistance mutations regarding to three pyrethroids are already present in the Ae. Albopictus populations from Zhejiang, central China, which prompts the need to use non-insecticide-based methods of insect control.


Assuntos
Aedes , Inseticidas , Aedes/genética , Animais , China , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação
11.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299501

RESUMO

Xyleborus sp beetles are types of ambrosia beetles invasive to the United States and recently also to Mexico. The beetle can carry a fungus responsible for the Laurel Wilt, a vascular lethal disease that can host over 300 tree species, including redbay and avocado. This problem has a great economic and environmental impact. Indeed, synthetic chemists have recently attempted to develop new neonicotinoids. This is also due to severe drug resistance to "classic" insecticides. In this research, a series of neonicotinoids analogs were synthesized, characterized, and evaluated against Xyleborus sp. Most of the target compounds showed good to excellent insecticidal activity. Generally, the cyclic compounds also showed better activity in comparison with open-chain compounds. Compounds R-13, 23, S-29, and 43 showed a mortality percent of up to 73% after 12 h of exposure. These results highlight the enantioenriched compounds with absolute R configuration. The docking results correlated with experimental data which showed both cation-π interactions in relation to the aromatic ring and hydrogen bonds between the search cavity 3C79 and the novel molecules. The results suggest that these sorts of interactions are responsible for high insecticidal activity.


Assuntos
Besouros/efeitos dos fármacos , Inseticidas/síntese química , Inseticidas/farmacologia , Neonicotinoides/síntese química , Neonicotinoides/farmacologia , Gorgulhos/efeitos dos fármacos , Ambrosia/parasitologia , Animais , Besouros/microbiologia , Ericaceae/parasitologia , Fungos/patogenicidade , Ligação de Hidrogênio/efeitos dos fármacos , Doenças das Plantas/microbiologia , Árvores/parasitologia , Gorgulhos/microbiologia
12.
Commun Biol ; 4(1): 847, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234279

RESUMO

The aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host-plant associations, uncovering the widespread co-option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.


Assuntos
Afídeos/genética , Evolução Molecular , Variação Genética , Genoma de Inseto/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Animais , Afídeos/classificação , Afídeos/fisiologia , Sequência de Bases , Genômica/métodos , Geografia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Mutação , Filogenia , Plantas/parasitologia , Polimorfismo de Nucleotídeo Único , Homologia de Sequência do Ácido Nucleico
13.
Artigo em Inglês | MEDLINE | ID: mdl-34299706

RESUMO

The rearing temperature of the immature stages can have a significant impact on the life-history traits and the ability of adult mosquitoes to transmit diseases. This review assessed published evidence of the effects of temperature on the immature stages, life-history traits, insecticide susceptibility, and expression of enzymes in the adult Anopheles mosquito. Original articles published through 31 March 2021 were systematically retrieved from Scopus, Google Scholar, Science Direct, PubMed, ProQuest, and Web of Science databases. After applying eligibility criteria, 29 studies were included. The review revealed that immature stages of An. arabiensis were more tolerant (in terms of survival) to a higher temperature than An. funestus and An. quadriannulatus. Higher temperatures resulted in smaller larval sizes and decreased hatching and pupation time. The development rate and survival of An. stephensi was significantly reduced at a higher temperature than a lower temperature. Increasing temperatures decreased the longevity, body size, length of the gonotrophic cycle, and fecundity of Anopheles mosquitoes. Higher rearing temperatures increased pyrethroid resistance in adults of the An. arabiensis SENN DDT strain, and increased pyrethroid tolerance in the An. arabiensis SENN strain. Increasing temperature also significantly increased Nitric Oxide Synthase (NOS) expression and decreased insecticide toxicity. Both extreme low and high temperatures affect Anopheles mosquito development and survival. Climate change could have diverse effects on Anopheles mosquitoes. The sensitivities of Anopeheles mosquitoes to temperature differ from species to species, even among the same complex. Notwithstanding, there seem to be limited studies on the effects of temperature on adult life-history traits of Anopheles mosquitoes, and more studies are needed to clarify this relationship.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Controle de Mosquitos , Temperatura
14.
Gene ; 800: 145833, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34274477

RESUMO

As one of the most common benthic invertebrates in freshwater, mayflies are very sensitive to changes in water quality and have high requirements for the water environment to allow their nymphs to successfully live and grow. Neonicotinoids, such as imidacloprid, can enter fresh water and pollute the aquatic environment. The present study had two goals: (1) investigate imidacloprid effects on mayfly larvae Choroterpes (Euthralus) yixingensis, and (2) contribute to the phylogenetic status of Ephemeroptera that has always been controversial. Nymphs were collected from Jinhua, China and exposed to different concentrations imidacloprid (5, 10, 20, and 40 µg/L) in the laboratory. Survival of C. yixingensis nymphs decreased as a function of time and imidacloprid concentration with only ~ 55% survival after 72 h exposure to 40 µg/L imidacloprid. After culture under 40 µg/L imidacloprid for 24 h, the steady state transcript levels of mitochondrial COX3, ND4 and ND4L genes were reduced to just 0.07 ± 0.11, 0.30 ± 0.16, and 0.28 ± 0.13 as compared with respective control values (P < 0.01). Steady state transcript levels of ND4 and ND4L were also significantly reduced in a dose-dependent manner (P < 0.05), suggesting that the steady state transcript pattern of these genes in mayfly nymphs can change in response to different levels of environmental contamination. Hence, the mitochondrial protein-coding genes of mayflies could potentially be developed as biomarkers for water ecotoxicity monitoring in the future. In addition, we used the mitochondrial genome sequence of C. yixingensis for an assessment of the phylogenetic tree of Ephemeroptera. The monophyly of Leptophlebiidae was supported and showed that Leptophlebiidae was a sister group to the clade (Baetidae + Caenidae).


Assuntos
Ephemeroptera/genética , Expressão Gênica/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Ephemeroptera/efeitos dos fármacos , Genoma de Inseto , Genoma Mitocondrial , Proteínas de Insetos/genética , Inseticidas/farmacologia , Ninfa/efeitos dos fármacos , Ninfa/genética , Filogenia
15.
Molecules ; 26(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204264

RESUMO

The present research investigated the chemical characterization and insecticidal activity of n-Hexane extracts of Epaltes divaricata (NH-EDx) along with their chief derivatives n-Hexadecanoic acid (n-HDa) and n-Octadecanoic acid (n-ODa) against the dengue vector Aedes aegypti and lepidopteran pest Spodoptera litura. Chemical screening of NH-EDx through GC-MS analysis delivered nine major derivatives, and the maximum peak area percentage was observed in n-Hexadecanoic acid (14.63%) followed by n-Octadecadienoic acid (6.73%). The larvicidal activity of NH-EDx (1000 ppm), n-HDa (5 ppm), and n-ODa (5 ppm) against the A. aegypti and S. litura larvae showed significant mortality rate in a dose-dependent way across all the instars. The larvicidal activity was profound in the A. aegypti as compared to the S. litura across all the larval instars. The sublethal dosages of NH-EDx (500 ppm), n-HDa (2.5 ppm), and n-ODa (2.5 ppm) also showed alterations in the larval/pupal durations and adult longevity in both the insect pests. The enzyme activity revealed that the α- and ß-carboxylesterase levels were decreased significantly in both the insect pests, whereas the levels of GST and CYP450 uplifted in a dose-dependent manner of NH-EDx, n-HDa, and n-ODa. Correspondingly, midgut tissues such as the epithelial layer (EL), gut lumen (GL), peritrophic matrix (Pm), and brush border membrane (BBM) were significantly altered in their morphology across both A. aegypti and S. litura against the NH-EDx and their bioactive metabolites. NH-EDx and their bioactive metabolites n-HDa and n-ODa showed significant larvicidal, growth retardant, enzyme inhibition, and midgut toxicity effects against two crucial agriculturally and medically challenging insect pest of ecological importance.


Assuntos
Aedes/efeitos dos fármacos , Asteraceae/metabolismo , Extratos Vegetais/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Asteraceae/efeitos dos fármacos , Culex/efeitos dos fármacos , Dengue/prevenção & controle , Hexanos/química , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Mosquitos Vetores/efeitos dos fármacos , Folhas de Planta/química , Solventes/química
16.
J Agric Food Chem ; 69(29): 8098-8109, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34278787

RESUMO

To explore natural-product-based pesticidal candidates and high value-added application of cholesterol in agriculture, oximinoether derivatives of cholesterol-containing isoxazoline/isoxazole fragments (I-1∼I-16 and II-1∼II-18) were semiprepared by structural optimization of cholesterol. Their structures were characterized by optical rotation, high-resolution mass spectrometry (HRMS), IR, and 1H NMR spectroscopy. Particularly, the Z configurations of oxime fragments at the C-7 position of target compounds were undoubtedly determined by X-ray crystallography. Against Mythimna separata Walker, compounds 3e, I-8, I-14, and II-3 showed 2.4-2.7-fold growth inhibitory activity of the precursor cholesterol. Against Plutella xylostella Linnaeus, compounds I-6, I-7, and I-9 showed 2.4-2.7-fold oral toxicity of cholesterol. Against Aphis citricola Van der Goot, compounds 2e and II-15 exhibited 4.9 and 5.8-fold aphicidal activity of cholesterol, respectively. Notably, they showed good control effects (3.0-5.0-fold promising control efficiency of 1) against A. citricola in the greenhouse. Structure-activity relationships (SARs) suggested that the C-3 hydroxyl group and the C-7 position of cholesterol are two important modification sites. It will pave the way for future structural optimization and application of cholesterol derivatives as potential pesticidal agents in agriculture.


Assuntos
Inseticidas , Mariposas , Agricultura , Animais , Colesterol , Éter , Inseticidas/farmacologia , Isoxazóis/farmacologia , Estrutura Molecular , Oximas/farmacologia , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 22(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34299368

RESUMO

BACKGROUND: Poisoning from pesticides can be extremely hazardous for non-invasive species, such as bees, and humans causing nearly 300,000 deaths worldwide every year. Several pesticides are recognized as endocrine disruptors compounds that alter the production of the normal hormones mainly by acting through their interaction with nuclear receptors (NRs). Among the insecticides, one of the most used is pyriproxyfen. As analogous to the juvenile hormone, the pyriproxyfen acts in the bee's larval growth and creates malformations at the adult organism level. METHODS: This work aims to investigate the possible negative effects of pyriproxyfen and its metabolite, the 4'-OH-pyriproxyfen, on human and bee health. We particularly investigated the mechanism of binding of pyriproxyfen and its metabolite with ultraspiracle protein/ecdysone receptor (USP-EcR) dimer of A. mellifera and the relative heterodimer farnesoid X receptor/retinoid X receptor alpha (FXR-RXRα) of H. sapiens using molecular dynamic simulations. RESULTS: The results revealed that pyriproxyfen and its metabolite, the 4'-OH- pyriproxyfen, stabilize each dimer and resulted in stronger binders than the natural ligands. CONCLUSION: We demonstrated the endocrine interference of two pesticides and explained their possible mechanism of action. Furthermore, in vitro studies should be carried out to evaluate the biological effects of pyriproxyfen and its metabolite.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/metabolismo , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Humanos , Inseticidas/farmacologia , Hormônios Juvenis/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Receptores de Esteroides/metabolismo
18.
Pestic Biochem Physiol ; 177: 104880, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301351

RESUMO

As one of the most important detoxification enzymes in insects, Glutathione S-transferases (GSTs) play key roles in insecticide resistance via direct metabolism and protection against oxidative stress induced by insecticide exposure. Insect GSTs are often considered as the phase II detoxification enzymes, they have potential function to metabolize fipronil as well as its fipronil's metabolites. In the fipronil-resistant Nilaparvata lugens strain G28, GSTs' inhibitor DEM (diethyl maleate) showed the optimal synergistic effects (5.73-fold), indicating the essential roles of GSTs in the resistance to fipronil in this insect species. Four GST genes, NlGSTs1, NlGSTs2, NlGSTe1 and NlGSTd1, were found over-expressed in G28 when compared to its relative susceptible counterpart strain S28. The roles of these four GSTs in fipronil resistance were confirmed via RNAi. The four GST genes were highly over-expressed in the midgut and/or fat body with detoxification action, which might provide more chances for insects to metabolize fipronil and its metabolites. Additionally, the higher induction levels in the GST gene expression by insecticides in the midgut and/or fat body compared to the whole insect also supported the significant roles of the four GSTs in the detoxification. Above all, the results provided evidences to understand the functions of GSTs in fipronil resistance in N. lugens, and gave a reference for other insects in fipronil resistance.


Assuntos
Hemípteros , Inseticidas , Animais , Glutationa Transferase/genética , Hemípteros/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Pirazóis
19.
Pestic Biochem Physiol ; 177: 104901, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301362

RESUMO

Lippia alba is an aromatic shrub known to produce a diversity of essential oils, which can be classified into chemotypes. This study reports on the insecticidal activity of essential oil from L. alba leaves collected at Caatinga and its major compound against termite Nasutitermes corniger and maize weevil Sitophilus zeamais. The chromatographic analysis revealed the presence of 19 compounds, with 1,8-cineole being the most common (70.01%). When ingested, the oil promoted the mortality of N. corniger (LC50: 18.25 and 8.4 nL/g for workers and soldiers, respectively). The compound 1,8-cineole was also termiticidal for workers (LC50: 13.7 nL/g). The oil inhibited the activity of N. corniger exoglucanase, xylanase, and proteases. Toxicity by ingestion to S. zeamais was detected for the oil (LC50: 0.297 µL/g) but not for 1,8-cineole; however, both the oil and 1,8-cineole showed anti-nutritional effects. Fumigant effects of the oil and 1,8-cineole against S. zeamais (LC50 of 78.0 and 13.64 µL/L in air, respectively) were detected. This is the first record of a chemotype VI oil from L. alba collected at Caatinga and the first report of the insecticidal activity of a chemotype VI oil. Our study demonstrates that essential oil from L. alba and 1,8 cineole have the potential for the development of natural insecticides.


Assuntos
Inseticidas , Isópteros , Lippia , Óleos Voláteis , Gorgulhos , Animais , Eucaliptol , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Folhas de Planta
20.
Pestic Biochem Physiol ; 177: 104878, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34301368

RESUMO

RNA interference (RNAi) has been proved to be a viable method for agricultural pest control. Due to the limited uptake of dsRNA in hemiptera insects, this study used nanocarrier SPc (star polycation) transdermal delivery systems to deliver two truncated fragments (P1/P2) dsRNA of the CYP6CY3 for silencing this target gene in Aphis gossypii. After the cotton aphid was sprayed with the SPc + dsP1/P2 mixture, the expression level of target gene in SPc + dsP1 treatment group was not different from that in dsP1 group at 24 h, 48 h, and significantly lower than that in dsP1 group at 60 h, 72 h, respectively; and the expression level of target gene in SPc + dsP2 treatment group was not different from that in dsP2 group at 24 h, and significantly lower than that in dsP2 group from 48 h, 60 h, 72 h, respectively. In addition, the expression level was continuously silenced after spraying the SPc + dsP1/P2 mixture and significant reduced by 79.7% and 84.3% at 48 h compared with the H2O control group, the mortality rate reached 48.09% and 43.18% at 84 h, respectively. And the cumulative reproduction number of cotton aphids also decreased, but the cumulative death number of newborn nymphs had an increase trend, compared with the control groups. Bioassays after RNAi showed that the silencing of CYP6CY3 increased the susceptibility of the 4th instar aphid to imidacloprid, and increased mortality by 67.21% and 58.69% at 96 h, respectively. The life table parameters of the offspring from the 4th instar cotton aphids from the SPc + dsP1/P2 treatment groups showed that the offspring had a longer pre-reproductive period and post-reproductive period. The intrinsic growth rate was 0.231 ± 0.005, 0.210 ± 0.013 and the finite growth rate was 1.260 ± 0.007 and 1.234 ± 0.016 in the SPc + dsP1/P2 treatment group, these two parameters of the two groups were lower than that of the corresponding control,the population doubling time of the two groups was prolonged and the developmental duration was delayed. These results indicate that CYP6CY3 plays a key role in the growth, development, reproduction and detoxification ability in cotton aphids, and may be as a potential RNAi target for controlling aphids, laying the foundation for the development of new environmentally-friendly RNA pesticides in this field.


Assuntos
Afídeos , Inseticidas , Animais , Afídeos/genética , Inseticidas/farmacologia , Ninfa , Interferência de RNA , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...