Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198.193
Filtrar
1.
J Ethnopharmacol ; 319(Pt 1): 117104, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37659759

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pinctada martensii (Dunker) and other marine shellfish flesh have been traditionally used in China as folk remedies regulate blood sugar. AIM OF THE STUDY: To investigate the main active constituents and the pharmacological mechanism of Pinctada martensii flesh enzymatic hydrolysate (PMH) against T2DM. MATERIALS AND METHODS: The hypoglycemic activity of enzymolysis peptides from Pinctada martensii was evaluated by using db/db mice, through the influence of glycemic index, blood lipid and key protein expression of PI3K-Akt pathway. In addition, label-free quantitative proteomics was used to screen the key proteins for Pinctada martensii hydrolysate (PMH) to improve T2DM, and Western blot and qRT-PCR were used to verify the expression difference of differential proteins at protein and mRNA levels between different groups. RESULTS: PMH were prepared and characterized. In vivo investigations revealed that the PMH could regulate blood glucose and improve glucose tolerance and insulin tolerance, reduced serum total cholesterol, triglyceride, low-density lipoprotein cholesterol levels and increase high-density lipoprotein cholesterol levels in db/db mice. Western blot results showed that PMH could up-regulate IRS-1, P-PI3K/PI3K and P-Akt/Akt levels in db/db mice. Label-free quantitative proteomic approach was used to analyze the proteome in db/db mouse liver, 231 proteins were reversed significantly (p < 0.05), and these proteins were involved in oxidative phosphorylation, glycolysis/gluconeogenesis and other pathways. Further screened 15 proteins with FC > 1.2 could be enriched in the retinol metabolic pathway, and the proteins in this pathway were also verified. CONCLUSIONS: PMH has hypoglycemic effect and can be used as a potential natural T2DM intervener. The hypoglycemic activity of PMH is related to its regulation of the PI3K/AKT pathway. The PI3K/AKT pathway and the retinol pathway are considered as another potential pathway for PMH to exert hypoglycemic effects.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Pinctada , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pinctada/metabolismo , Insulina , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Proteômica , Vitamina A/farmacologia , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Glicemia , Camundongos Endogâmicos , Colesterol/farmacologia
2.
J Ethnopharmacol ; 319(Pt 1): 117111, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37673199

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetes and its complications have overwhelmed India's healthcare system. Current therapies are expensive and have adverse side effects, thus dietary changes and alternative treatments are needed. Lagenaria siceraria (Molina) Standl. Juice is used mainly for its nutritional and medicinal values, however toxicity of the juice and antidiabetic effects have been poorly characterized. AIM OF THE STUDY: To investigate the toxicity, anti-diabetic and anti-inflammatory efficacy of Lagenaria siceraria (Molina) Standl. (LS) juice. MATERIALS AND METHODS: In vitro antidiabetic (α-glucosidase, α-amylase and DPP-4 inhibitory) activities were screened using standard procedures. The glucose uptake test was carried out by using L6 rat skeletal muscle cell line. In vivo sub-acute toxicity of LS juice was assessed on Wistar rats. Wistar rats were induced with diabetes by a single intraperitoneal (I.P) injection of freshly prepared streptozotocin (55 mg/kg body weight). The animals were randomly divided into 6 groups: normal control, untreated diabetic control, diabetic rats. Different dose of 200 mg/kg, 400 mg/kg and 600 mg/kg body weight of LS juice were administered, one group of diabetic rats were administered with 2 IU/mL insulin. The rats were sacrificed on the 31st day of the experiment and various in vivo biochemical parameters were evaluated in the serum and tissue homogenates of diabetic rats. RESULTS: Significant dose-dependent inhibition of α-amylase (22.6%), α-glucosidase (50.13%), and DPP-4 (61.50%) activity was observed by LS juice. LS juice (10 µg/mL) increased insulin-mediated 2NBDG (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) Amino)-2-Deoxyglucose) absorption in L6 cells. Animals treated with LS juice showed no toxicity or unfavorable pharmacological effects. Lagenaria siceraria (Molina) Standl. Juice improved glucose tolerance in diabetic rats with reduced fasting blood glucose. Lipopolysaccharide induced NF-κB, TNF-α and IL-1ß production was also decreased in rats fed with LS juice. CONCLUSION: Lagenaria siceraria (Molina) Standl. Juice has demonstrated promising anti-inflammatory properties as well as the capacity to inhibit the digestion enzymes glucosidase and amylase. Our findings thus open new avenues for further research into the antidiabetic potential of LS juice.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Ratos , Animais , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/toxicidade , Ratos Wistar , Estreptozocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Insulina , Frutas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/análise , alfa-Amilases , Peso Corporal , Glicemia/análise
3.
J Ethnopharmacol ; 319(Pt 3): 117296, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37820996

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tinospora crispa (L.) Hook. f. & Thomson stem (TCS) has long been used as folk medicine for the treatment of diabetes mellitus. Previous study revealed that TCS possesses multi-ingredients and multi-targets characteristic potential as insulin sensitizer activity. However, its mechanisms of action and molecular targets are still obscure. AIM OF THE STUDY: In the present study, we investigated the effects of TCS against insulin resistance in muscle cells through integrating in vitro experiment and identifying its active biomarker using metabolomics and in molecular docking validation. MATERIALS AND METHODS: We used centrifugal partition chromatography (CPC) to isolate 33 fractions from methanolic extract of TCS, and then used UHPLC-Orbitrap-HRMS to identify the detectable metabolites in each fraction. We assessed the insulin sensitization activity of each fraction using enzyme-linked immunosorbent assay (ELISA), and then used confocal immunocytochemistry microscopy to measure the translocation of glucose transporter 4 (GLUT4) to the cell membrane. The identified active metabolites were further simulated for its molecular docking interaction using Autodock Tools. RESULTS: The polar fractions of TCS significantly increased insulin sensitivity, as measured by the inhibition of phosphorylated insulin receptor substrate-1 (pIRS1) at serine-312 residue (ser312) also the increasing number of translocated GLUT4 and glycogen content. We identified 58 metabolites of TCS, including glycosides, flavonoids, alkaloids, coumarins, and nucleotides groups. The metabolomics and molecular docking simulations showed the presence of minor metabolites consisting of tinoscorside D, higenamine, and tinoscorside A as the active compounds. CONCLUSIONS: Our findings suggest that TCS is a promising new treatment for insulin resistance and the identification of the active metabolites in TCS could lead to the development of new drugs therapies for diabetes that target these pathways.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Tinospora , Humanos , Insulina/metabolismo , Simulação de Acoplamento Molecular , Tinospora/química , Músculo Esquelético , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico
4.
J Ethnopharmacol ; 319(Pt 3): 117307, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37939911

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phytochemicals have unique advantages in the treatment of diabetes due to their multi-target activity and low toxicity. Mulberry leaves, a traditional Chinese herbal medicine, have been used in the prevention and treatment of diabetes for centuries. The main active ingredients in mulberry leaves with regards to the hypoglycemic effect are 1-deoxynojirimycin, flavonoids, and polysaccharides. However, the combined hypoglycemic effects and mechanisms of mulberry leaf multi-components remain unclear. AIM OF THE STUDY: This study explored the anti-diabetic effects of mulberry leaf multi-components (MMC) and the role of the PI-3K/Akt insulin signalling pathway in improving insulin resistance. MATERIALS AND METHODS: The main chemical components of MMC were analyzed using the phenol-sulfuric acid method, aluminum nitrate-sodium nitrite method, and HPLC-ultraviolet/fluorescence detection method. The T2DM rat model was created via feeding a high-fat diet and peritoneal injection of streptozotocin. T2DM rats were divided into four groups: model, model plus metformin, model plus low-dose, and model plus high-dose MMC groups (100 and 200 mg/kg body weight/day, respectively), and plus normal group for a total of five groups. MMC was administered by oral gavage for six weeks. Fasting blood glucose and serum lipid profiles were measured using a glucometer and an automatic biochemistry analyzer, respectively. Serum insulin and adipocytokine levels were analyzed by ELISA. Hepatic glucose metabolizing enzyme activity was evaluated by ELISA and the double antibody sandwich method. Expression of PI-3K/Akt signalling pathway proteins was analyzed by RT-PCR and Western blotting. RESULTS: Extracted 1-deoxynojirimycin, flavonoid, and polysaccharide purity was 70.40%, 52.34%, and 32.60%, respectively. These components were then mixed at a ratio of 1:6:8 to form MMC. MMC significantly reduced serum glucose, insulin, and lipid levels. In diabetic rats, MMC enhanced insulin sensitivity and alleviated inflammatory and oxidative damage by lowing adipocytokine levels and increasing anti-oxidative enzyme activity. Insulin resistance was also mitigated. MMC regulated the activity of key downstream enzymes of hepatic glucose metabolism via activating the expression of PI-3K, Akt, PDX-1, and GLUT4 at the mRNA and protein levels, thereby correcting hepatic glucolipid metabolism disorders and exerting a hypoglycemic effect. CONCLUSION: MMC ameliorated hepatic glucolipid metabolism disorders and improved insulin resistance in T2DM rats by activating the PI-3K/Akt signaling pathway. These results highlight the multi-component, multi-target, and combined effects of MMC, and suggest it may be further developed as a hypoglycemic drug.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Morus , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , 1-Desoxinojirimicina/farmacologia , Glucose/metabolismo , Transdução de Sinais , Polissacarídeos/farmacologia , Folhas de Planta/metabolismo , Adipocinas , Lipídeos/farmacologia
5.
J Ethnopharmacol ; 319(Pt 2): 117249, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37806534

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cola nitida (Vent.) Schott & Endl. are among the common medicinal plants employed in traditional medicine for treating diabetes and its complications. AIM OF THE STUDY: The present study investigated the effect of Cola nitida infusion on the expression of key genes involved in insulin signaling vis-à-vis Insulin receptor substrate 1 (IRS-1), tumor protein P53 gene, glucose transporter type 4 (GLUT4), phosphoinositide 3-kinases (PI3K) and B-cell lymphoma-2 (BCL2) in skeletal muscles of type 2 diabetic (T2D) rats. METHODS: Type 2 diabetic rats were administered C. nitida infusion at low and high doses (150 and 300 mg/kg bodyweight, respectively), while a high dose of the infusion was also administered to a normal toxicological group. Metformin served as the standard antidiabetic drug. The rats were sacrificed at the end of the experimental period. Their psoas muscles were harvested and assayed for the expressions of IRS1, p53, GLUT4, PI3K and BCL2. The studied genes were further subjected to enrichment analysis using the ShinyGO 0.76 online software. RESULTS: Induction of T2D upregulated the expressions of IRS-1, p53, PI3K and BCL2 in psoas muscles, while concomitantly downregulating GLUT4 expression. These expressions were significantly reversed in type 2 diabetic rats treated with C. nitida infusion, and the results were statistically significant compared to metformin. Gene enrichment analysis revealed that the genes were linked to intrinsic pathways and biological processes involved in insulin resistance. The infusion further improved muscle glucose uptake, ex vivo. Molecular docking and molecular dynamics stimulation of C. nitida infusion phytoconstituents, caffeine and theobromine with IRS-1, p53, GLUT4, PI3K and BCL2 revealed a strong binding affinity as evident by the RMSD and RMSF values. CONCLUSION: These results indicate the potentials of C. nitida infusion to improve glucose homeostasis in skeletal muscles of type 2 diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Ratos , Animais , Cola/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Simulação de Acoplamento Molecular , Proteína Supressora de Tumor p53 , Insulina/metabolismo , Músculo Esquelético/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Metformina/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transportador de Glucose Tipo 4/genética
6.
J Endocrinol ; 260(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37888975

RESUMO

Long lagging behind insulin, glucagon research has caught up in large part, thanks to technological breakthroughs. Here we review how the field was propelled by the development of novel techniques and approaches. The glucagon radioimmunoassay and islet isolation are methods that now seem trivial, but for decades they were crucial in defining the biology of the pancreatic alpha cell and the role of glucagon in glucose homeostasis. More recently, mouse models have become the main workhorse of this research effort, if not of biomedical research in general. The mouse model allowed detailed mechanistic studies that are revealing alpha cell functions beyond its canonical glucoregulatory role. A recent profusion of gene expression and transcription regulation studies is providing new vistas into what constitutes alpha cell identity. In particular, the combination of transcriptomic techniques with functional recordings promises to move molecular guesswork into real-time physiology. The challenge right now is not to get enamored with these powerful techniques and to make sure that the research continues to be transformative and paradigm shifting. We should imagine a future in which the biology of the alpha cell will be studied at single-cell resolution, non-invasively, and in real time in the human body.


Assuntos
Células Secretoras de Glucagon , Células Secretoras de Insulina , Ilhotas Pancreáticas , Camundongos , Animais , Humanos , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Modelos Animais de Doenças , Ilhotas Pancreáticas/metabolismo
7.
J Ethnopharmacol ; 319(Pt 2): 117251, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37778516

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Cortex fraxini (also known as qinpi)-the bark of Fraxinus rhynchophylla Hance (Oleaceae)-is widely used as a Chinese traditional medicinal for its anti-inflammatory and anti-hyperuricemic activities. AIM OF THE STUDY: Obesity-induced insulin resistance (IR) is driving the rising incidence of type 2 diabetes mellitus and is related to pathological adipose tissue remodeling. Esculin, a major active component of Cortex fraxini, has anti-diabetic effects. However, whether esculin improves obesity-induced IR by regulating adipose tissue remodeling is unclear. The aims of the present study were to assess the effects of esculin on obesity-induced IR and to explore the underlying mechanisms. MATERIALS AND METHODS: Obese IR C57BL/6J mice were treated with esculin (40 or 80 mg/kg/day) for 4 weeks. Oral glucose tolerance tests were used to assess insulin sensitivity. Histological analyses were performed to analyze the number and size distribution of adipocytes. Glucose uptake was assessed using 2-NBDG. RESULTS: Esculin had no effect on body weight gain but reduced fasting blood glucose, improved oral glucose tolerance, and increased insulin sensitivity. Esculin reduced adipocyte size and the expression levels of collagen 4A1 and tumor necrosis factor α and increased the number of adipocytes and the expression of vascular endothelial growth factor A. Esculin promoted the differentiation of 3T3-L1 cells and upregulated the mRNA expression of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor-γ, activated the insulin receptor substrate 1 (IRS1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, and enhanced the translocation of glucose transporter type 4 (GLUT4) and glucose uptake in adipocytes treated with palmitic acid. CONCLUSIONS: These data suggest that esculin increases insulin sensitivity by improving adipose tissue remodeling and activating the IRS1/PI3K/AKT/GLUT4 pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Esculina/metabolismo , Esculina/uso terapêutico , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Insulina/metabolismo , Tecido Adiposo/metabolismo , Glucose/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166890, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734469

RESUMO

AIM: Progression of diabetic nephropathy (DN) is linked to the dysregulated increase of adenosine and altered signaling properties. A major contribution to the maintenance of physiological extracellular adenosine levels relies on cellular uptake activity through plasma membrane nucleoside transporters. Because kidney cells are responsive to insulin, this study aims to determine how DN affects insulin regulation of the equilibrative nucleoside transporter-2 (ENT2). METHODS: Human Podocytes and rat glomeruli were used to study ENT2 regulation. The effects of diabetes and insulin on ENT2 mediated transport activity were determined measuring the fraction of total adenosine uptake in sodium-free medium which is inhibitable by hypoxanthine. Alterations in ENT2 subcellular distribution were assessed in the kidney of people affected with DN and diabetic rats. The consequences of impaired ENT2 activity on the kidney were evaluated using dipyridamole in an animal model. RESULTS: Insulin upregulates ENT2 uptake activity by increasing the Vmax, thus counteracting decreased adenosine uptake due to high d-glucose and achieving extracellular adenosine homeostasis. Insulin promoted ENT2 translocation to the plasma membrane dependent on PI3-kinase/Akt signaling and actin cytoskeleton integrity. However, in diabetic rats, the insulin-mediated induction of ENT2 activity was lost. Additionally, reduced Akt activation in response to insulin correlated with decreased ENT2 distribution at the plasma membrane. Kidney tissues from diabetic rats and human DN biopsies showed ENT2 redistribution to an intracellular pattern, evidencing dysfunctional adenosine uptake. Through ENT inhibition, we evidenced increased proteinuria and induced alpha-smooth muscle actin as a result of profibrotic activation of cells in the kidney. CONCLUSION: Deficient insulin regulation of ENT2 activity contributes to chronically high adenosine levels and glomerular alterations that underline diabetic kidney disease progression.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Humanos , Animais , Adenosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Membrana Transportadoras , Homeostase , Insulina/metabolismo , Proteínas de Transporte de Nucleosídeos
9.
J Ethnopharmacol ; 318(Pt A): 116963, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37495027

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Globally, 537 million individuals are estimated to have diabetes. The traditional use of herbs for ameliorating diabetes symptoms is a common practice in Pakistan and use of Loranthus pulverulentus Wall (L. pulverulentus) by local people in Azad Jammu and Kashmir has been reported. AIM OF THE STUDY: In the present study, the antidiabetic potential of standardized n-butanol fraction of leaves of L. pulverulentus Wall, which is a parasite of Dalbergia sisso Roxb was assessed in both alloxan (ALX) and streptozotocin (STZ) diabetic animal models. MATERIALS AND METHODS: Chemical characterization of BF was performed using HPLC, GCMS and UHPLC-MS. The effect of the fraction (250 mg/kg) on insulin, plasma free fatty acids, L-lactate, pyruvate, MDA, HbA1c and glycogen levels in ALX and STZ animal models was determined. Liver and renal profiles were analyzed in the STZ model. Toxicological studies were performed by hemolytic, Ames mutagenicity, DNA protection, and thrombolytic assays. Histopathological analysis of the pancreas, liver, and kidney was performed. RESULTS: BF demonstrated highly significant (p < 0.001) antidiabetic potential in both diabetic models. BF significantly (p < 0.05) improved OGTT results in alloxanized diabetic mice and blocked the absorption of glucose from the gut. A significant (p < 0.001) increase in insulin levels and glycogen content in liver tissue and a decrease in plasma FFA, MDA, HbA1c, L-lactate, and pyruvate levels in STZ-diabetic mice were recorded. GC-MS and chromatographic analysis showed the presence of catechin, eugenol, longifolene, caryophyllene, Ar-tumerone and Geranyl-alpha-terpinene. Various metabolites with antidiabetic potential, including 4-hydroxycinnamyl alcohol 4-D-glucoside, zingerone glucoside, trans-trismethoxy resveratrol-d4, epigallocatechin 3-O-cinnamate, and ß-glucogallin, were identified using UHPLC-MS. Animals treated with BF showed marked improvements in cellular structures of the pancreas, liver and kidneys. This fraction is non-mutagenic and protects the DNA. CONCLUSION: The experimental fraction contained potential antidiabetic bioactive compounds responsible for alleviating diabetes-associated biochemical dysregulation. The fraction increased insulin levels and enhanced glycogen storage in muscles and the liver. It blocked glucose absorption from the intestine and substantially decreased HbA1c, lactate, pyruvate, free fatty acids, lipid, liver and kidney damage. Therefore, the use of BF for the treatment of type-2 diabetes may be beneficial.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Camundongos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , 1-Butanol , Hemoglobinas Glicadas , Diabetes Mellitus Experimental/metabolismo , Butanóis , Ácidos Graxos não Esterificados , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Glicemia , Insulina , Fígado , Glicogênio/metabolismo , Glucosídeos/farmacologia , Piruvatos/metabolismo , Piruvatos/farmacologia , Piruvatos/uso terapêutico , Estreptozocina/farmacologia
10.
J Ethnopharmacol ; 318(Pt B): 117049, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591362

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Dipsacus asper Wall. Ex C.B. Clarke (DA), a perennial herb, is one of the most commonly used herbs in Traditional Chinese Medicine for strengthening muscles and bones and regulating blood vessels. Akebia saponin D (ASD/AVI) is a triterpenoid saponin extracted from the root of DA, which has favorable pharmacological properties such as anti-osteoporosis, anti-apoptosis, liver protection and hypolipidemic. AIM OF THE STUDY: To explore the underlying mechanisms and regulatory role of Akebia saponin D (ASD/AVI) on high-fat diet-induced insulin resistance in skeletal muscle. MATERIALS AND METHODS: C2C12 cells were used to explore the best concentration in the skeletal muscle insulin resistance model in an in vitro experiment. The protective effect of AVI on insulin resistance and the corresponding signaling pathway were detected by glucose content measurement, quantitative PCR, and Western blot. A high-fat diet STZ-induced insulin resistance mice model was used to evaluate the protective function of AVI in vivo. After four weeks of treatment, ITT, OGTT, and treadmill tests were applied to examine insulin sensitivity and their serum and skeletal muscle tissues were collected for further analysis. RESULTS: AVI effectively reduced body weight, blood glucose levels and calorie intake in insulin-resistant mice, and reduced lipid accumulation and in their muscle tissue. AVI also improved glucose uptake and insulin sensitivity in both in vivo and in vitro experiments. Following AVI administration, there was an increase in the expression of the AMPK signaling pathway. Our experiments further confirmed that AVI specifically targets the IGF1R, thereby more effectively regulating the insulin signaling pathway. CONCLUSION: AVI improves type 2 diabetes-induced insulin resistance in skeletal muscle by activating the IGF1R-AMPK signaling pathway, promoting glucose uptake and energy metabolism in IR.


Assuntos
Diabetes Mellitus Tipo 2 , Dipsacaceae , Resistência à Insulina , Saponinas , Animais , Camundongos , Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2/tratamento farmacológico , Músculo Esquelético , Saponinas/farmacologia , Saponinas/uso terapêutico , Transdução de Sinais , Insulina , Glucose
11.
Carbohydr Polym ; 323: 121364, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37940264

RESUMO

Diabetes mellitus is a chronic metabolic disease that affects >500 million patients worldwide. Subcutaneous injection of insulin is the most effective treatment at present. However, regular needle injections will cause pain, inflammation, and other adverse consequences. In recent years, significant progress has been made in non-injectable insulin preparations. Oral administration is the best way of administration due to its simplicity, convenience, and good patient compliance. However, oral insulin delivery is hindered by many physiological barriers in the gastrointestinal tract, resulting in the low relative bioavailability of direct oral insulin delivery. To improve the relative bioavailability, a variety of insulin delivery vectors have been developed. Polysaccharides are used to achieve safe and effective insulin loading due to their excellent biocompatibility and protein affinity. The functional characteristics of polysaccharide-based delivery carriers, such as pH responsiveness, mucosal adhesion, and further functionalization modifications, enhance the gastrointestinal absorption and bioavailability of insulin. This paper reviews the materials and structures of oral insulin polysaccharide-based carriers, providing ideas for further improving the relative bioavailability of oral insulin.


Assuntos
Diabetes Mellitus , Nanopartículas , Humanos , Insulina , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Diabetes Mellitus/tratamento farmacológico , Polissacarídeos/química , Administração Oral , Nanopartículas/química
12.
J Affect Disord ; 344: 612-616, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37802324

RESUMO

BACKGROUND: Major depressive disorder (MDD) is linked to an increased risk of diabetes; however, the underlying pathomechanism remains unknown. Although insulin-like growth factor 1 (IGF-1) is involved in the pathogenesis of both insulin resistance (IR) and MDD, no studies have investigated the relationship between IGF-1 and IR in patients with MDD. METHODS: We recruited 120 patients with MDD (84 non-remitting patients and 36 remitting patients) and 99 control participants. Blood samples were collected after overnight fasting to investigate associations between serum and clinical factors, such as serum IGF-1 levels and homeostasis model assessment-insulin resistance (HOMA-IR). RESULTS: Serum IGF-1 levels were higher in patients with non-remitting MDD than in control participants and patients with remitting MDD (P = 0.001 and P = 0.007, respectively). There were no significant differences in HOMA-IR between the three groups. HOMA-IR was positively correlated with serum IGF-1 levels in patients with non-remitting MDD (R = 0.355; P= 0.001) but not in control participants or patients with remitting MDD. A stepwise multiple regression analysis with various clinical factors revealed a positive association of serum IGF-1 levels and body mass index with HOMA-IR in patients with non-remitting MDD. LIMITATIONS: This is a cross-sectional study and therefore we cannot draw firm conclusions about causal associations. CONCLUSIONS: Serum IGF-1 levels may play a role in IR in patients with MDD who fail to achieve remission. Further studies, including longitudinal studies, are needed to determine the relationship between high serum IGF-1 levels and subsequent IR and diabetes risk.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus , Resistência à Insulina , Humanos , Fator de Crescimento Insulin-Like I/análise , Fator de Crescimento Insulin-Like I/metabolismo , Estudos Transversais , Insulina , Glicemia/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-37673204

RESUMO

It is widely acknowledged that glucose serves as the primary energy source for organisms. However, fish exhibit persistent postprandial hyperglycemia and are thought to have low glucose tolerance. Glycolysis serves as the ubiquitous pathway for glucose catabolism, with phosphofructokinase (PFK) acting as a crucial rate-limiting enzyme in this process and playing an indispensable role. PFK is classified into three isoforms based on their major expression sites, i.e., PFKM (skeletal muscle type), PFKL (liver type) and PFKP (platelet type). In this study, grass carp (Ctenopharyngodon idella) was used as animal model and the open reading frame (ORF) sequences of six PFK genetic isoforms of grass carp were cloned. Real-time PCR was used to detect its tissue distribution, and expression changes in oral glucose tolerance test (OGTT), insulin and glucagon injection experiments. The results showed that the ORF of pfkla, pfklb, pfkma, pfkmb, pfkpa and pfkpb genes was 2343, 2340, 2355, 2331, 2364 and 2349 bp in length, respectively. The results of tissue distribution showed that pfkla and pfklb, homologous to mammalian pfkl, exhibited low expression levels in the liver of grass carp, but were expressed at the highest level in the brain. Muscle-type pfkma and pfkmb mRNA were found to be highly expressed in both red and white muscle, with pfkmb also exhibiting high expression levels in the heart, while platelet type pfkpa and pfkpb showed high mRNA abundances in the brain and heart. Oral glucose administration stimulated pfkma and pfkmb mRNA expression in the red muscle, and up-regulated pfklb mRNA levels in the liver at 3 h post treatment, but it suppressed liver-type and platelet-type PFK genes expression in the brain. The expression of pfkmb in white muscle and pfkmb and pfkpb in heart were promoted by insulin, whereas the expression of pfkla and pfkpb in the brain, pfkma and pfkmb in the red muscle, pfkma in the white muscle, and pfklb in the liver was suppressed by insulin. As for glucagon, it inhibited pfkma and pfkmb mRNA expression in the red muscle, as well as pfklb in the liver, but it up-regulated PFK genes expression in most tissues detected, such as brain (pfklb, pfkpa and pfkpb), white muscle (pfkma and pfkmb), liver (pfkla) and heart (pfkmb and pfkpb). Our results suggest that PFK family genes have different or even opposite expression patterns in response to glucose, insulin and glucagon stimulation in various tissues of grass carp, which may contribute to glucose intolerance in fish.


Assuntos
Carpas , Insulina , Animais , Insulina/farmacologia , Glucagon , Glucose/farmacologia , Glucose/metabolismo , Fosfofrutoquinases , Carpas/genética , Carpas/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/genética , RNA Mensageiro/genética , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Mamíferos/metabolismo
14.
Life Sci ; 334: 122258, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949209

RESUMO

AIMS AND OBJECTIVES: The aim of this study is to discuss the influence of endotoxin on insulin amyloid formation, to provide guidance for therapeutic insulin preparation and storage. MATERIALS AND METHODS: The ThT and ANS binding assays were applied to characterize the dynamics curve of insulin amyloid formation with the presence or absence of endotoxin. The morphological structures of intermediate and mature insulin fibrils were observed with SEM and TEM. Secondary structural changes of insulin during fibriliation were examined with CD, FTIR and Raman spectral analysis. The cytotoxic effects of oligomeric and amyloidogenic insulin aggregates were detected using a cck-8 cell viability assay kit. The influence of endotoxin on insulin efficacy was analyzed by monitoring the activation of insulin signal transduction. KEY FINDINGS: ThT analysis showed that endotoxin, regardless of species, accelerated insulin fibrils formation in a dose-dependent manner, as observed with a shorter lag phase. ANS binding assay demonstrated endotoxin provoked the exposure of insulin hydrophobic patches. The results of SEM and TEM data displayed that endotoxin drove insulin to cluster into dense and viscous form, with thicker and stronger filaments. Based on CD, FTIR and Raman spectra, endotoxin promoted the transition of α-helix to random coil and ß-strand secondary structures during insulin aggregation. Insulins in both oligomeric and amyloidogenic forms were cytotoxic to HepG2 cells, with the former being more severe. Finally, the efficacy of endotoxin treated insulin obviously decreased. SIGNIFICANCE: Our studies revealed that endotoxin disrupts the structural integrity of insulin and promotes its amyloidosis. These findings offered theoretical guidance for insulin storage and safe utilization, as well as pointing up a new direction for insulin resistance research.


Assuntos
Amiloidose , Insulina , Humanos , Amiloide/química , Amiloidose/metabolismo , Insulina/metabolismo , Estrutura Secundária de Proteína , Transdução de Sinais , Endotoxinas
16.
Nutrients ; 15(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37960277

RESUMO

Cerebrotendinous xanthomatosis (CTX) is a rare inherited disease characterized by sterol 27-hydroxylase (CYP27A1) deficiency and, thus, a lack of bile acid synthesis with a marked accumulation of 7α-hydroxylated bile acid precursors. In addition to their renowned lipid-emulgating role, bile acids have been shown to stimulate secretion of the glucose-lowering and satiety-promoting gut hormone glucagon-like peptide 1 (GLP-1). In this paper, we examined postprandial bile acid, glucose, insulin, GLP-1 and fibroblast growth factor 19 (FGF19) plasma profiles in patients with CTX and matched healthy controls. Seven patients and seven age, gender and body mass index matched controls were included and subjected to a 4 h mixed meal test with regular blood sampling. CTX patients withdrew from chenodeoxycholic acid (CDCA) and statin therapy three weeks prior to the test. Postprandial levels of total bile acids were significantly lower in CTX patients and consisted of residual CDCA with low amounts of ursodeoxycholic acid (UDCA). The postprandial plasma glucose peak concentration occurred later in CTX patients compared to controls, and patients' insulin levels remained elevated for a longer time. Postprandial GLP-1 levels were slightly higher in CTX subjects whereas postprandial FGF19 levels were lower in CTX subjects. This novel characterization of CTX patients reveals very low circulating bile acid levels and FGF19 levels, aberrant postprandial glucose and insulin profiles, and elevated postprandial GLP-1 responses.


Assuntos
Xantomatose Cerebrotendinosa , Humanos , Xantomatose Cerebrotendinosa/metabolismo , Ácidos e Sais Biliares , Ácido Quenodesoxicólico , Insulina , Peptídeo 1 Semelhante ao Glucagon , Sistema Enzimático do Citocromo P-450 , Glucose
17.
Medicine (Baltimore) ; 102(45): e35946, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37960733

RESUMO

RATIONALE: With the popularity of ICIs in different oncology treatments, immune-related adverse events have raised concerns, mostly occurring in skin and endocrine gland injury. This disease involves different organ systems and presents with a variety of clinical manifestations. Most patients with immune checkpoint inhibitor-induced type 1 diabetes are reported to have no combination of autoimmune disease. We report a case of Sintilimab-related diabetes mellitus and psoriasis. PATIENT CONCERNS: We report a case of a 65-year-old female with Sintilimab-related diabetes mellitus and psoriasis. DIAGNOSIS: The patient treated with anti-programmed cell death protein 1 (Sintilimab) for 4 cycles. The patient presented with inexplicable bouts of nausea and vomiting, accompanied by chest discomfort and a feeling of breathlessness, prompting their admission to the local hospital. The initial assessment upon admission revealed an abrupt elevation in blood glucose levels, alongside normal ketone levels, lactic acidosis, and hyperuricemia. A comprehensive regimen was provided to regulate glucose levels and address the symptoms, resulting in notable improvement and subsequent discharge. Regrettably, the patient's personal decision to discontinue medication for a single day led to the emergence of acute ketoacidosis, coupled with a recurrence of psoriasis vulgaris. Consequently, readmission became necessary. Based on the patient's medical history and diabetes antibody testing, the diagnosis of immune checkpoint inhibitor induced diabetes mellitus has been confidently established. INTERVENTIONS: The patient ceased treatment with Sintilimab and was initiated on insulin therapy for glycemic control, alongside symptomatic management for psoriasis. Upon stabilization of the condition, long-term administration of exogenous insulin was implemented as a substitute treatment. OUTCOME: Outside of the hospital, insulin therapy effectively maintained stable blood glucose levels, and there were no further episodes of psoriasis flare-ups. LESSON: The clinical manifestations of immune checkpoint inhibitor induced diabetes mellitus are variable, and in this case the patient presented with unique primary symptoms. Therefore, it is crucial to accumulate relevant cases, understand the different clinical presentations and identify the underlying mechanisms of the disease. This will provide further evidence for early therapeutic intervention in similar patients in the future.


Assuntos
Diabetes Mellitus Tipo 1 , Psoríase , Feminino , Humanos , Idoso , Glicemia/metabolismo , Inibidores de Checkpoint Imunológico/efeitos adversos , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/complicações , Insulina , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/complicações
18.
Anim Sci J ; 94(1): e13886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37963598

RESUMO

This study aimed to investigate the metabolic effects of propylene glycol (PG) over 60, 90, and 120 days in lambs. Seventy-two weaned male lambs were allocated into three groups: control (Con), PG1.5 (1.5 mL/kg live weight0.75 ), and PG3 (3 mL/kg live weight0.75 ). Blood samples were collected at the beginning and slaughter days. Biochemical parameters (glucose, triglycerides, ALT, AST, LDH, BUN, and insulin) and gene and protein levels of peroxisome proliferator activated receptor gamma (PPARγ), diacylglycerol o-acyltransferase 1 (DGAT1), carbohydrate responsive element binding protein (ChREBP), and sterol regulatory element binding transcription factor 1c (SREBP-1c) in the liver were determined. Glucose in PG1.5 was increased on Day 60, while significant differences were observed in biochemical parameters except for insulin on the 60, 90, and 120 days. Biochemical parameters such as ALT, AST, LDH, and BUN increased over time, while triglycerides decreased. DGAT1 gene and protein levels were lower, while SREBP-1c and PPARγ were higher in PG groups on Day 60. While SREBP-1c was lower in PG1.5, ChREBP was higher in PG3 on Day 90. PPARγ, DGAT1, and ChREBP were upregulated in PG3 on Day 120. Positive correlations were found between proteins. The long-term use of PG in lambs did not have detrimental effects on metabolism. The study provides valuable insights into the molecular mechanisms underlying the metabolic effects of PG in lambs, shedding light on its potential applications in lamb production.


Assuntos
Fígado , PPAR gama , Ovinos , Animais , Masculino , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Triglicerídeos , Propilenoglicóis/metabolismo , Propilenoglicóis/farmacologia
19.
J Cell Sci ; 136(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37921368

RESUMO

The rapid activation of the crucial kinase mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear. Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling. The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells. In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1. We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling. Furthermore, we identify that fibroblasts from individuals with Smith-Lemli-Opitz Syndrome (SLOS) and model HeLa-SLOS cells, which are deficient in cholesterol biosynthesis, exhibit defects in the insulin-mTORC1 growth axis. These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1. Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.


Assuntos
Insulina , Serina-Treonina Quinases TOR , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Insulina/farmacologia , Insulina/metabolismo , Complexos Multiproteicos/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Mamíferos/metabolismo
20.
Bioprocess Biosyst Eng ; 46(12): 1765-1776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37938390

RESUMO

The rising global prevalence of diabetes and increasing demand for insulin, calls for an increase in accessibility and affordability of insulin drugs through efficient and cost-effective manufacturing processes. Often downstream operations become manufacturing bottlenecks while processing a high volume of product. Thus, process integration and intensification play an important role in reducing process steps and time, volume reduction, and lower equipment footprints, which brings additional process efficiencies and lowers the production cost. Manufacturers thrive to optimize existing unit operation to maximize its benefit replacing with simple but different efficient technologies. In this manuscript, the typical property of insulin in forming the pH-dependent zinc-insulin complex is explored. The benefit of zinc chloride precipitation/crystallization has been shown to increase the in-process product purity by reducing the product and process-related impurities. Incorporation of such unit operation in the insulin process has also a clear potential for replacing the high cost involved capture chromatography step. Same time, the reduction in volume of operation, buffer consumption, equipment footprint, and capabilities of product long time storage brings manufacturing flexibility and efficiencies. The data and capabilities of simple operation captured here would be significantly helpful for insulins and other biosimilar manufacturer to make progresses on cost-effective productions.


Assuntos
Cromatografia , Insulina , Cromatografia/métodos , Cristalização , Insulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...