Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.852
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901882

RESUMO

Zearalenone (ZEN) is an important secondary metabolite of Fusarium fungi, exposure to which can cause reproductive disorders through its effects on ovarian granulosa cells (GCs) in many mammals, especially in pigs. This study aimed to investigate the protective effects of Cyanidin-3-O-glucoside (C3G) on the ZEN-induced negative effects in porcine GCs (pGCs). The pGCs were treated with 30 µM ZEN and/or 20 µM C3G for 24 h; they were divided into a control (Ctrl) group, ZEN group, ZEN+C3G (Z+C) group, and a C3G group. Bioinformatics analysis was used to systematically screen differentially expressed genes (DEGs) in the rescue process. Results showed that C3G could effectively rescue ZEN-induced apoptosis in pGCs, and notably increase cell viability and proliferation. Furthermore, 116 DEGs were identified, and the phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) signaling pathway was the center of attention, of which five genes and the PI3K-AKT signaling pathway were confirmed by real-time quantitative PCR (qPCR) and/or Western blot (WB). As analyzed, ZEN inhibited mRNA and protein levels of integrin subunit alpha-7 (ITGA7), and promoted the expression of cell cycle inhibition kinase cyclin-D3 (CCND3) and cyclin-dependent kinase inhibitor 1 (CDKN1A). After the knock-down of ITGA7 by siRNA, the PI3K-AKT signaling pathway was significantly inhibited. Meanwhile, proliferating cell nuclear antigen (PCNA) expression decreased, and apoptosis rates and pro-apoptotic proteins increased. In conclusion, our study demonstrated that C3G exhibited significant protective effects on the ZEN-induced inhibition of proliferation and apoptosis via the ITGA7-PI3K-AKT pathway.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Zearalenona , Feminino , Suínos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Zearalenona/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Integrinas/metabolismo , Apoptose , Glucosídeos/farmacologia , Células da Granulosa/metabolismo , Mamíferos/metabolismo
2.
Mar Drugs ; 21(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36827101

RESUMO

Collagen is the most ubiquitous biomacromolecule found in the animal kingdom and is commonly used as a biomaterial in regenerative medicine therapies and biomedical research. The collagens used in these applications are typically derived from mammalian sources which poses sociological issues due to widespread religious constraints, rising ethical concern over animal rights and the continuous risk of zoonotic disease transmission. These issues have led to increasing research into alternative collagen sources, of which marine collagens, in particular from jellyfish, have emerged as a promising resource. This study provides a characterization of the biophysical properties and cell adhesion interactions of collagen derived from the jellyfish Rhizostoma pulmo (JCol). Circular dichroism spectroscopy and atomic force microscopy were used to observe the triple-helical conformation and fibrillar morphology of JCol. Heparin-affinity chromatography was also used to demonstrate the ability of JCol to bind to immobilized heparin. Cell adhesion assays using integrin blocking antibodies and HT-1080 human fibrosarcoma cells revealed that adhesion to JCol is primarily performed via ß1 integrins, with the exception of α2ß1 integrin. It was also shown that heparan sulfate binding plays a much greater role in fibroblast and mesenchymal stromal cell adhesion to JCol than for type I mammalian collagen (rat tail collagen). Overall, this study highlights the similarities and differences between collagens from mammalian and jellyfish origins, which should be considered when utilizing alternative collagen sources for biomedical research.


Assuntos
Cnidários , Colágeno , Cifozoários , Animais , Humanos , Ratos , Adesão Celular , Cnidários/metabolismo , Colágeno/química , Integrinas/metabolismo , Cifozoários/química
3.
J Neuroinflammation ; 20(1): 42, 2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36804009

RESUMO

INTRODUCTION: The mechanisms of cognitive impairments in Parkinson's disease (PD) remain unknown. Accumulating evidence revealed that brain neuroinflammatory response mediated by microglial cells contributes to cognitive deficits in neuropathological conditions and macrophage antigen complex-1 (Mac1) is a key factor in controlling microglial activation. OBJECTIVES: To explore whether Mac1-mediated microglial activation participates in cognitive dysfunction in PD using paraquat and maneb-generated mouse PD model. METHODS: Cognitive performance was measured in wild type and Mac1-/- mice using Morris water maze test. The role and mechanisms of NADPH oxidase (NOX)-NLRP3 inflammasome axis in Mac1-mediated microglial dysfunction, neuronal damage, synaptic degeneration and phosphorylation (Ser129) of α-synuclein were explored by immunohistochemistry, Western blot and RT-PCR. RESULTS: Genetic deletion of Mac1 significantly ameliorated learning and memory impairments, neuronal damage, synaptic loss and α-synuclein phosphorylation (Ser129) caused by paraquat and maneb in mice. Subsequently, blocking Mac1 activation was found to mitigate paraquat and maneb-elicited microglial NLRP3 inflammasome activation in both in vivo and in vitro. Interestingly, stimulating activation of NOX by phorbol myristate acetate abolished the inhibitory effects of Mac1 blocking peptide RGD on paraquat and maneb-provoked NLRP3 inflammasome activation, indicating a key role of NOX in Mac1-mediated NLRP3 inflammasome activation. Furthermore, NOX1 and NOX2, two members of NOX family, and downstream PAK1 and MAPK pathways were recognized to be essential for NOX to regulate NLRP3 inflammasome activation. Finally, a NLRP3 inflammasome inhibitor glybenclamide abrogated microglial M1 activation, neurodegeneration and phosphorylation (Ser129) of α-synuclein elicited by paraquat and maneb, which were accompanied by improved cognitive capacity in mice. CONCLUSIONS: Mac1 was involved in cognitive dysfunction in a mouse PD model through NOX-NLRP3 inflammasome axis-dependent microglial activation, providing a novel mechanistic basis of cognitive decline in PD.


Assuntos
Maneb , Paraquat , Doença de Parkinson , Animais , Camundongos , alfa-Sinucleína/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Inflamassomos/metabolismo , Integrinas/metabolismo , Macrófagos/metabolismo , Maneb/toxicidade , Transtornos da Memória/metabolismo , Microglia/metabolismo , NADPH Oxidases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Paraquat/toxicidade , Doença de Parkinson/patologia , Antígeno de Macrófago 1
4.
Eur Rev Med Pharmacol Sci ; 27(3): 935-941, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36808339

RESUMO

OBJECTIVE:   The purpose of this study was to investigate whether integrin levels are associated with axon regeneration after central nervous system (CNS) injury. MATERIALS AND METHODS: By using immunohistochemistry, we performed a detailed investigation of the changes in and colocalization of integrins αv and α5, with Nogo-A in the retina after optic nerve injury. RESULTS: We confirmed that integrins αv and α5 were expressed in the rat retina and colocalized with Nogo-A. After optic nerve transection, we found that integrin α5 levels increased over 7 days, but integrin αv levels remained unchanged, while Nogo-A levels increased. CONCLUSIONS: It seems that the inhibition of axonal regeneration by the Amino-Nogo-integrin signaling pathway may not occur via changes in integrin levels.


Assuntos
Traumatismos do Nervo Óptico , Ratos , Animais , Integrina alfaV/metabolismo , Proteínas Nogo , Axônios/fisiologia , Regeneração Nervosa/fisiologia , Retina/metabolismo , Integrinas/metabolismo
5.
Circ Res ; 132(3): 355-378, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36730379

RESUMO

The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.


Assuntos
Células Endoteliais , Integrinas , Integrinas/metabolismo , Células Endoteliais/metabolismo , Junções Intercelulares/metabolismo , Junções Célula-Matriz/metabolismo , Endotélio Vascular/metabolismo , Adesão Celular/fisiologia
6.
Chem Commun (Camb) ; 59(17): 2341-2351, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36744880

RESUMO

Cell-matrix adhesions play an essential role in mediating and regulating many biological processes. The adhesion receptors, typically transmembrane integrins, provide dynamic correlations between intracellular environments and extracellular matrixes (ECMs) by bi-directional signaling. In-depth investigations of cell-matrix adhesion and integrin-mediated cell adhesive force are of great significance in biology and medicine. The emergence of advanced imaging techniques and principles has facilitated the understanding of the molecular composition and structure dynamics of cell-matrix adhesions, especially the label-free imaging methods that can be used to study living cell dynamics without immunofluorescence staining. This highlight article aims to give an overview of recent developments in imaging cell-matrix adhesions in a label-free manner. Electrochemiluminescence microscopy (ECLM) and surface plasmon resonance microscopy (SPRM) are briefly introduced and their applications in imaging analysis of cell-matrix adhesions are summarized. Then we highlight the advances in mapping cell-matrix adhesion force based on molecular tension probes and fluorescence microscopy (collectively termed as MTFM). The biomaterials including polyethylene glycol (PEG), peptides and DNA for constructing tension probes in MTFM are summarized. Finally, the outlook and perspectives on the further developments of cell-matrix adhesion imaging are presented.


Assuntos
Junções Célula-Matriz , Integrinas , Adesão Celular , Junções Célula-Matriz/metabolismo , Integrinas/metabolismo , Transdução de Sinais , Microscopia de Fluorescência , Sondas Moleculares , Matriz Extracelular/metabolismo
7.
Clin Epigenetics ; 15(1): 18, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36737807

RESUMO

BACKGROUND: Oncogenic overexpression of integrin-ß7 (ITGB7) in cases of high-risk multiple myeloma (MM) was reported to promote enhanced interactions between neoplastic plasma-B cells and stromal cells to develop cell-adhesion mediated drug resistance. METHODS: Expression profiles of adhesion related genes were analyzed in a cohort of MM patients containing major IgH translocations or hyperdiploidies (HY), diagnosed at the premalignant monoclonal gammopathy of undetermined significance (MGUS; n = 103), smoldering multiple myeloma; (SMM; n = 190) or MM (MM; n = 53) stage. Differential expression was integrated with loci-specific alterations in DNA-methylation and chromatin marks in MM patients. A CRISPR-based targeted induction of DNA-methylation at the ITGB7 super-enhancer (SE) in MM.1S cells was employed to intersect the impact of cis-regulatory elements on ITGB7 expression. RESULTS: ITGB7 was significantly (p < 0.05) upregulated in patients with t(14;16) and t(14;20) subgroups in all MGUS, SMM and MM stages, but sporadically upregulated in t(4;14) subgroup at the MM stage. We demonstrate a predetermined enhancer state on ITGB7 in primary-B cells that is maintained under bivalent chromatin, which undergoes a process of chromatin-state alterations and develops into an active enhancer in cases of the t(4;14) subgroup or SE in cases of the t(14;16) subgroup. We also demonstrate that while targeted induction of DNA-methylation at the ITGB7-SE further upregulated the gene, inhibition of ITGB7-SE-associated transcription factor bromodomain-4 downregulated expression of the gene. CONCLUSIONS: Our findings suggest an epigenetic regulation of oncogenic overexpression of ITGB7 in MM cells, which could be critical in MM progression and an attractive therapeutic target.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Humanos , Cromatina/genética , Análise Citogenética , Progressão da Doença , DNA/metabolismo , Metilação de DNA , Epigênese Genética , Cadeias beta de Integrinas , Integrinas/genética , Integrinas/metabolismo , Gamopatia Monoclonal de Significância Indeterminada/diagnóstico , Gamopatia Monoclonal de Significância Indeterminada/genética , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia
8.
Biophys J ; 122(5): 753-766, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36739476

RESUMO

Cell motility on flat substrates exhibits coexisting steady and oscillatory morphodynamics, the biphasic adhesion-velocity relation, and the universal correlation between speed and persistence (UCSP) as simultaneous observations common to many cell types. Their universality and concurrency suggest a unifying mechanism causing all three of them. Stick-slip models for cells on one-dimensional lanes suggest multistability to arise from the nonlinear friction of retrograde flow. This study suggests a mechanical mechanism controlled by integrin signaling on the basis of a biophysical model and analysis of trajectories of MDA-MB-231 cells on fibronectin lanes, which additionally explains the constitutive relations. The experiments exhibit cells with steady or oscillatory morphodynamics and either spread or moving with spontaneous transitions between the dynamic regimes, spread and moving, and spontaneous direction reversals. Our biophysical model is based on the force balance at the protrusion edge, the noisy clutch of retrograde flow, and a response function of friction and membrane drag to integrin signaling. The theory reproduces the experimentally observed cell states, characteristics of oscillations, and state probabilities. Analysis of experiments with the biophysical model establishes a stick-slip oscillation mechanism, and explains multistability of cell states and the statistics of state transitions. It suggests protrusion competition to cause direction reversal events, the statistics of which explain the UCSP. The effect of integrin signaling on drag and friction explains the adhesion-velocity relation and cell behavior at fibronectin density steps. The dynamics of our mechanism are nonlinear flow mechanics driven by F-actin polymerization and shaped by the noisy clutch of retrograde flow friction, protrusion competition via membrane tension, and drag forces. Integrin signaling controls the parameters of the mechanical system.


Assuntos
Actinas , Fibronectinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento Celular/fisiologia , Fibronectinas/metabolismo , Integrinas/metabolismo , Humanos , Linhagem Celular Tumoral
9.
Oncol Rep ; 49(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36799199

RESUMO

Colon cancer is one of the most frequent malignant neoplasms worldwide. Epidemiological studies suggested that the development of colon cancer can be prevented by plant­derived ingredients. In the present study, the chemopreventive activity of buddlejasaponin IV (BS­IV), isolated from the aerial part of Pleurospermum kamtschaticum, was investigated using cell viability, DNA fragmentation, caspase­3 activity, anoikis, cell adhesion, and flow cytometry assays and a murine lung metastasis model. Protein expression levels were detected by western blotting. Treatment with BS­IV significantly reduced cell viability and caused DNA fragmentation in HT­29 human colorectal cancer cells. BS­IV increased the ratio of Bax to Bcl­2 by significantly inhibiting Bcl­2 expression levels. BS­IV reduced expression levels of procaspase­9, procaspase­3, and full­length poly (ADP­ribose) polymerase (PARP) and increased cleaved PARP and nonsteroidal anti­inflammatory drug activated gene­1 expression levels and caspase­3 activity. In addition, BS­IV decreased the attachment of HT­29 cells to the extracellular matrix proteins collagen type I and IV and downregulated cell surface expression of α2ß1 integrin by inhibiting its glycosylation. BS­IV also reduced the expression and phosphorylation levels of focal adhesion kinase (FAK) and Akt, and the reduced FAK and Akt levels were rescued by treatment with a caspase­3 inhibitor Z­VAD­FMK. Furthermore, orally administered BS­IV inhibited the formation of tumor nodules in Balb/C mice intravenously injected with CT­26 murine colorectal cancer cells. Collectively, these findings indicated that BS­IV induces apoptosis via the mitochondrial­dependent pathway by increasing the ratio of Bax to Bcl­2 and activating caspases. BS­IV also induces anoikis by inhibiting α2ß1 integrin­mediated cell adhesion and signaling and inhibits the lung metastasis of colon cancer cells. Therefore, BS­IV may serve as a promising cancer chemopreventive agent.


Assuntos
Neoplasias do Colo , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Células HT29 , Caspase 3 , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína X Associada a bcl-2 , Apoptose , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesão Celular , Anoikis , Integrinas/metabolismo
10.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769251

RESUMO

Integrins are cell adhesion receptors, which play a role in breast cancer invasion, angiogenesis, and metastasis. Moreover, it has been shown that exosomal integrins provide organotropic metastasis in a mouse model. In our study, we aimed to investigate the expression of integrins ß3, ß4, and αVß5 on exosomes and tumor cells (circulating tumor cells and primary tumor) and their association with the localization of distant metastasis. We confirmed the association of exosomal integrin ß4 with lung metastasis in breast cancer patients. However, we were unable to evaluate the role of integrin ß3 in brain metastasis due to the rarity of this localization. We established no association of exosomal integrin αVß5 with liver metastasis in our cohort of breast cancer patients. The further evaluation of ß3, ß4, and αVß5 integrin expression on CTCs revealed an association of integrin ß4 and αVß5 with liver, but not the lung metastases. Integrin ß4 in the primary tumor was associated with liver metastasis. Furthermore, an in-depth analysis of phenotypic characteristics of ß4+ tumor cells revealed a significantly increased proportion of E-cadherin+ and CD44+CD24- cells in patients with liver metastases compared to patients with lung or no distant metastases.


Assuntos
Neoplasias da Mama , Exossomos , Neoplasias Hepáticas , Neoplasias Pulmonares , Animais , Camundongos , Linhagem Celular Tumoral , Exossomos/metabolismo , Integrina beta3 , Integrina beta4/metabolismo , Integrinas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/patologia , Metástase Neoplásica/patologia , Células Neoplásicas Circulantes , Neoplasias da Mama/metabolismo
11.
Cell Death Dis ; 14(2): 119, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781835

RESUMO

The skin functions as the outermost protective barrier to the internal organs and major vessels; thus, delayed regeneration from acute injury could induce serious clinical complications. For rapid recovery of skin wounds, promoting re-epithelialization of the epidermis at the initial stage of injury is essential, wherein epithelial keratinocytes act as leading cells via migration. This study applied plasma technology, which has been known to enable wound healing in the medical field. Through in vitro and in vivo experiments, the study elucidated the effect and molecular mechanism of the liquid plasma (LP) manufactured by our microwave plasma system, which was found to improve the applicability of existing gas-type plasma on skin cell migration for re-epithelialization. LP treatment promoted the cytoskeletal transformation of keratinocytes and migration owing to changes in the expression of integrin-dependent focal adhesion molecules and matrix metalloproteinases (MMPs). This study also identified the role of increased levels of intracellular reactive oxygen species (ROS) as a driving force for cell migration activation, which was regulated by changes in NADPH oxidases and mitochondrial membrane potential. In an in vivo experiment using a murine dorsal full-thickness acute skin wound model, LP treatment helped improve the re-epithelialization rate, reaffirming the activation of the underlying intracellular ROS-dependent integrin-dependent signaling molecules. These findings indicate that LP could be a valuable wound management material that can improve the regeneration potential of the skin via the activation of migration-related molecular signaling within the epithelial cell itself with plasma-driven oxidative eustress.


Assuntos
Queratinócitos , Pele , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Pele/metabolismo , Queratinócitos/metabolismo , Cicatrização/fisiologia , Movimento Celular , Integrinas/metabolismo , Oxirredução
12.
J Mater Chem B ; 11(7): 1389-1415, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36727243

RESUMO

Human cells, especially stem cells, need to communicate and interact with extracellular matrix (ECM) proteins, which not only serve as structural components but also guide and support cell fate and properties such as cell adhesion, proliferation, survival and differentiation. The binding of the cells with ECM proteins or ECM-derived peptides via cell adhesion receptors such as integrins activates several signaling pathways that determine the cell fate, morphological change, proliferation and differentiation. The development of synthetic ECM protein-derived peptides that mimic the biological and biochemical functions of natural ECM proteins will benefit academic and clinical application. Peptides derived from or inspired by specific ECM proteins can act as agonists of each ECM protein receptor. Given that most ECM proteins function in cell adhesion via integrin receptors, many peptides have been developed that bind to specific integrin receptors. In this review, we discuss the peptide sequence, immobilization design, reaction method, and functions of several ECM protein-derived peptides. Various peptide sequences derived from mainly ECM proteins, which are used for coating or grafting on dishes, scaffolds, hydrogels, implants or nanofibers, have been developed to improve the adhesion, proliferation or differentiation of stem cells and to culture differentiated cells. This review article will help to inform the optimal choice of ECM protein-derived peptides for the development of scaffolds, implants, hydrogels, nanofibers and 2D cell culture dishes to regulate the proliferation and direct the differentiation of stem cells into specific lineages.


Assuntos
Proteínas da Matriz Extracelular , Peptídeos , Humanos , Peptídeos/química , Diferenciação Celular , Integrinas/metabolismo , Células-Tronco/metabolismo , Proliferação de Células , Hidrogéis
13.
Prog Mol Biol Transl Sci ; 196: 271-302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36813362

RESUMO

Integrins are a family of 24 different heterodimers that are indispensable for multicellular life. Cell polarity, adhesion and migration are controlled by integrins delivered to the cell surface which in turn is regulated by the exo- and endocytic trafficking of integrins. The deep integration between trafficking and cell signaling determines the spatial and temporal output from any biochemical cue. Integrin trafficking plays a key role in development and many pathological conditions, especially cancer. Several novel regulators of integrin traffic have been discovered in recent times, including a novel class of integrin carrying vesicles, the intracellular nanovesicles (INVs). The tight regulation of trafficking pathways by cell signaling, where kinases phosphorylate key small GTPases in the trafficking pathway enable coordination of cell response to the extracellular milieu. Integrin heterodimer expression and trafficking differ in different tissues and contexts. In this Chapter, we discuss recent studies on integrin trafficking and its contribution to normal physiological and pathophysiological states.


Assuntos
Integrinas , Neoplasias , Humanos , Transporte Proteico/fisiologia , Integrinas/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Neoplasias/metabolismo , Adesão Celular/fisiologia , Movimento Celular/fisiologia
14.
Biomolecules ; 13(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36830665

RESUMO

The interface between the cellular actin network and diverse forms of integrin-mediated cell adhesions displays a unique capacity to serve as accurate chemical and mechanical sensors of the cell's microenvironment. Focal adhesion-like structures of diverse cell types, podosomes in osteoclasts, and invadopodia of invading cancer cells display distinct morphologies and apparent functions. Yet, all three share a similar composition and mode of coupling between a protrusive structure (the lamellipodium, the core actin bundle of the podosome, and the invadopodia protrusion, respectively), and a nearby adhesion site. Cytoskeletal or external forces, applied to the adhesion sites, trigger a cascade of unfolding and activation of key adhesome components (e.g., talin, vinculin, integrin), which in turn, trigger the assembly of adhesion sites and generation of adhesion-mediated signals that affect cell behavior and fate. The structural and molecular mechanisms underlying the dynamic crosstalk between the actin cytoskeleton and the adhesome network are discussed.


Assuntos
Actinas , Integrinas , Actinas/metabolismo , Integrinas/metabolismo , Citoesqueleto/metabolismo , Adesão Celular/fisiologia , Citoesqueleto de Actina/metabolismo
15.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36674990

RESUMO

Growth factors and cytokines released in the lung cancer microenvironment promote an epithelial-to-mesenchymal transition (EMT) that sustains the progression of neoplastic diseases. TGFß is one of the most powerful inducers of this transition, as it induces overexpression of the fibronectin receptor, αvß6 integrin, in cancer cells which, in turn, is strongly associated with EMT. Thus, αvß6 integrin receptors may be exploited as a target for the selective delivery of anti-tumor agents. We introduce three novel synthesized conjugates, in which a selective αvß6 receptor ligand is linked to nintedanib, a potent kinase inhibitor used to treat advanced adenocarcinoma lung cancer in clinics. The αvß6 integrin ligand directs nintedanib activity to the target cells of the tumor microenvironment, avoiding the onset of negative side effects in normal cells. We found that the three conjugates inhibit the adhesion of cancer cells to fibronectin in a concentration-dependent manner and that αvß6-expressing cells internalized the conjugated compounds, thus permitting nintedanib to inhibit 2D and 3D cancer cell growth and suppress the clonogenic ability of the EMT phenotype as well as intervening in other aspects associated with the EMT transition. These results highlight αvß6 receptors as privileged access points for dual-targeting molecular conjugates engaged in an efficient and precise strategy against non-small cell lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Fator de Crescimento Transformador beta/metabolismo , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Integrinas/metabolismo , Antineoplásicos/farmacologia , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Oncol Rep ; 49(2)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633146

RESUMO

Structural alterations of collagen impact signaling that helps control tumor progression and the responses to therapeutic intervention. Integrins represent a class of receptors that include members that mediate collagen signaling. However, a strategy of directly targeting integrins to control tumor growth has demonstrated limited activity in the clinical setting. New molecular understanding of integrins have revealed that these receptors can regulate both pro­ and anti­tumorigenic functions in a cell type­dependent manner. Therefore, designing strategies that block pro­tumorigenic signaling, without impeding anti­tumorigenic functions, may lead to development of more effective therapies. In the present study, evidence was provided for a novel signaling cascade in which ß3­integrin­mediated binding to a secreted RGDKGE­containing collagen fragment stimulates an autocrine­like signaling pathway that differentially governs the activity of both YAP and (protein kinase­A) PKA, ultimately leading to alterations in the levels of immune checkpoint molecule PD­L1 by a proteasome dependent mechanism. Selectively targeting this collagen fragment, reduced nuclear YAP levels, and enhanced PKA and proteasome activity, while also exhibiting significant antitumor activity in vivo. The present findings not only provided new mechanistic insight into a previously unknown autocrine­like signaling pathway that may provide tumor cells with the ability to regulate PD­L1, but our findings may also help in the development of more effective strategies to control pro­tumorigenic ß3­integrin signaling without disrupting its tumor suppressive functions in other cellular compartments.


Assuntos
Antígeno B7-H1 , Colágeno , Integrinas , Neoplasias , Fragmentos de Peptídeos , Complexo de Endopeptidases do Proteassoma , Humanos , Antígeno B7-H1/metabolismo , Colágeno/química , Colágeno/metabolismo , Integrinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas de Sinalização YAP/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
17.
Sci Transl Med ; 15(678): eabl7895, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630483

RESUMO

Pancreatic and lung cancers frequently develop resistance to chemotherapy-induced cell apoptosis during the treatment, indicating that targeting nonapoptotic-related pathways, such as pyroptosis, can be an alternative cancer treatment strategy. Pyroptosis is a gasdermin-driven lytic programmed cell death triggered by inflammatory caspases when initiated by canonical or noncanonical pathways that has been recently seen as a potential therapeutic target in cancer treatment. However, overcoming chemoresistance in cancers by modulating pyroptosis has not been explored. Here, we demonstrate that ß5-integrin represses chemotherapy-induced canonical pyroptosis to confer cancer chemoresistance through ASAH2-driven sphingolipid metabolic reprogramming. Clinically, high ß5-integrin expression associates with poor patient prognosis and chemotherapeutic responses in cancers. In addition, chemoresistant cells in vitro fail to undergo chemotherapy-induced pyroptosis, which is controlled by ß5-integrin. Mechanistically, proteomic and lipidomic analyses indicate that ß5-integrin up-regulates sphingolipid metabolic enzyme ceramidase (ASAH2) expression through Src-signal transducer and activator of transcription 3 (STAT3) signaling, which then reduces the metabolite ceramide concentration and subsequent ROS production to prohibit chemotherapy-induced canonical pyroptosis. Using cancer cell lines, patient-derived tumor organoids, and orthotopic lung and pancreatic animal models, we show that administration of a Src or ceramidase inhibitor rescues the response of chemoresistant pancreatic and lung cancer cells to chemotherapy by reactivating pyroptosis in vitro and in vivo. Overall, our results suggest that pyroptosis-based therapy is a means to improve cancer treatment and warrants further investigation.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas pp60(c-src) , Piroptose , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Integrinas/metabolismo , Pulmão/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteômica , Piroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Humanos , Cadeias beta de Integrinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Ceramidases/metabolismo
18.
Elife ; 122023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598818

RESUMO

This study aimed to investigate the protective effect of metformin on trabecular meshwork (TM) and explore its molecular mechanisms in vivo and in vitro. Ocular hypertension (OHT) mouse models were induced with dexamethasone and further treated with metformin to determine the intraocular pressure (IOP)-lowering effect. Cultured human TM cells (HTMCs) were pre-stimulated with tert-butyl hydroperoxide (tBHP) to induce oxidative damage and then supplemented with metformin for another 24 hr. The expression of fibrotic markers and integrin/Rho-associated kinase (ROCK) signals, including α-smooth muscle actin (α-SMA), transforming growth factor-ß (TGF-ß), fibronectin, integrin beta 1, ROCK 1/2, AMP-activated protein kinase, myosin light chain 1, and F-actin were determined by western blotting and immunofluorescence. Reactive oxygen species (ROS) content was analysed using flow cytometry. Transmission electron microscopy was performed to observe microfilaments in HTMCs. It showed that metformin administration reduced the elevated IOP and alleviated the fibrotic activity of aqueous humour outflow in OHT models. Additionally, metformin rearranged the disordered cytoskeleton in the TM both in vivo and in vitro and significantly inhibited ROS production and activated integrin/ROCK signalling induced by tBHP in HTMCs. These results indicated that metformin reduced the elevated IOP in steroid-induced OHT mouse models and exerted its protective effects against oxidative injury by regulating cytoskeleton remodelling through the integrin/ROCK pathway. This study provides new insights into metformin use and preclinical evidence for the potential treatment of primary open-angle glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Metformina , Hipertensão Ocular , Camundongos , Animais , Humanos , Malha Trabecular , Metformina/farmacologia , Metformina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Integrinas/metabolismo , Células Cultivadas , Estresse Oxidativo
19.
EBioMedicine ; 88: 104433, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623453

RESUMO

BACKGROUND: Successful embryo implantation requires the attachment of a blastocyst to the receptive endometrial epithelium, which was disturbed in the women with recurrent implantation failure (RIF). Endometrial ß3-integrin was the most important adhesion molecule contributing to endometrial receptivity in both humans and mice. Nur77 has been proven indispensable for fertility in mice, here we explore the role of Nur77 on embryo-epithelial adhesion and potential treatment to embryo implantation failure. METHODS: The expression and location of Mst1 and Nur77 in endometrium from fertile women and RIF patients were examined by IHC, qRT-PCR and Western blotting. In vitro kinase assay following with LC-MS/MS were used to identify the phosphorylation site of Nur77 activated by Mst1. The phosphorylated Nur77 was detected by phos-tag SDS-PAGE assay and specific antibody against phospho-Nur77-Thr366. The effect of embryo-epithelium interaction was determined in the BeWo spheroid or mouse embryo adhesion assay, and delayed implantation mouse model. RNA-seq was used to explore the mechanism by which Nur77 derived peptide promotes endometrial receptivity. FINDINGS: Endometrial Mammalian sterile 20 (STE20)-like kinase 1 (Mst1) expression level was decreased in the women with RIF than that in the fertile control group, while Mst1 activation in the epithelial cells promoted trophoblast-uterine epithelium adhesion. The effect of Nur77 mediated trophoblast-uterine epithelium adhesion was facilitated by active Mst1. Mechanistically, mst1 promotes the transcription activity of Nur77 by phosphorylating Nur77 at threonine 366 (T366), and consequently increased downstream target ß3-integrin expression. Furthermore, a Nur77-derived peptide containing phosphorylated T366 markedly promoted mouse embryo attachment to Ishikawa cells ([4 (2-4)] vs [3 (2-4)]) and increased the embryo implantation rate (4 vs 1.4) in a delayed implantation mouse model by regulating integrin signalling. Finally, it is observed that the endometrial phospho-Nur77 (T366) level is decreased by 80% in the women with RIF. INTERPRETATION: In addition to uncovering a potential regulatory mechanism of Mst1/Nur77/ß3-integrin signal axis involved in the regulation of embryo-epithelium interaction, our finding provides a novel marker of endometrial receptivity and a potential therapeutic agent for embryo implantation failure. FUNDING: National Key Research and Development Program of China (2018YFC1004400), the National Natural Science Foundation of China (82171653, 82271698, 82030040, 81971387 and 30900727), and National Institutes of Health grants (R01HL103869).


Assuntos
Implantação do Embrião , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Proteínas Serina-Treonina Quinases , Animais , Feminino , Humanos , Camundongos , Cromatografia Líquida , Endométrio , Integrinas/metabolismo , Mamíferos/metabolismo , Fosforilação , Espectrometria de Massas em Tandem , Proteínas Serina-Treonina Quinases/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo
20.
Methods Mol Biol ; 2608: 207-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36653710

RESUMO

The neural crest is a transient embryonic structure that gives rise to a number of important cell types and tissues, including most of the peripheral and enteric nervous systems, pigment-producing skin cells known as melanocytes, and many craniofacial structures. Melanoblasts, the precursors of melanocytes, are derived from the so-called trunk neural crest cells. These cells delaminate and migrate along a dorsolateral pathway to colonize their final destination in the skin, and consequently, defects in melanoblast migration result in pigmentation defects. Studying melanocyte migration is a topic of great interest due to the involvement of melanocytes in highly metastatic skin cancer. A role for integrin-mediated adhesion is well established in neural crest migration, and our recent work has provided direct evidence for a key role for integrin-based adhesion in melanocyte migration. Imaging of melanoblast migration in the context of intact skin has proven to be a particularly powerful tool to study integrin-based adhesion during melanoblast migration. Here, we describe the use of skin explants combined with genetically encoded markers for melanocytes and high-resolution live imaging as a powerful and informative approach to analyze melanoblast migration in an ex vivo context.


Assuntos
Cromatóforos , Integrinas , Integrinas/metabolismo , Melanócitos/metabolismo , Pele , Pigmentação , Movimento Celular/fisiologia , Crista Neural , Diferenciação Celular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...